MAGFIZIKA. a 11.B-nek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MAGFIZIKA. a 11.B-nek"

Átírás

1 MAGFIZIKA a 11.B-nek

2 ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy!

3 PROTON Jelentése: első (ld. prototípus, protomártír) Töltése: pozitív elemi töltés, e = 1,6 10 C Tömege: 1,67 10 Tömegszám: A (tömeg: A ) Rendszám: Z (töltés: Z e)

4 NEUTRON Jelentése: semleges James Chadwick, 1932 Tömege: kb. a protoné (nagyobb) Atommag (nucleus): Z proton, A-Z neutron Nukleon: proton és neutron

5 IZOTÓP Jelentése: azonos hely (ti. a periódusos rendszerben, azaz a rendszámuk ua., ld. izoterm folyamat: T=áll.) Z rendszámú, de különböző A tömegszámú (más a neutronszám) magok Kül. Magfizikai sajátosságok

6 MAGERŐ A protonok taszítását a gravitáció nem ellensúlyozhatja: 10 -szer erősebb a Coulomb-erő Magerő (erős kölcsönhatás a nukleonok közt) 100-szor erősebb, mint a Coulomb-erő Rövid hatótávolságú (10 Töltésfüggetlen: np, pp, nn Vonzó Yukawa, 1949, Nobel-díj

7 KÖTÉSI ENERGIA Szét: ennyivel bontható fel az atommag Össze: ennyi szabadul fel, ha összeáll a mag Tapasztalat: Tömegdefektus: Oka: a tömeg egy része (Δm) energiává alakul ö!é#$ % '

8 A MAGENERGIA FELSZABADULÁSA Melyik a stabilabb? Könnyű atommag? (túl kevés nukleon) Nehéz atommag? (túl messze vannak a nukleonok, túl sok a proton, nagy az elektromos taszítás) Ideális a VAS ( vastó ) Magfúzió Maghasadás

9 CSEPPMODELL Folyadékcsepp ~ atommag A belső részecskék jobban kötöttek (több szomszéd), a külsők kevésbé Felületi feszültség: minél kisebb felszín (pl. két higanycsepp összeáll eggyé) Tk. 135/2,3.

10 A RADIOAKTIVITÁS 1896: Henri Becquerel anri bekerel uránszurokérc nyomot hagy egy fényérzékeny lemezen magától (külső fény nem érte) radioaktív sugárzás 1898: Marie és Pierre Curie: rádium, polónium

11 A SUGÁRZÁSOK FAJTÁI 1-sugárzás: nagy energiájú He-atommagok 2-sugárzás: nagy energiájú elektronok 3-sugárzás: nagy energiájú fotonok Az atommagból indulnak ki Egyre vastagabb rétegben nyelődnek el

12 BOMLÁSI SOROK Alfa:

13 Béta: : ;<= 8 8<1

14 Gamma: nincs magátalakulás a gerjesztett mag alapállapotba jut milliószor nagyobb energia, mint az atomi fotonnál az alfa- vagy béta sugárzás kísérője

15 NÉHÁNY ÉRDEKESSÉG Béta-bomlás: két új részecske Neutrinó: PAULI feltételezte az energiamegmaradás miatt Kicsi, semleges Pozitron: béta fordítva, azaz ; :<= > (béta plusz) Kicsi, pozitív K-befogás: béta plusz fordítva, azaz ;<= : A p befog egy e-t a belső (K) héjról és n lesz

16 Tk/ 139/1-3. FELADAT

17

18 AKTIVITÁS 1 Geiger-Müller számláló: a keletkező részecskéket detektálja Aktivitás: adott mennyiségű anyag atommagjai közül másodpercenként hány bomlik el, azaz hány keletkezik (bomlási sebesség) 4 %?! 4 % # % 1 becquerel % 1 CD

19 AKTIVITÁS 2 Az aktivitás függ: Egyenesen arányosan a még el nem bomlott atommagok számával (A ~ N) Az anyagi minőségtől Néhány adat: az átlagos radonkoncentráció Mo.-n a szobák levegőjében 100 Bq sugárzással jár (nem káros) 1 g Ra: A = 37 milliárd Bq 1 g U: A = 13 ezer Bq

20 FELEZÉSI IDŐ Tapasztalat: a radioaktív anyag atommagjainak száma mindig ugyanannyi idő alatt feleződik meg Felezési idő: T E F GHá:? J,? J,? J,? J M,2M,3M,4M idő múlva K L Anyagi minőségtől függő állandó érték Példa: M O %1600 év, M P %8 nap

21 PÉLDÁK 1 MBq aktivitású izotópok

22 BOMLÁSI TÖRVÉNY Q E H % E R F = E F 2 Q R, ahol T a felezési, t az eltelt idő, E F a kezdeti magok száma. Ugyanígy: A H % 4 F Együtt: 4 % F,LT U E λ % F,LT U bomlási állandó Q R

23 BOMLÁSI SOROK Az alfa-bomlás miatt 4-esével indulhat 4 bomlási sor van őselem szerint 4 % 4: tórium-sor 4 % 4:<1 neptúnium-sor (kihalt, T= 2 M év) 4 % 4:<2 urán-sor 4 % 4:<3 aktínium-sor A sor vége stabil Kis tömegszámú radioaktív anyagok: F W, X, Y M

24 AZ URÁN BOMLÁSI SORA

25 Feladat Tk/143/2,3. Csernobil: ápr. 26.

26 A RADIOAKTIVITÁS HATÁSA Sugárzás és anyag: egy része vagy egésze elnyelődik az atomokat, molekulákat ionizálja (kiüt elektronokat, vagy akár egy teljes atomot) ha a DNS sérül: sejtburjánzás (rákos daganat) indulhat el hőhatása jelentéktelen A sugárzás kimutatása Wilson-ködkamra: túltelített gőzben kondenzcsík Geiger-Müller számláló: áramimpulzusok Doziméter: nyomdetektor, sugárzásra érzékeny film Csernobil következménye : rákos (vs )

27 HÁTTÉRSUGÁRZÁS Környezetünkben mindenhol megtalálható (levegő, talaj, víz, saját testünk!) Egyenetlen a terhelés: a világ különböző pontjain télen nagyobb a lakásban, mint nyáron a szabadban F Földi eredet: W, Z: Y, Kozmikus eredet: X, [

28 ALKALMAZÁS Mesterséges radioaktivitás: 1919, Rutherford Gyógyászat: diagnosztika: nyomjelzés (Hevesy György, 1943, Nobel) terápia: daganatos sejtek besugárzása Kormeghatározás: radioaktív/stabil anyag Geológia: urán/ólom arányból kőzet kora Archeológia: radiokarbon-módszer: ]^\ az élő szervezetben nagyobb ]_\ X felezési ideje 5730 év Bor, elzárt víz: trícium-módszer

29 TK/150/1,2 Feladat

30 MAGHASADÁS (FISSZIÓ) Urán neutronokkal sugározva két közepes tömegű magra bomlik (Hahn, 1939) A kötési energia szabadul fel Y YT : < ` Ca T < Wb<3 : 1 uránmag esetén 1 pj szabadul fel 1 mol esetén (0,25 kg!) 20 millió MJ (= 1000 t jó minőségű szén elégetésekor)

31

32 LÁNCREAKCIÓ Az önfenntartás (Szilárd Leó) feltétele: több mint 1 neutron keletkezzen több mint 1 neutron hozzon létre újabb hasadást Rövid időn belül hatalmas energia szabadul fel: Szabályozatlan: atombomba Szabályozott: atomreaktor

33

34 SZABÁLYOZÁS Y YK `: ` % 1: 148 a természetben Y ` esetén átlagosan 2,5 neutron keletkezik Egyik baj: a neutronok egy része elnyelődik az YK `-ban Izotópdúsítás: az Y` arányának növelése Másik baj: hasítás nélkül kiszöknek a neutronok Kritikus tömeg: az a tömeg, amely megfogja a neutronokat Sokszorozódási tényező: % úfgg h#iá# #já h#i! #já k > 1: szuperkritikus állapot (atombomba, reaktorindítás) k = 1: kritikus állapot (reaktor normál üzemmód) k < 1: szubkritikus állapot (reaktor leáll)

35 ATOMREAKTOR Enrico Fermi, Szilárd Leó, Wigner Jenő: Chicago, 1942 A reaktor részei: Neutronlassító moderátor (grafit, víz): gyors neutronok lelassítása YK a gyors neutront az ` befogja Y ` lassú neutron esetén hasad jól (dúsítás: 2-4%) Uránrudak Szabályozó rudak (kadmium, bórkarbid): k változtatása Aktív zóna

36

37 ATOMBOMBA Atombomba: bomba + hasadó izotópok Dúsított (90 %) urán vagy plutóniumtöltetek szétosztva Robbantás után összeáll a kritikus tömeg ezer tonna hagyományos bomba hatóereje Manhattan-terv (Robert Oppenheimer), USA aug. 6.: Hirosima (U) aug. 9.: Nagaszaki (Pu)

38 FÚZIÓ Könnyű atommagok egyesülésekor energia szabadul fel (Teller Ede, Gamow, Bethe) Coulomb-erő ellene dolgozik Feltétel: magas hőmérséklet, nagy sűrűség Minél nagyobb a Z, annál nagyobb a T H-magok fúziója: 15 millió K He-magok fúziója: 100 millió K O-magok: 100 milliárd K Forró atommaggáz: plazma Termonukleáris reakció

39 Teller Ede, Gamow, Bethe

40 NAP Csillag keletkezésekor: Összehúzódik Felszabadul a (gravitációs) energia Magas hőmérséklet alakul ki Egyensúly: fúzió = gravitáció 4 p He (4,48 pj)

41 Szabályozatlan: MESTERSÉGES Hidrogénbomba (Teller, 1952): atombomba + fúziós anyag Szabályozott: még várat magára, Cadarache Előny: deutérium van a vízben, a végtermék stabil

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

Az atommagot felépítő részecskék

Az atommagot felépítő részecskék MAGFIZIKA Az atommagot felépítő részecskék Proton: A hidrogénatom magja. töltése: Q p = e = 1,6 10 19 C, tömege: m p = 1,672 10-27 kg. Neutron: a protonnal közel megegyező tömegű semleges részecske. tömege:

Részletesebben

Maghasadás, láncreakció, magfúzió

Maghasadás, láncreakció, magfúzió Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

A nukleáris fizika története, a nukleáris energetika születése

A nukleáris fizika története, a nukleáris energetika születése Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám.

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám. MAGFIZIKA Az atom áll: Z számú elektronból Z számú protonból A-Z számú neutronból A proton és a neutron közös neve nukleon. A - az atom tömegszáma. Z az atom rendszáma Az atomok atommagból és az azt körülvevő

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

ATOMFIZIKA, RADIOAKTIVITÁS

ATOMFIZIKA, RADIOAKTIVITÁS ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés).

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Atomenergia Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Kutatók: vizsgálták az atomenergia felszabadításának

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni.

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni. RADIOAKTIVITÁS Az atommagoknak két csoportja van, a stabil és a radioaktív magok. Ez utóbbiak nagy energiájú sugárzást kibocsátva más atommagokká alakulnak. Ilyen radioaktív elem például a rádium a polónium

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Tudománytörténet 5. 5. Előadás A globális változások kezdete

Tudománytörténet 5. 5. Előadás A globális változások kezdete Tudománytörténet 5. 5. Előadás A globális változások kezdete XIX. század közepe Kialakul a modern gyáripar (szén, gőzgép) Társadalomban, jogrendben, politikai felépítésben lényeges változások Fokozódó

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy.

Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy. Nukleáris fogalomtár A leggyakrabban használt nukleáris fogalmak Az alábbi összeállítás az atomenergetikában, illetve a róla szóló hírekben leggyakrabban szereplő szakkifejezéseket kívánja meghatározni.

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Tanulási segédlet I. és II. Nukleáris Erőművek c. tárgyhoz (távoktatás képzés) Dr. Rácz Ervin, Ph.D. egyetemi docens

Tanulási segédlet I. és II. Nukleáris Erőművek c. tárgyhoz (távoktatás képzés) Dr. Rácz Ervin, Ph.D. egyetemi docens e-mail: racz.ervin@kvk.uni-obuda.hu iroda: Bécsi út, C. épület, I. emelet, 124. szoba telefon: 06/1-666-5830 Tanulási segédlet I. és II. Nukleáris Erőművek c. tárgyhoz (távoktatás képzés) Dr. Rácz Ervin,

Részletesebben

Első magreakciók. Targetmag

Első magreakciók. Targetmag Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Az atommag története

Az atommag története Az atommag története Polcz Péter PPKE Információs Technológiai Kar 1083 Budapest, Práter utca 50/a 2010. december 6. Az atommag felfedezése Az első atommag szerkezetének első kutatói, Ernest Rutherford,

Részletesebben

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc

Részletesebben

61. Lecke Az anyagszerkezet alapjai

61. Lecke Az anyagszerkezet alapjai 61. Lecke Az anyagszerkezet alapjai GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési

Részletesebben

A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév

A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév Dr. Paripás Béla 8. Előadás (2010.11.10.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja 2010. november 24. az

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

JÉKI LÁSZLÓ. A radioaktív sugárzások forrásai: az atomok

JÉKI LÁSZLÓ. A radioaktív sugárzások forrásai: az atomok JÉKI LÁSZLÓ Sugárözönben élünk Jéki László fizikus az MTA KFKI RMKI tudományos fômunkatársa A radioaktivitással kapcsolatos ismereteink még csak száz éve gyûlnek, ezért hajlamosak vagyunk azt gondolni,

Részletesebben

Magkémia. Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó)

Magkémia. Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Magkémia Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György, Nagyné László Krisztina, Radiokémia

Részletesebben

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján) Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy

Részletesebben

MIKROFIZIKA. Atomok és molekulák. Avogadro törvénye. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

MIKROFIZIKA. Atomok és molekulák. Avogadro törvénye. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS MIKROFIZIKA Atomok és molekulák Avogadro törvénye A hidrogén a kémiai elemek között a legkönnyebb, részecskéi (atomjai) a legkissebbek. (A hidrogén kétatomos gáz, egyatomos állapotban nem fordul elő. Molekulája

Részletesebben

Hidrogénfúziós reakciók csillagokban

Hidrogénfúziós reakciók csillagokban Hidrogénfúziós reakciók csillagokban Gyürky György MTA Atommagkutató Intézet 4026 Debrecen, Bem tér 18/c, 52/509-246 Napunk és a hozzá hasonló fősorozatbeli csillagok magfúziós reakciók révén termelik

Részletesebben

A modern fizika születése

A modern fizika születése A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány,

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

Atommodellek. Készítette: Sellei László

Atommodellek. Készítette: Sellei László Atommodellek Készítette: Sellei László Démokritosz Kr. e. V. sz. Az egyik legnehezebb kérdés, amire már az ókori görög tudomány is megpróbált választ adni: miből áll a világ? A világot homogén szubsztanciájú

Részletesebben

PTE Fizikai Intézet; Környezetfizika I. 11. A radioaktív szennyezés kezelése; , NB

PTE Fizikai Intézet; Környezetfizika I. 11. A radioaktív szennyezés kezelése; , NB 11. Előadás: A radioaktív szennyezés kezelése 1. Nukleáris fizikai alapismeretek 2. Sugárzásmérés. Sugárvédelem. 3. Természetes és mesterséges radioaktivitás. 4. Radioaktív hulladékok és tárolásuk. 1.

Részletesebben

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 4. elıadás AZ ATOMREAKTOROK FIZIKAI ÉS TECHNIKAI ALAPJAI, ATOMERİMŐVEK 2009/2010. tanév ıszi féléve Dr. Csom Gyula professor emeritus TARTALOM 1. Magfizikai alapok

Részletesebben

Félnünk kell-e a nukleáris energiától?

Félnünk kell-e a nukleáris energiától? BENCZE GYULA Félnünk kell-e a nukleáris energiától? Bencze Gyula fizikus egyetemi tanár Bevezetés az energia Mi az energia? A hétköznapi beszéd fordulataiban gyakran szerepel az energia szó valamilyen

Részletesebben

43. A modern fizika születése. A fényelektromos jelenség

43. A modern fizika születése. A fényelektromos jelenség 43. A modern fizika születése. A fényelektromos jelenség Röviden vázolja fel a XIX XX. századforduló idején a fizika tudományának helyzetét! Fogalmazza meg Planck kvantumhipotézisét! Kísérlet: Végezzen

Részletesebben

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton

Részletesebben

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135 RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

A természetes radioaktív sugárzás

A természetes radioaktív sugárzás A természetes radioaktív sugárzás A radioaktív sugárzás felfedezése több egymást követő véletlen esemény és egy tévedés következménye volt. 1895-ben Röntgen katódsugárcsővel végzett kísérleteket. A katódsugárcsövet

Részletesebben

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton?

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? GYAKORLÓ FELADATOK 1. Számítsd ki egyetlen szénatom tömegét! 2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? 3. Mi történik, ha megváltozik egy

Részletesebben

Egy Nobel díjas család. Radnóti Katalin ELTE TTK Fizikai Intézet

Egy Nobel díjas család. Radnóti Katalin ELTE TTK Fizikai Intézet Egy Nobel díjas család Radnóti Katalin ELTE TTK Fizikai Intézet rad8012@helka.iif.hu http://members.iif.hu/rad8012/ 1 Miről lesz szó? A főszereplők Marie Curie, Pierre Curie Irène Curie, Frederick Joliot

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Kémia I. Műszaki menedzser hallgatók számára

Kémia I. Műszaki menedzser hallgatók számára Kémia I, Műszaki menedzser hallgatók számára Novák Csaba BME, Általános és Analitikai Kémia Tanszék, 2005. Kémia I. Műszaki menedzser hallgatók számára Kémia I. Műszaki menedzser hallgatók számára Novák

Részletesebben

Nukleáris alapok. Nukleáris alapok Magfizikai Laboratóriumi Gyakorlathoz. (Magfizika, Detektorok, Sugárvédelem, Reaktor) 1. Magfizikai alapismeretek

Nukleáris alapok. Nukleáris alapok Magfizikai Laboratóriumi Gyakorlathoz. (Magfizika, Detektorok, Sugárvédelem, Reaktor) 1. Magfizikai alapismeretek 1. Magfizikai alapismeretek Nukleáris alapok (Magfizika, Detektorok, Sugárvédelem, Reaktor) Az atommagok felépítése Az atommagok 10-15 m méretű részecskék. Pozitív elektromos töltésű (+e) protonokból és

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

Kormeghatározás gyorsítóval

Kormeghatározás gyorsítóval Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

Fizikai kémia és radiokémia félév 2. zárthelyi megoldások

Fizikai kémia és radiokémia félév 2. zárthelyi megoldások A csoport Fizikai kémia és radiokémia 2012-2013. 1. félév 2. zárthelyi megoldások 1. Mit értünk a magok kötési energiáján és hogyan tudná azt meghatározni. Mekkora a legstabilisabb magok egy nukleonra

Részletesebben

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

Mit tanultunk kémiából?2.

Mit tanultunk kémiából?2. Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,

Részletesebben

FIZIKA 11. osztály. Írásban, 45 perc

FIZIKA 11. osztály. Írásban, 45 perc FIZIKA 11. osztály Írásban, 45 perc I. RÉSZLETES VIZSGAKÖVETELMÉNYEK 3.3. Az időben állandó mágneses mező 3.3.1. Mágneses alapjelenségek A dipólus fogalma Mágnesezhetőség A Föld mágneses mezeje Iránytű

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba számú proto, és N = számú eutro va, és stabil képződméy Mi tartja össze az atommagot? Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus eergiája

Részletesebben

KÖSZÖNTJÜK HALLGATÓINKAT!

KÖSZÖNTJÜK HALLGATÓINKAT! 2010. március 10. Önök KÖSZÖNTJÜK HALLGATÓINKAT! Berta Miklós: Csillag a Földön A fúziós energiatermelés érdekességei előadását hallhatják! Csillag a Földön A fúziós energiatermelés érdekességei Nukleáris

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 22.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 22. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2011. február 22. A radioaktivitásról Tévedések, téves következtetések is voltak : Curie házaspár: felfedezi, hogy a rádiumsók állandóan

Részletesebben

A leggyakrabban használt nukleáris és technológiai fogalmak. Kisokos

A leggyakrabban használt nukleáris és technológiai fogalmak. Kisokos A leggyakrabban használt nukleáris és technológiai fogalmak Kisokos Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy. Alaperőmű: Folyamatosan, nagy kihasználtsággal üzemelő erőmű,

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

A szabályozott láncreakció PETRÓ MÁTÉ 12.C

A szabályozott láncreakció PETRÓ MÁTÉ 12.C A szabályozott láncreakció PETRÓ MÁTÉ 12.C Rövid vázlat: Történelmi áttekintés Az atomreaktor felépítése és működése Reaktortípusok Érdekességek: biztonság a világ atomenergia termelése Csernobil Kezdetek

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Ph 11 1. 2. Mozgás mágneses térben

Ph 11 1. 2. Mozgás mágneses térben Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)

Részletesebben

Izotópok és radioaktív sugárzások

Izotópok és radioaktív sugárzások Kémia atomok, molekulák közti kölcsönhatások Izotópok és radioaktív sugárzások Kölcsönhatások szubatomi részecskék között Radioaktív sugárzások biológiai hatásai. A sugárterápia alapelvei, megvalósítása

Részletesebben

Tudnivalók. Dr. Horváth András, Berta Miklós. 0.2-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András, Berta Miklós. 0.2-es változat. Kedves Hallgató! Kérdések és feladatok atom- és magfizikából Dr. Horváth András, Berta Miklós 0.2-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból.

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév Dr. Paripás Béla 9. Előadás (2016.11.10.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja: 2016. november

Részletesebben

RADIOKÉMIA VILÁGUNK ATOMOS FELÉPÍTÉSŰ!

RADIOKÉMIA VILÁGUNK ATOMOS FELÉPÍTÉSŰ! VILÁGUNK ATOMOS FELÉPÍTÉSŰ! ATOM NUKLEONOK RADIOKÉMIA pozitív atommag, r~10-15 m, protonok és neutronok, negatív elektronfelhő atomsugár~10-10 m, a tömeg az atom kiterjedésének 10-5 -öd részében összpontosul

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

laboratóriumban - Mágneses Nap a Zoletnik Sándor Magyar Euratom Fúziós Szövetség mki.kfki.hu zoletnik@rm KFKI-RMKI Magyar Euratom Fúziós Szövetség

laboratóriumban - Mágneses Nap a Zoletnik Sándor Magyar Euratom Fúziós Szövetség mki.kfki.hu zoletnik@rm KFKI-RMKI Magyar Euratom Fúziós Szövetség Mágneses Nap a laboratóriumban - szabályozott mag gfúziós kutatások Zoletnik Sándor KFKI-Részecske- és Magfizikai Kutatóintézet Magyar Euratom Fúziós Szövetség zoletnik@rm mki.kfki.hu KFKI-RMKI Magyar

Részletesebben

Az atomnak az a része, amely az atom tömegének túlnyomó részét tartalmazza. Protonok és neutronok alkotják. vagy: Elektronjaitól megfosztott atom.

Az atomnak az a része, amely az atom tömegének túlnyomó részét tartalmazza. Protonok és neutronok alkotják. vagy: Elektronjaitól megfosztott atom. radioaktív bomlás radioactive decay atommag nucleus nukleon nucleon izotóp isotope izobár isobar izoton isoton izomer mag isomer nucleus nukleogenezis eredetű izotóp nucleogenesis isotope primordiális

Részletesebben

H.G. Wells, jövünk! (Szilárd Leó, és az atomenergia)

H.G. Wells, jövünk! (Szilárd Leó, és az atomenergia) H.G. Wells, jövünk! (Szilárd Leó, és az atomenergia) Szilárd Leó Született: Budapest 1898. február 11. (116 éve) Meghalt: La Jolla (Kalifornia) 1964. május 30. (50 éve) Sükösd Csaba BME Nukleáris Technika

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben