A magkémia alapjai. Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A magkémia alapjai. Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg"

Átírás

1 A magkémia alapjai Standard modell, szubatomi részecskék, fundamentális & nukleáris kölcsönhatások, spontaneitás & tömeg Nagy Sándor ELTE, Kémiai Intézet 01

2 Részecsketörténeti összefoglaló (kivezetés az elemi részecskék történetéből) Kezdetben volt a sötétség kb. ilyen: Aztán a kémikus elválasztotta az atomot a molekulától (1860, Karlsruhe, első nemzetközi vegyészkonferencia). És látta, hogy ez jó, mert az atomot elemi részecskének hitte. Ám akadt hitetlen fizikus, aki fél évszázaddal később is tagadta még az atom létezését (1913, E. Mach). Nem kell A-Z protont mini hidrogén-atomként elképzelni a magban! Egy Ne erőltessétek jó nagyítóval a simán szemeteket! el lehet Elég az olvasni elemi mindent részecskék a vizsgára! számát érzékelni! Közben egy fizikus (1897, J. J. Thomson) felfedezte az elektront. Az elektront még mindig elemi részecskének hisszük. Aztán egy újabb fizikus (1911, E. Rutherford) felfedezett egy újabb elemi részecskét, az atommagot. Aztán ugyanez a személy rájött, hogy az atommag mégsem elemi részecske, mert egy csomó igazán elemi részecske van benne: protonok (1919). Csakhogy A Z! Hm! Aztán egy másik fizikus (1932, J. Chadwick) még egy elemi részecskét talált a magban: a neutront. Remek! Egy idő után azonban a dolog kezdett kínossá válni, mert minden héten felfedeztek egy újabb elemi részecskét. Ezek egy töredéke az, ami nem látszik a táblázatban Muszáj lesz kitalálni valamit! filózott egy tudor (1963, M. Gell-Mann) atomcsendben. És kitalálta a kvarkot... Jó ez nekünk? kérdik a mai hitetlenek. Vagy van élet a Standard Modell után is?

3 Tanulság: Nullius in verba Take nobody's word for it! Ne bízz a szavakban! Senki szavát ne fogadd el végső igazságként! Ne fogadj el semmiféle (szak)tekintélyt! Az emberfia sohase tudhassa! Érdekesség: 1947-ben javasoltak egy egységet a mag kötési energiájára, mely nem terjedt el. 1 prout = B( 2 H)/12 185,5 kev. (Hogy mért pont 12? Mert 12 egy tucat :-) 1816 Minden atom hidrogénatomokból áll (William Prout) 1803 Thou knowest no man can split the atom. (John Dalton)

4 Léptékek 2 A Svájc és Franciaország határán 175 m-rel a felszín alatt épült Large Hadron Collider a maga 27 km-es hosszával csaknem 19-szer akkora, mint a Spring 8. LEP Apám! Hihetetlenül nagy ez a Népstadion! LHC Hát még a Spring 8!

5 Apropó LHC [Α Ω] Why Mért God nem Never véglegesítette Received Istent Tenure egyik at egyetem any University sem mint oktatót? 1. He Csak had egyetlen only one jelentősebb major publication. publikációra volt képes. 2. It Azt was az in egyet Hebrew. is héberül írta. ESZEDBE God Particle? 3. It Nem had voltak no references. benne hivatkozások. It wasn't published in a refereed journal. NE Valami rémlik 4. Nem referált folyóiratban jelent meg. 5. Some Állítólag even az doubt sem biztos, he wrote hogy it JUSSON! himself. ő maga írta. 6. It Lehet, may hogy be true tényleg that he őcreated teremtette the a world, világot, but de what őszintén: has he done mit csinált since azóta? then? 7. His Együttműködésre cooperative efforts tett erőfeszítései have been quite enyhén limited. szólva lagymatagok voltak. 8. The A tudományos scientific community közösség nem has igazán had a hard tudta time reprodukálni replicating az his eredményeit. results. 9. He Emberkísérletek never applied ügyében to the Ethics soha Board sem kért for állásfoglalást permission to az use Etikai human Bizottságtól. subjects. 10. When Félresikerült one experiment próbálkozásait went awry leplezendő he tried hajlamos to cover volt it up vízbe by drowning fojtani a kísérlet the subjects. alanyait. 11. When Ha a kísérleti subjects alanyok didn't behave nem az as általa predicted, várt módon he deleted viselkedtek, them from egyszerűen the sample. 12. törölte He rarely őket came a mintából. to class, just told students to read the Book Alig Some járt say be he az had órákra, his son s azzal teach intézte the class. el a tanítványait, hogy olvassák el a 14. Könyvet. He expelled his first two students for learning Egyesek Although szerint there were a tanítást only teljesen ten requirements, a fiára hagyta. most students failed his tests Az His első office két hours diákját were azért infrequent rúgta ki, and mert usually tanulni held akartak. on a mountaintop. 15. Csak tíz követelményt fogalmazott meg, de így is alig volt olyan, aki átment a vizsgán. 16. Fogadóórákat alig tartott, és azokat is valami hegy tetején. George Burns 18

6 ν e, ν μ, ν τ. Az erős kölcsönhatás oszlopa tartalmazza a nukleáris kölcsönhatást. 2000

7 Elemi, fundamentális: e - (elektron, negatron) q (kvark általában) u (up/fel kvark) d (down/le kvark) Összetett: N (nukleon általában) p (proton) n (neutron) A léptékek persze csalnak. Ha nem így volna, nem láthatnánk egyszerre minden részletet, hiszen

8 Egy proton vegyértékkvarkokkal és gluonokkal

9 A részecskeosztályozásnál fontos szempont: Fermion vagy bozon? Einstein_statistics Dirac_statistics

10 Quark túró (németül az volna). Eredet: James Joyce: Finnegans Wake. Három kvarkot Miszter Marke-nak (Je. I. Parnov: A végtelenek keresztútjain, oroszból magyarra f.: Nagy Ernő Miklós.) Eredeti: Three quarks for Muster Mark!. Névadó: Mr. Murray Gell-Mann (1964) Ismerős 1897 Ismerősök (p & n) alkatrésze Furcsa! Lepton = könnyű. Vagy nem is? Egy egész H 2 molekula sem sokkal könnyebb! A leptonok és a kvarkok a fermionok (feles spin, Pauli-elv) csoportjába tartoznak. Valamennyit elemi/fundamentális részecskének tekintik ma is. Ezek az anyag (5% :-) fő építőelemei.

11 A barionok (~nehéz) összetett fermionok. A hadronok (~vaskos) nehezebb alcsaládját alkotják. Részecskék és antirészecskék tömege azonos. Ismerős ,0073 u Ismerős ,0087 u Az ezrelék is számít!

12 Elemi/fundamentális bozonok (egész spin) a fundamentális kölcsönhatások erőközvetítői elektromos erős (szín-) gyenge Nehezebb, mint egy egész C 6 H 6 molekula!

13 A mezonok (~közepes) összetett bozonok. A hadronok (~vaskos) könnyebb alcsaládját alkotják. A piont Yukawa posztulálta ben mint a rövid hatótávolságú magerő közvetítőjét

14 A kölcsönhatások tulajdonságai és erőközvetítői 2000 Yukawa idejében ezt a protonok elektromos taszítását is legyűrő erőt tekintették az erős kölcsönhatásnak. Ma magerőnek, ill. reziduális (maradék) erős kölcsönhatásnak nevezik. A hatótávolsága nemigen terjed túl a mag határán, míg az igazi erős (szín)kölcsönhatás végtelen hatótávolságú. Hatótávolságok Gravitáció: Gyenge: nagyon rövid Elektromos: Szín: Magerő: nagyon rövid γ e -

15 Az erős/színkölcsönhatás & a magerők A kvarkok zárkózottak (kvarkbezárás) a Hook-törvényre emlékeztető erős kölcsönhatás miatt, mely nem engedi szabadjára őket. A kvarkok vegyértéke azonban nem telítődik teljesen egy-egy nukleonon belül, ami kissé ragacsossá teszi őket (reziduális erős kölcsönhatás = magerők, más szóval a nukleonok közt ható nem Coulomb-jellegű erők). A magerők töltésfüggetlensége

16 2006 A fundamentális kölcsönhatások tulajdonságai és erőközvetítői A paradigmaváltás befejeződött: a magerőt kiszedték az erős kölcsönhatás oszlopából.

17 p n A megfigyelhető részecskék nem mondhatók színes egyéniségeknek. Ha nem is szürkék, de színtelenek, ill. fehérek. Úgy, ahogy a három RGB vagy CMY alapszínből (barionok és antibarionok), ill. ezek egyikéből és a megfelelő komplementer színből (mezonok és antimezonok) előáll a fehér. π +

18 Építsünk hadronokat! Egy szellemes kirakósdi Java applet formájában és egy még jobb Flash. A kvarkok neve: u, d, a IUPAP szerint. A szavak csak emlékeztetők. Vajon a neutron stabil? És ha mondjuk nem, akkor meg miért igen?

19 Ez a táblázat tetszett volna Mengyelejevnek 1964 A kvarkok már megvoltak, de a könyvből kimaradtak????

20

21 A tömeg-/nyugalmienergiacsökkenés adja a 4 He mag kötési energiáját, és ez teszi lehetővé a hidrogénégést (pp-folyamat) a Napban, mely 4 protonból végül is 1 héliummagot, 2 (annihilálódó) pozitront és 2 antineutrínót eredményez.

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2. Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ

Részletesebben

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL tartozó valószínûség -hez, a többi nullához tart. A most vizsgált esetben (M M = 0) a (0) szerint valóban ennekkell történnie. Teljesen hasonlóan igazolható (0) helyessége akkor is, amikor k = n. A közbensô

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS)

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) ATOMMAGFIZIKA II. (NUCLEAR PHYSICS II.) RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) (Harmadik, korszerűsített kiadás) (Third up-dated edition) FÉNYES TIBOR DEBRECENI EGYETEMI KIADÓ,

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I: SM CERN, 2014. augusztus 18. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére CERN, 2014. aug. 18-22. (Pásztor Gabriella helyett)

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2007) Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella University of Geneva & MTA Wigner FK Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme. PROGRAM HéOő Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

Legújabb eredmények a részecskefizikában. I. rész

Legújabb eredmények a részecskefizikában. I. rész ismerd meg! Legújabb eredmények a részecskefizikában I. rész 1. A részecskék osztályozása Jelenlegi tudásunk szerint az anyag fermion típusú építkövekbl és bozon típusú ragasztóanyagból épül fel. (A világegyetem

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Az atommag szerkezete

Az atommag szerkezete Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2011. augusztus 15 10. 1. RÉSZ Mit vizsgál a részecskefizika és milyen eszközökkel? Elemi részecskék

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

A tau lepton felfedezése

A tau lepton felfedezése A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)

Részletesebben

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 017. Február 4. V-részecskék 1. A15 felfedezés 1946, Rochester, Butler ezen a képen egy semleges részecske bomlásakor két töltött részecske (pionok) nyoma villa

Részletesebben

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest 1 Papp Gábor, Németh Judit Magfizika egyetemi jegyzet fizika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

A magkémia alapjai. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások. Nagy Sándor ELTE, Kémiai Intézet

A magkémia alapjai. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások. Nagy Sándor ELTE, Kémiai Intézet A magkémia alapjai Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor ELTE, Kémiai Intézet 03 E gradu U x, r U y U, r U z T Mondom: NIN-CSEN TÉR-E-RŐŐŐŐ! A tömör golyó töltéseloszlásához

Részletesebben

Mese a Standard Modellről 2*2 órában, 1. rész

Mese a Standard Modellről 2*2 órában, 1. rész Mese a Standard Modellről 2*2 órában, 1. rész Előadás a magyar CMS-csoport számára (RMKI-ATOMKI-CERN, 2008. június 6.) Horváth Dezső horvath rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet,

Részletesebben

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,

Részletesebben

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó

Részletesebben

Bevezetés; Anyag és Energia; Az atomok szerkezete I.

Bevezetés; Anyag és Energia; Az atomok szerkezete I. Bevezetés; Anyag és Energia; Az atomok szerkezete I. Műszaki kémia, Anyagtan I. 1-2. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Az általános kémia tárgya az anyag tulajdonságainak

Részletesebben

Az LHC kísérleteinek helyzete

Az LHC kísérleteinek helyzete Az LHC kísérleteinek helyzete 2012 nyarán Csörgő Tamás fizikus MTA Wigner Fizikai Kutatóközpont Részecske és Magfizikai Intézet, Budapest 7 (vagy 6?) LHC kísérlet ALICE ATLAS CMS LHCb LHCf MoEDAL TOTEM

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Repetitio est mater studiorum

Repetitio est mater studiorum Repetitio est mater studiorum Anyagi részecskék Kvarkok: A mai nap főszereplői Közvetítő részecskék Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) 2. Kölcsönhatások Milyen kölcsönhatásokra utalnak

Részletesebben

A Standard Modellen túl. Cynolter Gábor

A Standard Modellen túl. Cynolter Gábor A Standard Modellen túl Cynolter Gábor MTA Elméleti Fizikai Tanszéki Kutatócsoportja Budapest, 1117 Pázmány Péter sétány 1/A Kivonat Az elemi részecskék kölcsönhatásait leíró Standard Modell hihetetlenül

Részletesebben

A mai nap főszereplői. Kvarkok: Közvetítő részecskék. Anyagi részecskék. Leptonok: Ők mind Bozonok (s=1) Ők mind Fermionok (s=1/2)

A mai nap főszereplői. Kvarkok: Közvetítő részecskék. Anyagi részecskék. Leptonok: Ők mind Bozonok (s=1) Ők mind Fermionok (s=1/2) Anyagi részecskék Kvarkok: A mai nap főszereplői Közvetítő részecskék Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) Előszó. Olyan dolgokról fogok most Nektek beszélni amit a 3.- 4. éves fizikus

Részletesebben

Részecskegyorsítókkal az Ősrobbanás nyomában

Részecskegyorsítókkal az Ősrobbanás nyomában Csanád Máté Részecskegyorsítókkal az Ősrobbanás nyomában Zrínyi Ilona Gimnázium Nyíregyháza, 2010. december 10. www.meetthescientist.hu 1 26 Az anyag szerkezete Atomok proton, neutrok, elektronok Elektron

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

13. A magzika alapjai

13. A magzika alapjai 13. A magzika alapjai Zsigmond Anna 2010 Tartalomjegyzék 1. Történeti áttekintés 2 2. Elemi részecskék és alapvet kölcsönhatások 3 2.1. Kvarkmodell................................... 3 2.2. A Standard

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Útban a Standard Modell felé

Útban a Standard Modell felé Útban a Standard Modell felé Mag és részecskefizika 4. előadás 2017. március 10. Amiről eddig tanultunk Hadronok: kvarkok kötött állapotai Barionok (qqq), anti-barionok (qqq), mezonok (qq) Rezonanciák

Részletesebben

A mai nap főszereplői. Kvarkok: Közvetítő részecskék. Anyagi részecskék. Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1)

A mai nap főszereplői. Kvarkok: Közvetítő részecskék. Anyagi részecskék. Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) Anyagi részecskék Kvarkok: A mai nap főszereplői Közvetítő részecskék Leptonok: Ők mind Fermionok (s=1/2) Ők mind Bozonok (s=1) Előszó. Olyan dolgokról fogok most Nektek beszélni amit a 3.- 4. éves fizikus

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Can/be able to. Using Can in Present, Past, and Future. A Can jelen, múlt és jövő idejű használata

Can/be able to. Using Can in Present, Past, and Future. A Can jelen, múlt és jövő idejű használata Can/ Can is one of the most commonly used modal verbs in English. It be used to express ability or opportunity, to request or offer permission, and to show possibility or impossibility. A az egyik leggyakrabban

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

ELEMI RÉSZECSKÉK ATOMMODELLEK

ELEMI RÉSZECSKÉK ATOMMODELLEK ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2015. augusztus 17-21. Pásztor: Bevezetés a részecskefizikába 1 PROGRAM Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses

Részletesebben

Nehézion ütközések az európai Szupergyorsítóban

Nehézion ütközések az európai Szupergyorsítóban Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?

Részletesebben

Kvarkok 1. R. P. Feynman

Kvarkok 1. R. P. Feynman Kvarkok 1 R. P. Feynman Az anyag atomokból épül fel. Maguk az atomok kétféle építőkőből tehetők össze: elektronokból és atommagból. Nézzük, miből épülnek fel az elektronok. Mai tudásunk szerint az elektronok

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Építsünk részecskefizikát

Építsünk részecskefizikát Építsünk részecskefizikát Oláh Éva Mária Bálint Márton Általános és Középiskola 2045 Törökbálint Óvoda u. 6. A részecskefizika az egyik leggyorsabban fejlődő tudomány a világon. A középiskolákban nincs

Részletesebben

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton?

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? GYAKORLÓ FELADATOK 1. Számítsd ki egyetlen szénatom tömegét! 2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? 3. Mi történik, ha megváltozik egy

Részletesebben

FIZIKAI NOBEL-DÍJ, Az atomoktól a csillagokig dgy Fizikai Nobel-díj 2013 a Higgs-mezôért 10

FIZIKAI NOBEL-DÍJ, Az atomoktól a csillagokig dgy Fizikai Nobel-díj 2013 a Higgs-mezôért 10 FIZIKAI NOBEL-DÍJ, 2013 Az atomoktól a csillagokig dgy 2013. 10. 10. Fizikai Nobel-díj 2013 a Higgs-mezôért 10 A tömeg eredete és a Higgsmező avagy a 2013. évi fizikai Nobel-díj Az atomoktól a csillagokig

Részletesebben

Részecskefizika 3: neutrínók

Részecskefizika 3: neutrínók Horváth Dezső: Bevezetés a részecskefizikába III CERN, 2014. augusztus 20. p. 1 Részecskefizika 3: neutrínók Előadássorozat fizikatanárok részére (CERN, 2014) Horváth Dezső Horvath.Dezso@wigner.mta.hu

Részletesebben

Részecskék osztályozása, kölcsönhatások, Standard Modell?

Részecskék osztályozása, kölcsönhatások, Standard Modell? Részecskék osztályozása, kölcsönhatások, Standard Modell? Mag-, részecskefizika és asztrofizika 4. előadás 2018. október 2. Köszönet Pásztor Gabriellának http://gpasztor.web.cern.ch/gpasztor/mrf2017 Részecskefizika4,.htmlSzimmetriák,

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

Mikrokozmosz világunk építôköveinek kutatása

Mikrokozmosz világunk építôköveinek kutatása HORVÁTH ZALÁN Mikrokozmosz világunk építôköveinek kutatása Horváth Zalán fizikus, az MTA rendes tagja Az anyagi világ szerkezetének megismerése több mint kétezer éve foglalkoztatja az emberiséget. A 20.

Részletesebben

Tényleg megvan a Higgs-bozon?

Tényleg megvan a Higgs-bozon? Horváth Dezső: Higgs-bozon CSKI, 2014.02.19. p. 1 Tényleg megvan a Higgs-bozon? CSFK CSI, 2014.02.19 Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Részecske- és Magfizikai

Részletesebben

Sinkovicz Péter. ELTE, MSc II november 8.

Sinkovicz Péter. ELTE, MSc II november 8. Út az elemi részecskék felfedezéséhez és az e e + ütközések ELTE, MSc II. 2011. november 8. Bevezető c kvark τ lepton b kvark Gyenge kölcsönhatás Áttekintés 1 Bevezető 2 c kvark V-A elmélet GIM mechanizmus

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 03. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala:

Részletesebben

Részecskefizikai gyorsítók

Részecskefizikai gyorsítók Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY

Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK. (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY Lopocsi Istvánné MINTA DOLGOZATOK FELTÉTELES MONDATOK (1 st, 2 nd, 3 rd CONDITIONAL) + ANSWER KEY PRESENT PERFECT + ANSWER KEY FELTÉTELES MONDATOK 1 st, 2 nd, 3 rd CONDITIONAL I. A) Egészítsd ki a mondatokat!

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

Hogyan kerül a kvarkanyag

Hogyan kerül a kvarkanyag Hogyan kerül a kvarkanyag a Rubik kockára? Csörgő Tamás fizikus, MTA Wigner FK és KRF, Gyöngyös A Rubik (bűvös) kocka feltalálásának 40. évfordulójára Fizikai Szemle 2013/6. sz. 205. o., 2013/7-8. sz.

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott

További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott Az isteni a-tom További olvasnivaló a kiadó kínálatából: HRASKÓ PÉTER: Relativitáselmélet FREI ZSOLT PATKÓS ANDRÁS: Inflációs kozmológia E. SZABÓ LÁSZLÓ: A nyitott jövő problémája TIMOTHY FERRIS: A világmindenség.

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása

Magsugárzások, Radioaktív izotópok. Az atom alkotórészei. Az atom felépítése. A radioaktivitás : energia kibocsátása Magsugárzások, Radioaktív izotópok radioaktivitás : energia kibocsátása az atommagból részecskék vagy elektromágneses sugárzás formájában z atom felépítése z atom alkotórészei protonok neutronok nukleonok

Részletesebben

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT A feladatok megoldására 45 perc áll rendelkezésedre, melyből körülbelül 10-15 percet érdemes a levélírási feladatra szánnod. Sok sikert! 1. Válaszd ki a helyes

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 22.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 22. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2011. február 22. A radioaktivitásról Tévedések, téves következtetések is voltak : Curie házaspár: felfedezi, hogy a rádiumsók állandóan

Részletesebben

Részecskés Kártyajáték

Részecskés Kártyajáték Részecskés Kártyajáték - avagy Rubik kockában a Világegyetem Csörgő Tamás fizikus, MTA Wigner Fizikai Kutatóintézet www.rubiks.com Rubik kocka 40. évfordulójára dedikálva Fizikai Szemle 201/6. sz. 205.

Részletesebben

Egzotikus részecskefizika

Egzotikus részecskefizika Egzotikus részecskefizika CMS-miniszimpózium, Debrecen, 2007. nov. 7. Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Egzotikus

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

Radioaktivitás környezetünkben (Horváth Ákos, 2010. őszi félév)

Radioaktivitás környezetünkben (Horváth Ákos, 2010. őszi félév) Radioaktivitás környezetünkben (Horváth Ákos, 2010. őszi félév) 1. óra: szeptember 24. (Strádi Andi) Rutherford-kísérlet, neutron felfedezése, ködkamra-kísérletek 2. óra: október 1. (Strádi Andi) elektronszórás,

Részletesebben

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big

Részletesebben

OTKA T Tematikus OTKA Pályázat Zárójelentés. Kvantumszíndinamikai effektusok vizsgálata relativisztikus nehézion ütközésekben

OTKA T Tematikus OTKA Pályázat Zárójelentés. Kvantumszíndinamikai effektusok vizsgálata relativisztikus nehézion ütközésekben OTKA T043455 Tematikus OTKA Pályázat Zárójelentés Kvantumszíndinamikai effektusok vizsgálata relativisztikus nehézion ütközésekben Időtartam: 2003-2006 Kutatóhely: Témavezető: Résztvevő kutatók: MTA KFKI

Részletesebben