A modern fizika születése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A modern fizika születése"

Átírás

1 A modern fizika születése Lord Kelvin a 19. század végén azt mondta, hogy a fizika egy befejezett tudomány: Nincsen olyan probléma amit a tudomány ne tudna megoldani. A fizika egy befejezett tudomány, elméleteink olyan jól működnek, hogy biztosan helyesek. Talán két picike felhő van a tiszta kék égen. Ezek a felhőcskék (fény terjedése és a hőmérsékleti sugárzás) azonban alapjaiban rengették meg a fizikát és két új elmélet megalkotásához vezettek: Relativitáselmélet (speciális és általános) Kvantum fizika Ezáltal a 20. század eleje egyben a modern fizika kezdetét is jelentette.

2 A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban) bocsátanak ki. Bár csak a nagyon forró testek sugárzását láthatjuk saját szemünkkel, műszerek segítségével az alacsonyabb hőmérsékletű testek sugárzását is megmérhetjük. Minden test aminek a hőmérséklete nem abszolút nulla sugároz. A hőmérsékleti sugárzást feketetest sugárzásnak is nevezik. Ideális fekete test: amely a ráeső sugárzást teljesen elnyeli és a kibocsátott sugárzása csak a hőmérséklettől függ. Ez bármely anyagból készült üreges testel és azon egy kicsiny lyukkal valósítható meg, mert a lyukra igaz, hogy a ráeső sugárzás a lyukon mind bemegy az üregbe az üreg belső faláról visszavert fény nagy valószínűséggel belül marad és elnyelődik belül az elektromágneses sugárzás és az anyag között termodinamikai egyensúly áll be a sugárzás spektruma ekkor csak az anyag hőmérsékletétől függ.

3 A hőmérsékleti sugárzás spektruma Maxwell egyenleteiből klasszikus elgondolással nem sikerült levezetni a hőmérsékleti sugárzást leíró egyenletet (kis frekvenciákra és nagyfrekvenciákra voltak közelítő képletek, de ezek a teljes tartományra végtelent adtak a kisugárzott teljesítményre). Végül Max Planck sikerrel járt, de csak úgy, hogy feltételezte, hogy az elektromágneses energia nem lehet folytonos, hanem csomagokban van jelen (fotonok), melyek energiája f frekvenciájú sugárzás esetén: E = hf ahol h a Planck konstans: h = 6, Js Ez egyre jobban feltűnő amikor a frekvencia nagy és a csomagok (kvantumok) energiája nagy, például gamma sugárzás esetén. Ez az eredmény jelentette a kvantum fizika kezdetét. Az emisszió-képesség hullámhosszfüggése (spektrum): Nagyobb hőmérsékleten a görbe maximuma alacsonyabb hullámhossz felé tolódik: Wien-féle eltolódási törvény: λ max T = állandó A Wien-féle állandó értéke 2, Km. A teljes kisugárzott teljesítményt (görbe alatti területet, vagyis az integrált) a hőmérséklet függvényében a Stefan-Boltzmann törvény adja meg: P = σ T 4 A 11. feladat ahol σ = 5, W/(m 2 K 4 ) a Stefan-Boltzmann állandó.

4 Fényelektromos hatás (fotoeffektus) Ultraibolya fény hatására egy cinklemezt elektronok hagynak el. A jelenséget a fény hullámtermészetével magyarázva azt várjuk, hogy az elektronok kilépése csak a hullám intenzitásától függ. Kísérleti tapasztalat: Ha a megvilágító fény frekvenciája nem ér el egy f 0 (határfrekvencia) értéket akkor elektronkilépés nincs, bármekkora is az intenzitás ( f 0 az anyagi minőségtől függ). A kilépő elektronok száma arányos a fény intenzitásával, állandó f > f 0 mellett. Az elektronok kilépése szinte azonnal megindul a megvilágítás kezdetétől mérve. Ezek a tapasztalatok a fény hullámtermészetével nem magyarázhatók. Einstein (1905): A fény részecskeként viselkedik, részecskéi a fotonok, melyek energiája E = hf. Ez az energia csak egy elektronnak adódik mind oda, amellyel a foton kölcsönhatásba lép. Nem oszlik szét a környező elektronok közt. Einstein fotoelektromos egyenlete (Nobel-díjat kapott miatta): W ki : fényre jellemző kilépési munka (egy e - kiszabadításához szükséges energia). m e : elektron tömege Határfrekvencia: A foton összes energiája a kilökésre fordítódik, nem marad fel kinetikus energia: 12. feladat

5 A foton lendülete Az Einstein-féle tömeg-energia ekvivalencia alapján: E = mc 2. A foton energiája: E = hf Tehát a fotonhoz rendelhetünk egy tömeget (nem a nyugalmi tömeg, mert az nincs neki!): Ezt a foton c sebességével megszorozva kapjuk a foton lendületét: Ez a mennyiség a fontos akkor amikor a foton részecskéken szóródik (Compton-szórás), illetve emiatt a foton nyomást fejt ki a felültre ami őt elnyeli vagy visszaveri. A fény nyomását használva vitorlázhatunk az űrben.

6 Gázok emissziós és abszorpciós színképe Szilárd testet folytonos spektrumú hősugárzásával ellentétben atomos gázok vagy gőzök csak bizonyos frekvencián sugároznak (emisszió), illetve bizonyos frekvenciájú sugárzást elnyelnek (abszorpció). A színkép vonalai egyfajta újlenyomatként használhatók és segítségükkel távoli testek anyagának összetétele határozható meg.

7 Gázok színképének magyarázata - Bohr-posztulátumok A jól meghatározott frekvenciájú kisugárzott, illetve elnyelt fotonokból arra lehet következtetni, hogy az atomokban csak bizonyos nagyságú energia átmenetek lehetségesek. Bohr-posztulátumok: Az atomokban az elektronok csak diszkrét energiaszinteken E 1, E 2,, E i tartózkodatnak és ezeken a stacionárius pályákon nem sugároznak. Az atomok csak akkor sugároznak (emisszió) ha az elektron egy magasabb energiájú pályáról egy alacsonyabbra kerül. Az emisszió fordítottja az abszorpció. Bohr-féle frekvencia feltétel:

8 A lézer működése LASER: Light Amplification by Stimulated Emission of Radiation (fényerősítés indukált emisszióval) Az indukált emisszió esetében a legerjesztődés és az emisszió nem spontán történik, hanem azt egy ugyanolyan energiájú foton váltja ki (indukálja). Az emittált foton ugyanabban az irányban halad mint az indukáló foton és fázisa is ugyanaz (koherens). Működés: Energia bepumpálással elérik, hogy több elektron legyen a gerjesztett mint az alacsony energiaszinten (populáció inverzió). Ekkor több indukált emisszió lesz mint abszorpció, tehát a fény erősödik. Tulajdonságok: monokromatikusság (azonos frekvencia), kismértékű divergencia, nagyfokú koherencia, nagy felületi teljesítménysűrűség, nagy spektrális teljesítménysűrűség (mivel csak egy frekvencia van).

9 A Hidrogén* atom Bohr modellje A modellnek szolgáltatnia kell az elektron diszkrét E n energiáit. Az elektron pálya-impulzusmomentuma: L = mvr Az energiához hasonlóan ez is kvantált: L = nh/(2π) = nħ *Nem csak hidrogénre, hanem Z rendszámú ionra is jó, amely egy elektront tartalmaz csupán (hidrogénszerű): Az elektron teljes (mechanikai) energiája:

10 A Hidrogén atom energiaszintjei Az előzőleg levezetett képletből Z = 1 esetben kapjuk a hidrogén energiaszintjeit: Az emissziós és abszorpciós frekvenciákra: Lyman-sorozat: R: Rydberg-állandó Balmer-sorozat: Paschen-sorozat:

11 De Broglie-féle anyaghullámok Láttuk, hogy a fény viselkedhet hullámként is és részecskeként is. De Broglie felvetette, hogy ez a kettős természet talán az anyagi részecskékre is igaz. Feltételezve, hogy a fotonra levezetett lendület-hullámhossz kapcsolat általános érvényű, egy részecskéhez (pl. elektronhoz) rendelhető hullámhossz: A kettősrés kísérletet elvégezve ugyanolyan interferenciaképet kaptak elektronokra mint fotonokra. Az interferenciakép csakis a hullámtulajdonságokkal magyarázható. 13. feladat Az elektronmikroszkóp nem működhetne ha az elektron nem viselkedne hullámként.

12 De Broglie hipotézise az atomi elektronra Stacionárius esetben az atommag körül keringő elektron egy állóhullámnak felel meg. Tehát a kör kerülete a hullámhossz egész számú többszöröse kell, hogy legyen: nλ = 2πr Beírva a De Broglie hullámhosszt: Az elektron pálya-impulzusmomentumára tehát: A De Broglie hipotézis megmagyarázza az impulzusmomentum kvantált természetét!

13 Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom mérete m nagyságrendű (angström, Å). Az atommagé m (femtométer, fm)

14 Az atommag szerkezete Az atommagban pozitív töltésű protonok és semleges neutronok vannak. Z: rendszám (protonok száma, mag töltése e egységekben.) A rendszám egyben az elektronok száma is egy semleges atomban. A: tömegszám (hányszorosa a tömeg a proton ill. neutron tömegének) A tömegszám egyben a nukleonok száma: A = N + Z (N: neutronszám) izotópok: adott Z esetén N ill. A különböző lehet, pl. deutérium (proton + neutron), trícium (proton + 2 neutron). hidrogén (csak proton), Az atommag sűrűsége független a méretétől emiatt a térfogata arányos a tömegszámmal: vagyis a magsugárra:

15 Radioaktivitás Becquerel (1896): uránsó közelében fotolemez megfeketedik. Később mágneses térben ez a sugárzás háromfelé vált: α, β, γ. α: hélium atommagok (kicsi áthatolóképesség, papírlap elnyeli) β: elektronok (közel fénysebességgel, néhány mm Al lap elnyeli) γ: nagyenergiájú EM sugárzás (f > Hz, csak több cm ólom nyeli el) A radioaktív sugárzás kibocsátásakor általában elemátalakulás történik (kivéve γ). A kirepülő részecskék nagy energiájúak, mert a magerők nagyságrendekkel erősebbek az elektronokra ható Coulomb-erőnél, így nagyobb energiák szabadulnak fel mint a kémiai reakciók közben (elektron átmenetek az energiaszintek között).

16 A radioaktív bomlások típusai α-bomlás: az atommag tömegszáma 4-el, rendszáma 2-vel csökken. β-bomlás: két fajtája van (β - és β + ) attól függően, hogy elektron (e - ) vagy pozitron (e + ) keletkezik. A pozitron az elektron antirészecskéje, töltése ellentétes, minden másban azonos. β - nukleonokra nézve: β + nukleonokra nézve: p + (e + e + ) n + e + + ν A és a neutrínót illetve antineutrínót jelent. Ezek töltés nélküli, nagyon kis tömegű részecskék és csak a gyenge kölcsönhatáson keresztül lépnek reakcióba. Emiatt detektálni őket rendkívül nehéz. A pozitron az atommagot elhagyva egy elektronnal annihilálódik és két nagyenergiájú foton keletkezik belőlük (anyag + antianyag). Ide tartozik még az elektron befogás is, többnyire a legbelső héjról: nukleonokra nézve: γ-bomlás: nem jár elem átalakulással, mindössze az atommag egy gerjesztett állapotából történő alapállapotba történő alakulása megy végbe. Az energiakülönbség szabadul fel egy foton formájában (nagyok az energia különbségek!).

17 Radioaktív bomlástörvény A radioaktív bomlás véletlenszerű jelenség. Egy radioaktív izotóp atommagja egységnyi idő alatt ugyanolyan valószínűséggel bomlik el, függetlenül az életkorától. A törvények statisztikai jellegűek, csak nagy számok esetén teljesülnek. Ha λ annak valószínűsége, hogy egy mag a következő másodpercben elbomlik (bomlási állandó), akkor dt idő alatt a magok N számának (nagy!) megváltozására: Az egyenletet átrendezve (változókat szétválasztva): Integrálást elvégezve: A bomlástörvényre: (exponenciális csökkenés, 1/λ az átlagos élettartam.) A felezési idő megadja, hogy az eredeti nagyszámú radioaktív magnak mennyi idő alatt bomlik el a fele. További felezési időt várva a még nem elbomlott magok száma ismét feleződik, és így tovább.

18 Aktivitás Aktivitás: A mintában időegység alatt bekövetkező bomlások száma: [A] = 1 Bq (becquerel) = 1 bomlás/másodperc Tehát az aktivitás ugyanolyan exponenciális függvény szerint csökken, és bármely időben: 14. feladat 15. feladat

19 Az aktivitás mérése Geiger-Müller számláló: az elektródák között feszültség van, de a bent lévő gáz alapesetben nem vezető. Az áthaladó sugárzás ionizáló hatására az áram lavinaszerűen megindul, mert a feszültség elegendően nagy ahhoz, hogy a keletkező elektronok felgyorsuljanak és maguk is ionizálják a gáz atomjait. Az R ellenálláson feszültségimpulzus keletkezik melyet egy hangszóróra vezetnek, és számolják is azokat.

20 Bomlási sorok A különböző bomlásoknál a tömegszám vagy nem változik (β, γ), illetve 4-el csökken (α). Ezért a periódusos rendszer végén lévő természetes anyagok bomlási sorokba rendezhetők. A tömegszám 4-el való osztásánál lehet 0, 1, 2, illetve 3 maradék, ezek megadják a négy különböző bomlási sort, melynek elején egy anyaelem áll, közbenső radioaktív elemeit pedig lányelemeknek hívjuk. A végső stabil elem a végtermék. A = 4n tórium-sor, anyaelem: 232 Th, T 1/2 = 1, év, végtermék 208 Pb A = 4n + 1 neptúnium-sor, anyaelem: 237 Np, T 1/2 = 2, év, végtermék 209 Bi (ez a sor már lebomlott a Föld keletkezése óta) A = 4n + 2 urán 238-sor, anyaelem: 238 U, T 1/2 = 4, év, végtermék 206 Pb A = 4n + 3 urán 235-sor, anyaelem: 235 U, T 1/2 = 7, év, végtermék 207 Pb

21 A radioaktív sugárzás biológiai hatásai Az ionizáló hatás miatt megzavarja a biológiai reakciókat. Hatása elsősorban az elnyelt energiától függ. Az elnyelt dózis az átlagosan elnyelt ionizáló sugárzás energiája per az elnyelő anyag tömege: [D] = 1Gy = 1 gray = 1 J/kg A biológiai hatás az elnyelt részecske fajtájától is függ. Ennek jellemzésére vezették be a dózis egyenértéket, mely a biológiai károsodással arányos: H = DQ [H] = 1Sv = 1 sievert Q a minőségi tényező, egy dimenziótlan szám, a részecskék típusára jellemző. Q = 1 röntgen-, gamma-, és bétasugárzás esetén Q = 2,3 termikus neutronokra Q = 10 gyors neutronokra és protonokra Q = 20 alfa-részecskékre Azokra a sugárzásokra nagy melyeknél a közegben keltett ionok sűrűn vannak. Sugárzás hatásai determinisztikus: adott dózis felett a hatás mindig megjelenik és arányos a dózissal, a lappangási idő néhány hét (klasszikus sugárbetegség). sztochasztikus: kis dózis is okozhat megbetegedést, lappangási idő több év, betegség súlyossága nincs arányban a dózissal.

22 Nukleáris kölcsönhatás Az atommagban Z számú proton van, melyek taszítják egymást azonos töltésük miatt. A Coulomb kölcsönhatás mellett azonban nagyon kis távolságon (~ proton sugár) megjelenik egy jóval erősebb vonzó erő (nukleáris vagy erős kölcsönhatás). Ez a töltéstől független, p-p, p-n, és n-n között is vonzó. A nukleonok tehát kötött állapotban vannak, energiájuk negatív (E M = E k + E p ) Kvantummechanika: a protonok és neutronok a többi nukleon által keltett potenciálvölgyben csak diszkrét energiával rendelkezhetnek, de itt az energiák jóval nagyobbak mint az elektronhéjban lévő elektronokra.

23 Tömegdefektus Jelölje M(A, Z) az A tömegszámú és Z rendszámú atommag tömegét. Tömegspektrométerrel megmérve azt kapjuk, hogy az atommag tömege m-el kisebb mint az alkotórészek (protonok és neutronok) tömege: Ez a tömegdefektus az Einstein-féle tömeg-energia ekvivalencia alapján kiszámolva éppen a kötési energiát adja meg (szabad alkotórészek ~ 0 energiája negatív lett, mert kötött állapotba kerültek). Tehát a kötési energia adja meg mekkora energia befektetésével tudnánk újra alkotórészeire bontani az atommagot (vagy bármely kötött rendszert). Az egy nukleonra jutó kötési energia meghatározható a tömegeket megmérve: ε = E K /A Ha egy folyamat során ε csökken akkor energia szabadul fel. pl. kis magok fúziója vagy nagy magok hasadása ε vasra a legkisebb.

24 Nagy magok hasadásakor energia szabadul fel. Ez szabályozatlan (bomba) vagy szabályozott (erőmű) keretek között felhasználható. Pl. urán 235 esetében a keletkező 2 vagy 3 neutron további magok hasadását idézi elő. Amennyiben átlagban egynél több neutron kerül befogásra láncreakció jön létre. Ha ez a szám egy alatti, de ahhoz közeli értéken van tartva akkor szabályozott módon energia termelhető. (atomerőmű) Maghasadás és láncreakció

25 Fúzió Kisebb magok fúziójakor is energia szabadul fel, pl a Napban ill. a hidrogén bombában hidrogénből hélium keletkezik. Probléma: a Coulomb-gát miatt több tízmillió fok hőmérséklet szükséges ahhoz, hogy a magok közötti fúzió létrejöhessen. Bomba: hasadásos atombomba felhevíti Erőmű: forró plazma együtt tartása eddig nem megoldott Két típus: 1. Tokamak (mágneses palack tartja össze) 2. lézeres fúzió (pici cseppben a hidrogént a ráfókuszált lézerek begyújtják)

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

ATOMFIZIKA, RADIOAKTIVITÁS

ATOMFIZIKA, RADIOAKTIVITÁS ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

ATOMFIZIKA. óravázlatok

ATOMFIZIKA. óravázlatok ATOMFIZIKA óravázlatok A fizika felosztása 1. Klasszikus fizika Olyan jelenségekkel és törvényekkel foglalkozik, amelyekről a mindennapi életben is szerezhetünk tapasztalatokat. 2. Modern fizika A fizikának

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61 Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy

Részletesebben

Atommodellek. Készítette: Sellei László

Atommodellek. Készítette: Sellei László Atommodellek Készítette: Sellei László Démokritosz Kr. e. V. sz. Az egyik legnehezebb kérdés, amire már az ókori görög tudomány is megpróbált választ adni: miből áll a világ? A világot homogén szubsztanciájú

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

ELEKTRONIKAI ALKATRÉSZEK

ELEKTRONIKAI ALKATRÉSZEK ELEKTRONIKAI ALKATRÉSZEK VEZETÉS VÁKUUMBAN (EMISSZIÓ) 2. ELŐADÁS Fémek kilépési munkája Termikus emisszió vákuumban Hideg (autoelektromos) emisszió vákuumban Fotoelektromos emisszió vákuumban KILÉPÉSI

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

61. Lecke Az anyagszerkezet alapjai

61. Lecke Az anyagszerkezet alapjai 61. Lecke Az anyagszerkezet alapjai GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.)

Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Az atom felépítése, fénykibocsátás (tankönyv 68.o.- 86.o.) Atomok, atommodellek (tankönyv 82.o.-84.o.) Már az ókorban Démokritosz (i. e. 500) úgy gondolta, hogy minden anyag tovább nem osztható alapegységekből,

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 10 A MODERN FIZIKa ELEMEI X. A MODeRN fizikához vezető TApASZTALATOk 1. BeVeZeTÉS A fizika történetének egyik legnagyobb kérdése az volt, hogy az anyag a végtelenségig

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

Bevezetés az atomfizikába

Bevezetés az atomfizikába az atomfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. október 25. Bevezetés Bevezetés 2 / 57 Bevezetés Bevezetés Makrovilág Klasszikus fizika Mikrovilág Jó-e a klasszikus fizika itt is? Túl kell

Részletesebben

Atomfizika tesztek. 2. Az elektrolízis jelenségére vonatkozóan melyik összefüggés helytelen?

Atomfizika tesztek. 2. Az elektrolízis jelenségére vonatkozóan melyik összefüggés helytelen? Atomfizika tesztek 1. Melyik állítás nem helyes? a) Azonos tömegű ideális gázok azonos számú részecskét tartalmaznak. b) Normál állapotú, 22,41 liter térfogatú ideális gázok 6. 10 23 db részecskét tartalmaznak.

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:

Részletesebben

A kvantumelmélet kísérletes háttere

A kvantumelmélet kísérletes háttere A kvantumelmélet kísérletes háttere A hőmérsékleti sugárzás A fényelektromos hatás A fény kettős természete. Anyaghullámok A XIX. század végén és a XX. század elején olyan kísérleti eredmények születtek,

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Az atommagot felépítő részecskék

Az atommagot felépítő részecskék MAGFIZIKA Az atommagot felépítő részecskék Proton: A hidrogénatom magja. töltése: Q p = e = 1,6 10 19 C, tömege: m p = 1,672 10-27 kg. Neutron: a protonnal közel megegyező tömegű semleges részecske. tömege:

Részletesebben

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján) Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Boyle kísérlete. Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege. Robert Boyle angol fizikus, kémikus

Boyle kísérlete. Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege. Robert Boyle angol fizikus, kémikus Boyle kísérlete Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege Robert Boyle 1627-1691 angol fizikus, kémikus A tömegmegmaradás törvénye Lavoisier kísérlete 1. Boyle tapasztalata: ónt

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Az indukcióvonalak a vasmagon belül haladnak, ezért a két tekercs egy menetre jutó fluxusa = cos t. A szekunder tekercsben az indukálódott 1,0

Az indukcióvonalak a vasmagon belül haladnak, ezért a két tekercs egy menetre jutó fluxusa = cos t. A szekunder tekercsben az indukálódott 1,0 Transzformátor: közös vasmagon van két tekercs. Tegyük fel, hogy az N menetszámú primer tekercs egy áramforrásra van csatolva, amelynek feszültsége: U() t = U,0sint. A primer kör ohmos ellenállását elhanyagoljuk,

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

A sugárzás kvantumos természete. A hőmérsékleti sugárzás

A sugárzás kvantumos természete. A hőmérsékleti sugárzás A sugárzás kvantumos természete A hőmérsékleti sugárzás Bevezetés A következőkben azokat a századorduló táján kutatott őbb jelenségeket tekintjük át, amelyek megértése a klasszikus izika alapján nem volt

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

Maghasadás, láncreakció, magfúzió

Maghasadás, láncreakció, magfúzió Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb

Részletesebben

Radioaktív sugárzás elnyelődésének vizsgálata

Radioaktív sugárzás elnyelődésének vizsgálata 11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 11 A MODERN FIZIKa ELEMEI XI. ATOMHÉJfIZIkA 1. GÁZOk emissziós ÉS AbSZORpCIÓS SZÍNkÉpe Az izzó szilárd test folytonos spektrumú sugárzást bocsát ki, azaz az egyes

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

43. A modern fizika születése. A fényelektromos jelenség

43. A modern fizika születése. A fényelektromos jelenség 43. A modern fizika születése. A fényelektromos jelenség Röviden vázolja fel a XIX XX. századforduló idején a fizika tudományának helyzetét! Fogalmazza meg Planck kvantumhipotézisét! Kísérlet: Végezzen

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása Radioaktív sugárzások az orvosi gyakorlatban Az ionizáló sugárzások biológiai hatása Dr Smeller László Biofizikai és Sugárbiológiai Intézet A sugárhatás osztályozása A sugárhatás osztályozása A károsodás

Részletesebben

Elektronok, atomok. Tartalom

Elektronok, atomok. Tartalom Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben