Tanulási segédlet I. és II. Nukleáris Erőművek c. tárgyhoz (távoktatás képzés) Dr. Rácz Ervin, Ph.D. egyetemi docens

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tanulási segédlet I. és II. Nukleáris Erőművek c. tárgyhoz (távoktatás képzés) Dr. Rácz Ervin, Ph.D. egyetemi docens"

Átírás

1 iroda: Bécsi út, C. épület, I. emelet, 124. szoba telefon: 06/ Tanulási segédlet I. és II. Nukleáris Erőművek c. tárgyhoz (távoktatás képzés) Dr. Rácz Ervin, Ph.D. egyetemi docens Órák időpontjai: szeptember 24., november 05. (szombati napok) Számonkérés, érdemjegyek: Értékelés módja: Évközi jegy Megajánlott jegyek (elégséges (2) és közepes (3) megajánlható) Megajánlott jegy feltétele és kiszámítása: önálló esszémunka leadása határidőre + 1. ZH kötelező megírása, továbbá az esszémunkára kapott pontszám és a ZH pontszámának összegéhez rendelt érdemjegy. Aki jobb jegyre vágyik, azaz jó (4) és jeles (5) érdemjegyek szerzésének a LEHETŐSÉGE: Érdemjegy számítása: 2-dik ZH-t meg kell írnia jó (4) és/vagy jeles (5) jegyeket érő pontszámokra 1. ZH időpontja: november 5-én vagy későbbi időpontban. 1 ZH időpont rögzítése az első találkozás alkalmával szeptember 24-én. 2. ZH időpontja: aki szeretné annak kb. a szorgalmi időszak 13-adik hetében, de megbeszélés szerint rögzítve. 1. ZH: max 25 pont szerezhető 2. ZH: max 25 pont szerezhető Önálló esszémunka: 50 pont szerezhető -- összesen maximum 100 pont szerezhető Ponthatárok a félévközi érdemjegy számításához: 0 50 pont: elégtelen (1) pont: elégséges (2) pont: közepes (3) pont: jó (4) pont: jeles (5)

2 Önálló, kidolgozható esszétémák: 1. Reaktortípusok ismertetése és az egyes típusok leíró elemzése a felhasználásuk módja szerinti csoportosításban 2. Atomreaktorok generációi, avagy az 1., 2., 3., 4. generációs atomerőművek jellemzői és összehasonlítása 3. Magyarországi atomerőmű I. - Paksi Atomerőmű (leírás, működéselemzés, bemutatás és összehasonlítás a funkciók és a működés alapján, jelen és múlt) 4. A Paksi Atomerőmű jövője (élettartam-hosszabbítás, felújítások, feladatok) 5. A Paks II. projekt (a Paks II. projekt elemzése- amit eddig tudni lehet) 6. A MIR 1200 típusú reaktorblokk (a MIR 1200 reaktorblokk leírása, jellemzése) 7. Magyarországi atomreaktor II. - BMGE tanreaktora (leírás, működéselemzés, bemutatás és összehasonlítás a funkciók és a működés alapján, jövőkép) 8. Magyarországi atomreaktor III. - KFKI telephely atomreaktora (leírás, működéselemzés, bemutatás és összehasonlítás a funkciók és a működés alapján, jövőkép) 9. Atomerőművek híres hírhedt balesetei. A nagyobb és fontosabb atomerőmű balesetek összeírása, mindegyik leírása, okok és miértek, tanulságok, konzekvenciák, Reaktorbiztonság, sugárvédelem, környezetvédelem, hulladékkezelés, avagy az atomerőmű és az élő természet kapcsolata. Általános ismertetés. Leírás, állapot, elemzés, hiányosságok, előnyök hátrányok, Nukleáris hulladékok kezelése Magyarországon (magyarországi nukleáris hulladék lerakók, temetők) 12. Az energiatermelés vezérelvei és a nukleáris energiatermelés szerepe nemzetközi viszonylatban 13. Az atomerőművi energiatermelés helye és szerepe a magyar energiatörvényben (a Magyar Energiatörvény elemzése az atomerőművel történő energiatermelésre, elosztásra fokuszálva) 14. Atomreaktor vagy más alaperőmű Magyarországon (kell-e alaperőmű Magyarországon? Ha kell, atomerőmű legyen-e alaperőmű Magyarországon?) Az esszétémákat oldal terjedelemben, szövegszerkesztett formában kell elkészíteni A/4-es lapméretre, 1-es sorközzel, 12-es betűmérettel.. stb. Az esszé munkában minden felhasznált forrás és segédanyag hivatkozásszintű megjelölése, sorszámozott listában való felsorolása a dolgozat végén kötelező! Hivatkozások megadása nélkül a munka nem elfogadható. Beadás elektronikus fájlban, ben. Beadási határidő: december 03., szombat, 23:59h.

3 Kötelező irodalom: Jegyzet: Dr. Rácz Ervin: Nukleáris Erőművek (OE KVK 2119) Letölthető a MOODLE-ből, az elektronikus jegyzetek rész alól.

4 Egyéb, ajánlott segédanyagok: Tanulási segédlet I. (Az 1. ZH anyaga) 1. Az atommagfizika elemei Balázs Zoltán Dr. Sebestyén Dorottya: Fizika, OE KVK egyetemi jegyzet 2065 A magfizika fejezet megtanulása szükséges a tárgy alapjainak elsajátításához A fejezet tanulása során helyezzük a hangsúlyt a fogalmak jelentéseinek pontos megtanulására. Legfontosabb fogalmak és megtanulandók ehhez a részhez: i. Radioaktív sugárzás felfedezése, Becquerel munkája ii. Marie Curie és Pierre Curie munkássága (rádium, polónium feltalálása) iii. Az atom mazsoláskalács modellje, Thomson 1897 iv. A Geiger-Marsden kísérlet, avagy Rutherford szórási kísérlete, a kísérlet leírása, eredményei és az eredmények magyarázata (az atommag létezése) v. A magsugár fogalma, jelentése, definíciója vi. A magtöltés; az atom tömege, az atomi tömeg egység (ATE) definíciója vii. A tömegszám definíciója viii. Az atommag sűrűsége ix. Az atommag összetétele, a neutron felfedezése (Chadwick), Heisenberg és Tamm alapmunkái a neutronról x. Meghatározások: nukleon, izotópok, izobárok, izotónok xi. Az izotóptérkép és jelentése, olvasata. xii. Magmomentumok, magspín definíciója, Bohr-magneton definíciója, magmagneton definíciója xiii. Magerők jelentése, értelmezése. Yukawa xiv. Az erős kölcsönhatás meghatározása xv. Az atommag egyszerű modelljei. A kötési energia fogalma és értelmezése. A cseppmodell alapja. A héjmodell alapja (csak vázlatosan, azt kell tudni mi a modell alapja, mire épül.) 2. Magsugárzások detektálása és detektorai Kiss Dezső, Horváth Ákos, Kiss Ádám: Kísérleti atomfizika, ELTE Eötvös Kiadó, Budapest, 1998., 10. Fejezet oldalig

5 A fejezet tanulása során a lényeg a detektorok osztályozásának ismerete, az egyes detektor osztályokba tartozó detektorfajták ismerete és az adott detektorfajta működésének ill.a működés alapmechanizmusainak ismerete, továbbás a detektorok alkalmazási területei Pl. a fotoeklektron sokszorozó, mint detektor, melyik detektorcsaládba tartzik? Hogyan működik? Mire használják? Legfontosabb tudnivalók címszavakban: i. A detektor fogalma, meghatározása. A részecske detektálás fizikai alapja (anyag és sugárzás kölcsönhatása) ii. Detektor típusok vagy osztályok: 1. Gáztöltésű számlálók, 2. Szcintillációs számlálók 3. Félvezető detektorok 4. Cserenkov-számlálók 5. Részecskenyom-detektorok 6. Neutrínó detektorok iii. Gáztöltésű számlálók: 1. Ionizációs kamra 2. Proporcionális számláló 3. Proporcionális kamra 4. Driftkamra 5. A Geiger-Müller számláló (GM cső) 6. Szikrakamra iv. Szcintillációs számlálók (def., felépítés): 1. A szcintillátor 2. A fotoelektron sokszorozó (fotomultiplier) v. Félvezető detektorok (működési elv) 1. Ionizációs kamrával való összehasonlítása 2. Főbb alkalmazási körök vi. Cserenkov-számlálók: 1. A Cserenkov-sugárzás 2. A Cserenkov-számláló vii. Részecskenyom detektorok: 1. A ködkamra, Wilson-féle ködkamra 2. A buborékkamra 3. Szilárdtest nyomdetektorok viii. Neutrínó detektor 1. Számlálós neutrínó detektor

6 3. A nukleáris fizika története, a nukleáris energetika születése Simonyi Károly: A fizika kultúrtörténete c. könyv a magfizika történetével foglalkozó fejezete ajánlott. (az oldalszám könyvkiadásonként változik) A magfizika és a nukleáris fizika kronológiája a lényeg. Fontosabb események, mérföldkövek kikhez köthetők és mikor történtek. Csak a legeslegfontosabb évszámokat kell ismerni. Legfontosabb tudnivalók címszavakban: i. Alkímia elemek egymásba alakíthatók ii. Lavoisier kémiai elem iii. Röntgen x-sugarak, 1895 iv. Becquerel és a Curie házaspár munkássága, radioaktivitás, 1903 v. Rutherford és munkássága 1. Bomlástörvény felfedezése 2. Spontán radioaktivitás 3. Rutherford atommodellje 4. Az első mesterséges magátalakítás, 1919 vi. Magsugárzások: 1. Alfa-sugárzás 2. Beta-sugárzás 3. Gamma-sugárzás vii. Soddy az izotóp fogalma viii. Gamow elektron nem lehet az atommagban ix. Chadwick neutron felfedezése, 1932 x. Bothe, Geiger, Webster alfa részecskék használata magkisérletekhez, gamma-sugarak előállítása xi. Cockroft, Walton az első magátalakítás mesterségesen gyorsított részecskékkel xii. Elsasser független részecske atommag modell xiii. Weizsäcker cseppmodell xiv. Bohr közbülső mag elmélete xv. Fermi Felvetés: a nehéz magok esetleg széthasíthatók neutronnal való bombázásukkal (ötlet), 1934 xvi. Joliot Curie, Cavić mag hasítása neutronnal való bombázással (nincs igazolva a kísérlet eredménye), 1938 xvii. Otto Hahn, Meitner, Strassmann urán atommag hasítása neutronnal való bombázás eredményeként (igazolt kísérlet), 1938 xviii. Hahn, Bohr, Halban, Szilárd Leó... maghasadásnál neutron(ok) is keletkezik/keletkeznek, 1939 xix. Fermi az első láncreakció, 1942

7 xx. Atombomba 1. Első tesztrobbantás, Hirosíma, augusztus Nagaszaki, augusztus 9. xxi. Teller Ede hidrogénbomba ötlete, 1945 xxii. Az első atomerőművek , az első atomerőmű 250 kw villamos energia termelés , az első villamos hálózatra dolgozó erőmű , az első számottevő teljesítményű erőmű, 60 MW 4. Az atomreaktor Kiss Dezső, Horváth Ákos, Kiss Ádám: Kísérleti atomfizika, ELTE Eötvös Kiadó, Budapest, 1998., 13. Fejezet oldalig A fejezetet tanulva az elvek és működési mechanizmusok megértése a cél. Legfontosabb ismeretanyag címszavakban: i. A maghasadás 1. A bomlás definíciója 2. A maghasadás definíciója 3. A maghasadás alapmechanizmusa 4. A maghasadáskor energia szabadul fel ii. A láncreakció 1. Feltétele 2. A nukleáris reaktor fogalma, definíciója 3. A reakcióban termelődő neutronok, mint a folyamat kulcsszereplői 4. Reaktor és a neutronok kapcsolata iii. Neutronok lassítása 1. Gyors neutron nem jó, lassítani kell 2. A moderátor, meghatározás, definíció 3. Termikus neutron fogalma, definíciója 4. A moderátor közeg jellemző mennyiségei 5. Moderátor közegek (néhány példa) iv. Reaktorok szabályozása 1. A hasadóanyag kazetták alakja 2. Szabályozórudak 3. Szabályozórudak szerepe (hogyan szabályoz?)

8 4. Szabályozórudak leengedése a hasadóanyag közegbe (mi történik ekkor?) 5. Szabályozórudak kiemelése a hasadóanyag közegből (mi történik ekkor?) v. Egy atomreaktor elvi sémája 1. A sémarajz alapján el kell tudni magyarázni hogyan működik egy ideális atomerőmű. Az ideális atomreaktor működésének elvi séma rajza az interneten elérhető. Ajánlott séma: Oldalon található rajzok tanulmányozása. Tanulási segédlet II. (A 2. választható ZH anyaga) 1. Reaktortípusok, a felhasználás módja szerinti csoportosításban: (esszétémaként kiadva) 2. Atomreaktorok generációi: (esszétémaként kiadva) 3. Magyarországi atomerőművek: A fejezet tanulásakor a cél a magyarországi atomerőművek céljainak és feladatainak megismerése. Az ismeretek tanulásakor érdemes a funkcionalitásra fókuszálni, azaz megismerni miért, milyen céllal működik az adott erőmű? Mi az alapkonstrukció? Milyen típusú az erőmű? Tanuláshoz az alább felsorolt szabadon elérhető internetes oldalak ajánlhatók: A paksi atomerőmű i. ii. iii. A Budapesti Műszaki és Gazdaságtudományi Intézet tanreaktora i. ii. iii.

9 iv. v. vi. A KFKI Telephelyen működő kutatóreaktor i. ent=yes&lang=hu ii. iii. iv. ent=yes&lang=hu v. tent=yes&lang=hu vi. WTTxBlA&feature=related 4. Mini atomerőművek: A fejezet megtanulásához az előadó honlapján az oktatási anyagok link alatt elérhető Mini atomerőművek pdf. anyag szolgálhat. 5. Természetes reaktorok: A fejezet tanulásához az alábbi linkről elérhető három pdf. anyag ajánlott. Az anyagok a föld felszínén található és az ég fúziós reaktoraiba nyújt betekintést Fúziós erőművek: A jövő energiatermelésének egyik nagy lehetősége a magfúzió barátságos célokra, azaz pl. energiatermelésre való felhasználása. A fúzió során a maghasadáskor felszabaduló energia sokszorosa szabadul fel. Ha ez az energia befogható lenne, igazi nagyerőművek lennének építhetők, amelyek nagy régiók, ország csoportok, kontinens részek, stb. energia ellátását is lehetővé tennék. A fúziós energiatermelés kulcsa a plazmafizika. Mindeddig két alapvető fúziós energiatermelési koncepció bontakozott ki, melyeket a Lawson-kritérium különít el egymástól. stb. A mágneses összetartású fúzióhoz tartozó fejezetrész megtanulásához az alább megadott linkről indítható 16 oldalas html oktatási anyag szolgál. A lézerfúzióhoz, az előadó honlapján az oktatási anyagok link alatt talál anyagot.

10 a magfúzió és használata energiatermeléshez: lézerfúzió fúzió a plazma mágneses összetartása révén Reaktorbiztonság, sugárvédelem; Atomerőművek balesetei; Atomerőmű és környezetvédelem; Hulladékkezelés (esszétémaként kiadva)

A nukleáris fizika története, a nukleáris energetika születése

A nukleáris fizika története, a nukleáris energetika születése Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

Az atombomba története

Az atombomba története Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0

Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Tantárgy neve Környezetfizika Tantárgy kódja FIB2402 Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Dr. Varga

Részletesebben

A Nukleáris Medicina alapjai

A Nukleáris Medicina alapjai A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Az atommagot felépítő részecskék

Az atommagot felépítő részecskék MAGFIZIKA Az atommagot felépítő részecskék Proton: A hidrogénatom magja. töltése: Q p = e = 1,6 10 19 C, tömege: m p = 1,672 10-27 kg. Neutron: a protonnal közel megegyező tömegű semleges részecske. tömege:

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév

A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév A fizika története (GEFIT555B, 2+0, 2 kredit) 2009/2010. tanév, 1. félév Dr. Paripás Béla 8. Előadás (2010.11.10.) Tudnivalók a zárthelyikkel kapcsolatban A 2. zárthelyi időpontja 2010. november 24. az

Részletesebben

Maghasadás (fisszió)

Maghasadás (fisszió) http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Felfedezése 1934 Fermi: transzurán izotóp előállítása neutron belövellésével 1938 Fermi: fizikai Nobel-díj 1938 Hahn:

Részletesebben

Tudománytörténet 5. 5. Előadás A globális változások kezdete

Tudománytörténet 5. 5. Előadás A globális változások kezdete Tudománytörténet 5. 5. Előadás A globális változások kezdete XIX. század közepe Kialakul a modern gyáripar (szén, gőzgép) Társadalomban, jogrendben, politikai felépítésben lényeges változások Fokozódó

Részletesebben

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám.

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám. MAGFIZIKA Az atom áll: Z számú elektronból Z számú protonból A-Z számú neutronból A proton és a neutron közös neve nukleon. A - az atom tömegszáma. Z az atom rendszáma Az atomok atommagból és az azt körülvevő

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio -A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

Atomerőművi dekontamináló berendezés gépész. Atomerőművi gépész

Atomerőművi dekontamináló berendezés gépész. Atomerőművi gépész A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Magkémia. Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó)

Magkémia. Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Magkémia Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György, Nagyné László Krisztina, Radiokémia

Részletesebben

Az atommag szerkezete

Az atommag szerkezete Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

43. A modern fizika születése. A fényelektromos jelenség

43. A modern fizika születése. A fényelektromos jelenség 43. A modern fizika születése. A fényelektromos jelenség Röviden vázolja fel a XIX XX. századforduló idején a fizika tudományának helyzetét! Fogalmazza meg Planck kvantumhipotézisét! Kísérlet: Végezzen

Részletesebben

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

ATOMFIZIKA, RADIOAKTIVITÁS

ATOMFIZIKA, RADIOAKTIVITÁS ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt

Részletesebben

Villamosipari anyagismeret. Program, követelmények ősz

Villamosipari anyagismeret. Program, követelmények ősz Villamosipari anyagismeret Program, követelmények 2015. ősz I. félév: 2 óra előadás, vizsga II. félév: 1 óra labor, évközi jegy* Követelmények: Előadás látogatása kötelező; ellenőrzése (katalógus) minimum

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 4. elıadás AZ ATOMREAKTOROK FIZIKAI ÉS TECHNIKAI ALAPJAI, ATOMERİMŐVEK 2009/2010. tanév ıszi féléve Dr. Csom Gyula professor emeritus TARTALOM 1. Magfizikai alapok

Részletesebben

Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története

Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története Atomenergia Láncreakció, atomreaktorok, atombomba és ezek rövid története Előzmények Az energia - amiből korábban sosem volt elég - bőségesen itt van körülöttünk, csak meg kell találnunk hozzá a kulcsot.

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2018/2019. tanév, 1. félév Dr. Paripás Béla 8. Előadás (2018.11.15.) Óracsere Itt tartandó rendezvény miatt a 10. előadás (2018. november 29. azaz

Részletesebben

ELEMI RÉSZECSKÉK ATOMMODELLEK

ELEMI RÉSZECSKÉK ATOMMODELLEK ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,

Részletesebben

1. Cartesius-búvár. 1. tétel

1. Cartesius-búvár. 1. tétel 1. tétel 1. Cartesius-búvár Feladat: A rendelkezésre álló eszközök segítségével készítsen el egy Cartesius-búvárt! A búvár vízben való mozgásával mutassa be az úszás, a lebegés és az elmerülés jelenségét!

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Magyarországi nukleáris reaktorok

Magyarországi nukleáris reaktorok Tematika 1. Az atommagfizika elemei 2. Magsugárzások detektálása és detektorai 3. A nukleáris fizika története, a nukleáris energetika születése 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

A szabályozott láncreakció PETRÓ MÁTÉ 12.C

A szabályozott láncreakció PETRÓ MÁTÉ 12.C A szabályozott láncreakció PETRÓ MÁTÉ 12.C Rövid vázlat: Történelmi áttekintés Az atomreaktor felépítése és működése Reaktortípusok Érdekességek: biztonság a világ atomenergia termelése Csernobil Kezdetek

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135 RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó

Részletesebben

Fizika tételek. 11. osztály

Fizika tételek. 11. osztály Fizika tételek 11. osztály 1. Mágneses mező és annak jellemzése.szemléltetése Hogyan hozható létre mágneses mező? Milyen mennyiségekkel jellemezhetjük a mágneses mezőt? Hogyan szemléltethetjük a szerkezetét?

Részletesebben

Az atommag története

Az atommag története Az atommag története Polcz Péter PPKE Információs Technológiai Kar 1083 Budapest, Práter utca 50/a 2010. december 6. Az atommag felfedezése Az első atommag szerkezetének első kutatói, Ernest Rutherford,

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete

Részletesebben

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,

Részletesebben

PTE Fizikai Intézet; Környezetfizika I. 11. A radioaktív szennyezés kezelése; , NB

PTE Fizikai Intézet; Környezetfizika I. 11. A radioaktív szennyezés kezelése; , NB 11. Előadás: A radioaktív szennyezés kezelése 1. Nukleáris fizikai alapismeretek 2. Sugárzásmérés. Sugárvédelem. 3. Természetes és mesterséges radioaktivitás. 4. Radioaktív hulladékok és tárolásuk. 1.

Részletesebben

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0 A paksi atomerőmű Készítette: Szanyi Zoltán RJQ7J0 Történelmi áttekintés 1896 Rádióaktivitás felfedezése 1932 Neutron felfedezése magátalakulás vizsgálata 1934 Fermi mesterséges transzurán izotópot hozott

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

Radioaktivitás és atomenergia

Radioaktivitás és atomenergia Radioaktivitás és atomenergia A tudomány, a technológia - ezt világosan és erősen akarom mondani - nem old meg minden problémát. De tudomány és technológia nélkül semmiféle problémát nem lehet megoldani.

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Regionális gazdaságtan

TANTÁRGYI ÚTMUTATÓ. Regionális gazdaságtan III. évfolyam Gazdálkodási és menedzsment, Pénzügy és számvitel BA TANTÁRGYI ÚTMUTATÓ Regionális gazdaságtan TÁVOKTATÁS Tanév: 2014/2015. I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Regionális gazdaságtan

Részletesebben

Az expanziós ködkamra

Az expanziós ködkamra A ködkamra Mi az a ködkamra? Olyan nyomvonaljelző detektor, mely képes ionizáló sugárzások és töltött részecskék útját kimutatni. A kamrában túlhűtött gáz található, mely a részecskék által keltett ionokon

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Írta: PÁTZAY GYÖRGY Lektorálta: ELTER ENIKŐ ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés).

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Atomenergia Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Kutatók: vizsgálták az atomenergia felszabadításának

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

T E M A T I K A. Óvó- és Tanítóképző Intézet

T E M A T I K A. Óvó- és Tanítóképző Intézet Óvó- és Tanítóképző Intézet T E M A T I K A a tanító szakos hallgatók számára TERMÉSZETTUDOMÁNY A HÉTKÖZNAPOKBAN (CB3313) oktatáshoz 2018/2019. tanév I. félév Heti óraszám: 0 óra előadás 1 óra szeminárium

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

4. Atomfizika, magfizika, nukleáris kölcsönhatás

4. Atomfizika, magfizika, nukleáris kölcsönhatás Az optikai kép fogalma (valódi, látszólagos) Síktükör Lapos gömbtükrök (homorú, domború) Vékony lencsék (gyűjtő, szóró) Fókusztávolság, dioptria Leképezési törvény Nagyítás Egyszerű nagyító Fényképezőgép,

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Regionális gazdaságtan

TANTÁRGYI ÚTMUTATÓ. Regionális gazdaságtan Felsőoktatási Szakképzés TANTÁRGYI ÚTMUTATÓ Regionális gazdaságtan Tanév: 2015/2016. II. A KURZUS ALAPADATAI Tárgy megnevezése: Regionális gazdaságtan Tanszék: Közgazdasági Tanszék Tantárgyfelelős neve:

Részletesebben

A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját

A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját Dr. Kemenes László az atomerőmű szakemberének tájékoztatója alapján választ

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

FIZIKA 11. osztály. Írásban, 45 perc

FIZIKA 11. osztály. Írásban, 45 perc FIZIKA 11. osztály Írásban, 45 perc I. RÉSZLETES VIZSGAKÖVETELMÉNYEK 3.3. Az időben állandó mágneses mező 3.3.1. Mágneses alapjelenségek A dipólus fogalma Mágnesezhetőség A Föld mágneses mezeje Iránytű

Részletesebben

Hévíz és környékének megemelkedett természetes radioaktivitás vizsgálata

Hévíz és környékének megemelkedett természetes radioaktivitás vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Fizikai Intézet Atomfizikai Tanszék Hévíz és környékének megemelkedett természetes radioaktivitás vizsgálata Szakdolgozat Készítette: Kaczor Lívia földrajz

Részletesebben

Statisztika 1. Tantárgyi útmutató

Statisztika 1. Tantárgyi útmutató Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Maghasadás, láncreakció, magfúzió

Maghasadás, láncreakció, magfúzió Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

Félnünk kell-e a nukleáris energiától?

Félnünk kell-e a nukleáris energiától? BENCZE GYULA Félnünk kell-e a nukleáris energiától? Bencze Gyula fizikus egyetemi tanár Bevezetés az energia Mi az energia? A hétköznapi beszéd fordulataiban gyakran szerepel az energia szó valamilyen

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

Nemzeti Nukleáris Kutatási Program

Nemzeti Nukleáris Kutatási Program Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Nemzeti Nukleáris Kutatási Program 2014-2018 Horváth Ákos Főigazgató, MTA EK foigazgato@energia.mta.hu Előzmények 2010. Elkészül a hazai nukleáris

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2018/2019. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika BEVEZETÉS TANMENET Óra Tananyag Tevékenység, megjegyzések I. Mechanikai rezgések és hullámok 1. Bevezetés Emlékeztet : A fejezet feldolgozásához

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve ACÉLSZERKEZETEK 1.2 Azonosító (tantárgykód) BMEEOHSAT42 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus óraszám előadás

Részletesebben

FÉLÉVI KÖVETELMÉNYEK 2010/2011. tanév II. félév INFORMATIKA SZAK

FÉLÉVI KÖVETELMÉNYEK 2010/2011. tanév II. félév INFORMATIKA SZAK FÉLÉVI KÖVETELMÉNYEK INFORMATIKA SZAK Tantárgy Tagozat Heti óraszám Követelmény Ea. Lab. Gy. VILLAMOSSÁGTAN. Nappali 3 0 1 aláírás+vizsga Az aláírás megszerzésének feltételei: - A hiányzás nem haladhatja

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék

Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Egy fizikai rendszer energiája alatt értjük azt a képességet, hogy ez a rendszer munkát képes végezni egy másik fizikai

Részletesebben

Bevezetés a fúziós plazmafizikába 3.

Bevezetés a fúziós plazmafizikába 3. Bevezetés a fúziós plazmafizikába 3. Mágneses összetartás konfigurációk Dr. Pokol Gergő BME NTI Bevezetés a fúziós plazmafizikába 2018. szeptember 18. Tematika, időbeosztás Dátum Előadó Cím Szeptember

Részletesebben

Nukleáris energetika. Kérdések 2015 tavaszi félév

Nukleáris energetika. Kérdések 2015 tavaszi félév Nukleáris energetika. Kérdések 2015 tavaszi félév 1. Előadás: Alapismeretek energetikából, nukleáris fizikából NE-1.1. Soroljon fel energia mennyiségeket tartalmazó összefüggéseket a mechanikából, a hőtanból,

Részletesebben