Mágnesség. 1. Stacionárius áramok mágneses mezeje. Oersted (1820): áramvezet drót közelében a mágnest az áram irányára
|
|
- Domokos Biró
- 5 évvel ezelőtt
- Látták:
Átírás
1 1 STACIONÁRIUS ÁRAMOK MÁGNESES MEZEJE Mágnesség 1. Stacionárius áramok mágneses mezeje Oersted (1820): áramvezet drót közelében a mágnest az áram irányára mer legesen áll be elektromos töltések áramlása mágneses hatást kelt.
2 1 STACIONÁRIUS ÁRAMOK MÁGNESES MEZEJE Biot-Savarttörvény (1820): egy L görbe mentén elhelyezked drótvezet ben folyó I er sség stacionárius áram által vákuumban keltet mágneses mez indukcióvektora B( r) = I c L ( R r) d R r R 3 Az integrál csak a drótvezet geometriájától függ! Szuperpozíció-elvéb l tetsz leges stacionárius árameloszlásra B( r) = 1 c J( R) ( r R) r R d 3 R 3
3 1 STACIONÁRIUS ÁRAMOK MÁGNESES MEZEJE Megjegyzés: B( r) = rot A, ahol A( r) = 1 c J( R) r R d3 R a mágneses mez vektorpotenciálja. A div (rot A)=0 azonosság felhasználásával adódik a div B = 0 mágneses Gauss-törvény, ahonnan a Gauss-tétel következményeként B d s = 0 V tetsz leges V térfogatra (nincsenek izolált mágneses töltések).
4 1 STACIONÁRIUS ÁRAMOK MÁGNESES MEZEJE Másrészt rot B = 4π c J Ampèretörvény illetve integrális alakban B d r = 4π c J( r) d s S S bármely S felület esetén. A fenti összefüggés csak vákuumban érvényes: mágneses közegekben az árams r ség kifejezésében megjelenik egy, a molekuláris áramokból származó (illetve kvantumos eredet ) járulék.
5 2 A VEKTORPOTENCIÁL 2. A vektorpotenciál div B=0 mágneses Gauss-törvény miatt létezik olyan A( r) vektormez (vektorpotenciál) amelyre B = rot A A vektorpotenciál nem egyértelm : mivel bármely χ( r) skalármez gradiense örvénymentes, ezért A és A = A+grad χ ugyanazt a mágneses mez t írja le (mértékinvariancia). Mindig választható forrásmentes vektorpotenciál amelyre diva = 0, amikor is A=grad div A rot rot A= rot B, így A= 4π c J vektoriálispoissonegyenlet
6 3 A MÁGNESES MOMENTUM 3. A mágneses momentum Tekintsünk egy V tartományba lokalizált árameloszlást (a J( r) árams - r ség elt nik V-n kívül). A V tartománytól távol a vektorpotenciál képletébe behelyettesítve a A( r) = 1 c J( R) r R d3 R 1 r R = 1 r + r R r 3 + {3( r R) 2 r 2 R 2 } 2 r 5 + Taylor-sorfejtést kapjuk, hogy A( r)= 1 J( R) d 3 R 1 + c r c r 3 ( r R) J( R) d 3 R +... V V
7 3 A MÁGNESES MOMENTUM Figyelembe véve, hogy az árams r ség elt nik a térrész V határán, továbbá felhasználva a divergencia-tételt és a div J=0 kontinuitási egyenletet, adódik ahol A( r) = m r r m = 1 2c { R J( R) } d 3 R Innen a mágneses térer sség V B( r) = rot A = 3( m r) r r 2 m r 5
8 3 A MÁGNESES MOMENTUM Elektrosztatikus analógia alapján ez egy (mágneses) dipólmez t ír le, és m az árameloszlás mágneses momentuma. A magasabb mágneses multipólus tagok általában elhanyagolhatók. I er sség áramot szállító drótvezet esetén m= I r d r. 2c Sík drótvezet re m = IA n, ahol A a vezet által bezárt felületdarab területe, és n annak normális egységvektora.
9 4 MOLEKULÁRIS ÁRAMOK. 4. Molekuláris áramok. Mágneses közegekben az árams r ség kifejezésében megjelenik egy, a molekuláris áramokból származó Jm járulék, így ott az Ampère-törvény pontos alakja rot B = 4π c J + 4π c Jm Mivel a Jm molekuláris járulék divergenciamentes, div Jm =0, ezért felírható Jm =c rot M alakban, amib l a H= B 4π M jelöléssel rot H = 4π c J
10 4 MOLEKULÁRIS ÁRAMOK. Egy S felületre integrálva, és felhasználva a Stokes-tételt kapjuk a H d r = 4π c I S integrális Ampère-törvényt, ahol I = S J( r) d s jelöli az egységnyi id alatt S-en áthaladó töltés mennyíségét. Vákuumban nincsenek molekuláris áramok, azaz Jm = M = 0 és H = B, ezért M a közeg mágnesezettség-vektora (egységnyi térfogat mágneses momentuma) és H a mágneses térer sség (közeg hiányában mérhet mágneses indukció).
11 5 A PERMEABILITÁS 5. A permeabilitás H mágneses térer sség: árameloszlás által keltett mágneses mez indukcióvektora közeg hiányában (vákuumban). Spontán mágnesezettség: áramok keltette 'küls ' mez hiányában is nemzérus indukció. Spontán mágnesezettség csak ún. ferro- és ferrimágneses anyagokban fordul el, ezért nem túl nagy térer sségeknél jól használható a M = χ mh lineáris összefüggés, ahol χ m a közeg mágneses szuszceptibilitása (izotrop esetben skalár, anizotrop esetben tenzor).
12 5 A PERMEABILITÁS Innen, B = H+4π M következtében B = µ H ahol µ = 1+4πχ m a közeg permabilitása (izotrop esetben skalár, anizotrop esetben tenzor). Dielektromos polarizációval ellentétben M nem szükségszer en egyirányú H-val (izotrop esetben), ezért a χ m mágneses szuszceptibilitás lehet negatív is (diamágnesek), de energetikai okokból a µ permeabilitás soha: µ 0, és ezért χ m 1 4π. Paramágnes: kicsiny pozitív szuszceptibilitás.
13 5 A PERMEABILITÁS 1. táblázat. Néhány anyag mágneses szuszceptibilitása. anyag χ m szuszceptibilitás nátrium réz diamágnes gyémánt higany víz leveg paramágnes oxigén magnézium alumínium ferromágnes vas Si-Fe kristályok ferrimágnes magnezit (Fe 3 O 4 ) 10 2
14 6 ANYAGOK MÁGNESES TULAJDONSÁGAI 6. Anyagok mágneses tulajdonságai Molekulák mikroszkopikus összetev i (elektronok, protonok, stb.), alapvet en kvantumos eredet bels mágneses momentummal is rendelkeznek (spin) a mozgásukból származó momentumon túlmen en. Molekulák mikroszkopikus mágneses momentumai általában kioltják egymást véletlenszer irányuk miatt makroszkopikus térrészek teljes mágneses momentuma elt nik, kivéve ha irányuk valamilyen okból rendezett.
15 6 ANYAGOK MÁGNESES TULAJDONSÁGAI Mikroszkopikus momentumokat rendezheti 1. küls mágneses mez ; 2. mágneses momentumok közti kölcsönhatás. Jelenség hasonlít a dielektromos polarizációhoz, de nincsenek izolált mágneses töltések.
16 6 ANYAGOK MÁGNESES TULAJDONSÁGAI 6.1. Diamágnesség Küls mágneses mez befolyásolja az elektronok atomokon és molekulákon belüli mozgását változás a molekuláris árameloszlásban, így a mágneses momentumban is. Indukált momentumok arányosak a küls mez vel, de ellentétes irányba mutatnak (Lenztörvény), így csökkentik a küls mez hatását az indukált mágnesezettség (mágneses momentums r ség) M = χ m H alakú, ahol χ m <0 a mágneses szuszceptibilitás.
17 6 ANYAGOK MÁGNESES TULAJDONSÁGAI Diamágneses hatás mindig jelen van, de általában elhanyagolható a többi mechanizmushoz képest ( χ m <10 4 ), kivéve ha a mikroszkopikus összetev k mágneses momentumai mind elt nnek. Diamágnesek szuszceptibilitása (általában) független a h mérséklett l. Szupravezet k tökéletes diamágnesek (Meissnereektus), vagyis a mágneses indukció kilök dik egy szupravezet test belsejéb l (kivéve egy vékony felületi réteget) nem túl er s terek esetén.
18 6 ANYAGOK MÁGNESES TULAJDONSÁGAI II-es típusú szupravezet k: bizonyos kritikus mágneses térer sség felett a mágneses mez részben behatol a szupravezet be, mágneses uxuscsövekbe (Abrikosovvonalak) lokalizálva. Mágneses levitáció: diamágneseket taszítja a mágneses mez, így állandó mágnes fölé helyezve lebegnek (m ködik él lényekre is).
19 6 ANYAGOK MÁGNESES TULAJDONSÁGAI 6.2. Paramágnesség Küls mágneses mez a párosítatlan spinekb l adódó mikroszkopikus momentumokat addig forgatja, amíg a mez irányával párhuzamosan állnak be (orientációs mágnesezettség) M mágnesezettségi vektor (mágneses momentums r ség) arányos a H térer sséggel M = χ m H pozitív χ m >0 mágneses szuszceptibilitással. Csak nem túl er s mágneses mez kre és nem túl alacsony h mérsékletekre igaz (telítettség).
20 6 ANYAGOK MÁGNESES TULAJDONSÁGAI Termikus uktuációk igyekeznek rendezetlenné tenni a mágneses momentumok irányát mágneses szuszceptibilitás h mérsékletfüggését a T C Curieh mérséklet felett a χ m = C T T C Curie-Weisstörvény írja le. T C kritikus h mérsékletnél másodrend fázisátalakulás egy rendezett fázisba (ritka esetekben elmarad). Diamágnesekkel ellentétben a paramágneseket vonzza a mágneses mez (gyenge eektus).
21 6 ANYAGOK MÁGNESES TULAJDONSÁGAI 6.3. Ferromágnesség Er s kölcsönhatás mikroszkopikus momentumok között (kvantumos eredet kicserél dési kölcsönhatás) alacsony h mérsékleten makroszkopikus domének kialakulása rendezett momentumokkal.
22 6 ANYAGOK MÁGNESES TULAJDONSÁGAI Egy doménen belül az összes momentum párhuzamos minden egyes domén egy kicsiny permanens mágnes, de általában a különböz domének momentumai véletlenszer en irányítottak (termikus uktuációk következtében) sok doménb l álló makroszkopikus testnek általában elt nik a spontán mágnesezettsége. Domének határán a mikroszkopikus momentumok kölcsönhatnak mindkét doménbéli momentumokkal irányuk megváltozhat, vagyis egyik
23 6 ANYAGOK MÁGNESES TULAJDONSÁGAI doménb l átkerülhetnek a másikba domének tágulnak és összemennek: a doménfalak mozognak. Küls mágneses mez nem tudja (energetikai okokból) elfordítani az egyes domének momentumát, de segíti azon domének növekedését, melyek momentumai közel párhuzamosak a küls mez vel nettó makroszkopikus mágnesezettség kialakulása.
24 6 ANYAGOK MÁGNESES TULAJDONSÁGAI Doménfalak mozgása disszipatív folyamat nemlineáris mágnesezettségi görbe Hiszterézis: mágnesezettség nem egyértelm függvénye a térer sségnek, hanem függ a közeg el életét l is (szuszceptibilitás = mágnesezettségi
25 6 ANYAGOK MÁGNESES TULAJDONSÁGAI görbe meredeksége az origóban). Mágnesezettség telít dik (M sat maximális értéknél) amikor az összes momentum párhuzamos (csak egy domén marad). T C Curieh mérsékleten másodrend fázisátalakulás paramágneses fázisba, amikor a domének feloszlanak (termikus uktuációk kompenzálják a mikroszkopikus momentumok közti kölcsönhatást). Ferrimágnesség: domének rendezett momentumokkal, de szomszédos momentumok ellenkez irányba mutatnak (pl. magnezit).
26 6 ANYAGOK MÁGNESES TULAJDONSÁGAI Spontán polarizáció, hiszterézis, stb., de a szuszceptibilitás sokkal kisebb, mint ferromágneseknél. Antiferromágnesség: olyan ferrimágnes, amelyben a szomszédos momentumok tökéletesen kioltják egymást. Nincs spontán mágnesezettség: úgy viselkedik mint egy paramágnes, kivéve a szuszceptibilitás h mérsékletfüggését.
27 7 A FLUXUS-SZABÁLY 7. A uxus-szabály Faraday (1831): id ben változó mágneses mez elektromos áramot indukál vezet kben (elektromágneses indukció). Mikroszkopikus töltéshordozók mozgatásához szükséges elektromotoros er forrása a mágneses mez Az elektromos mez többé nem konzervatív!
28 7 A FLUXUS-SZABÁLY Fluxus-szabály: egy zárt áramkörben indukált elektromotoros er arányos az áramkör által kifeszített bármely (esetlegesen id ben változó) Σ felület Φ Σ = B d s Σ mágneses uxusának változási sebességével E ind = 1 c dφ Σ dt Lenzszabály: indukált áram által keltett mágneses mez csökkenti az indukáló uxust (negatív el jel miatt).
29 7 A FLUXUS-SZABÁLY Stokes tételéb l E ind = E d r = rot E d s Σ Σ Ha Σ nem változik az id ben ('nyugalmi indukció'), akkor Σ rot E d s = 1 c d ( dt Σ ) B d s = 1 c Σ B t d s Végül, a zárt áramkört (és ezáltal a Σ felületet) összehúzva egy pontra adódik rot E = 1 c B t Faradaytörvény
30 8 KVÁZI-STACIONÁRIUS ÁRAMOK 8. Kvázi-stacionárius áramok Stacionárius áramlás: mind a ρ töltéss r ség, mind a J árams r ség id ben állandó ('egyenáram'). Kvázi-stacionárius áram: J árams r ség (és a térjellemz k) id ben változik ugyan, de nem túl gyorsan. Jelent ség: nagyteljesítmény áramforrások (er m vek) gyakran forgási energiát alakítanak elektromágneses energiává, ezért ezek elektromotoros ereje (és így az általa fentartott áram er ssége) periodikusan változik, pulzál ('váltóáram').
31 8 KVÁZI-STACIONÁRIUS ÁRAMOK Lassú változás miatt kvázi-stacionárius áramokra továbbra is teljesül div J = 0 a lokális töltésmegmaradás következtében, ezért 1. közegek határán J normális komponense folytonosan változik; 2. vezet cs belsejében egy adott id pillanatban bármely két keresztmetszeten ugyanannyi töltés áramlik át; 3. elektromos hálózat bármely csomópontjába befolyó áramer sségek összege megegyezik a kifolyó áramer sségek összegével ('csomóponti szabály').
32 8 KVÁZI-STACIONÁRIUS ÁRAMOK Kirchho második törvénye ('hurokszabály') módosul: vezet k alkotta hurokban az áramforrások elektromotoros erején felül gyelembe kell venni a változó mágneses mez k által indukált elektromotoros er t is. ahol R k I k = k k E = 1 c E k + E dφ dt a hurokban indukált feszültség (Φ a hurok mágneses uxusa). Mágneses uxus lehet (részben) küls eredet, de fontos forrását alkotják magában a hálózatban áramló töltések is.
Kvázi-stacionárius áramok és
1 A LORENTZ ERŐ Kvázi-stacionárius áramok és mágneses mezejük 1 A Lorentz erő Elektromos és mágneses mező egyidejű jelenlétében v sebességgel mozgó q elektromos töltésű pontszerű részecskére ható erő (
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció.
A Maxwellegyenletek Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. Milyen általános, a konkrét szituációtól (pl. közeg anyagi
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések
Elektro- és magnetosztatika, áramkörök
1. fejezet Elektro- és magnetosztatika, áramkörök Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. Vezet k, szigetel k, dielektrikumok, kondenzátor, magnetosztatika. Stacionárius áram,
Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve
1 ELEKTROMOS TÖLTÉSEK Alapjelenségek 1. Elektromos töltések és kölcsönhatásaik Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve eltaszít apró, könny tárgyakat. Elektromos töltés:
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
Elektromágneses alapjelenségek
0-0 I. rész Elektromágneses alapjelenségek Thalész (i.e. 600 körül): gyapjúval dörzsölt borostyánk ('élektron') az apróbb tárgyakat magához vonzza, majd eltaszítja. Dörzsölés hatására a testek elektromos
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük
Stacionárius töltésáramlás (egyenáramok)
0-0 Stacionárius töltésáramlás (egyenáramok) Id ben állandó konduktív áramok és elektromágneses térjellemz k. Mozgó töltések mágneses mez hatására eltérülnek mozgó töltések mágneses mez t keltenek. div
N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:
N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.
Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)
Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc
Az elektromágneses indukció jelensége
Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér
Stacionárius töltésáramlás
1 BEVEZETÉS Stacionárius töltésáramlás 1 Bevezetés Stacionárius (id független) konduktív töltésáramlást ('egyenáram') megengedve, de minden más id beli változást kizárva id független térjellemz k és J
Elektroszatika 0-0. Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0)
0-0 Elektroszatika Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0) térjellemz k nem változnak az id során (id deriváltak elt nnek) mágneses mez
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek
Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)
= Φ B(t = t) Φ B (t = 0) t
4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS
Anyagtudomány MÁGNESES ANYAGOK GERZSON MIKLÓS 1 mágneses pólusok (Föld, állandó mágnesek) pólusok nem szétválaszthatók történetük: Magnetosz Kréta Ókori Kína iránytű Gilbert: On the Magnet (1600) Oersted:
TARTALOMJEGYZÉK EL SZÓ... 13
TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Mindkét oldal divergenciáját véve, és kihasználva a másik E térre vonatkozó egyenletet, Laplace-egyenletet kapunk:
1 / 6 A TételWiki wikiből 1 Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. [1] 2 Vezetők, szigetelők, dielektrikumok, elektormos polarizáció, magnetosztatika. 2.1 Vezetők [3] 2.2 Dielektrikumok
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
Mágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása
Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve
1 ELEKTROMOS TÖLTÉSEK Alapjelenségek 1. Elektromos töltések és kölcsönhatásaik Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve eltaszít apró, könny tárgyakat. Elektromos töltés:
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Az elektromágneses indukció jelensége
Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér
MÁGNESESSÉG. Türmer Kata
MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Időben állandó mágneses mező jellemzése
Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Fizika A2E, 8. feladatsor
Fizika AE, 8. feladatsor ida György József vidagyorgy@gmail.com. feladat: Az ábrán látható áramkörben határozzuk meg az áramer sséget! 4 5 Utolsó módosítás: 05. április 4., 0:9 El ször ki kell számolnunk
Fizika 1 Elektrodinamika belépő kérdések
Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció
FIZIKA II. Az áram és a mágneses tér kapcsolata
Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok
Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35
Mágneses tér anyag kölcsönhatás leírása
Anyagszerkezettan és anyagvizsgálat 2014/15 Mágneses anyagok Dr. Szabó Péter János szpj@eik.bme.hu Mágneses tér anyag kölcsönhatás leírása B H B H H M ) 0 1 M H V 1 r r 0 ( 1 Pi P V H : az anyagra ható
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
XII. előadás április 29. tromos
Bevezetés s az anyagtudományba nyba XII. előadás 2010. április 29. Ferroelektr tromos kerámi miák Ferroelektromosság: elektromos tér hiányában spontán polarizáltak (a ferromágneses viselkedés elektromos
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az
Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:
Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN
ELEKTOKÉMI ELEKTOMOSN TÖLTÖTT ÉSZECSKÉKET TTLMZÓ HOMOGÉN ÉS HETEOGÉN ENDSZEEK TEMODINMIKÁN Homogén vs. inhomogén rendszer: ha a rendszert jellemz fizikai mennyiségek értéke független vagy függ a helytl.
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium
Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált
Elméleti zika 2. Klasszikus elektrodinamika. Bántay Péter. ELTE, Elméleti Fizika tanszék
Elméleti zika 2 Klasszikus elektrodinamika Bántay Péter ELTE, Elméleti Fizika tanszék El adás látogatása nem kötelez, de gyakorlaté igen! Prezentációs anyagok & vizsgatételek: http://elmfiz.elte.hu/~bantay/eldin.html
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.
KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,
László István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
Elektromágnesség tesztek
Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
Elektromosság, áram, feszültség
Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
Fizika 1 Elektrodinamika
Kály-Kullai Kristóf (kakukri@eik.bme.hu) Fizika 1 Elektrodinamika Csak menjek át valahogy! Rövidített jegyzet 1. Maxwell-egyenletek, elektrodinamika felosztása Maxwell-egyenletek Maxwell-egyenletek lokális
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben
06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
1. Elektromos alapjelenségek
1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos
Hosszú (relaxációs időnél hosszabb) időfejlődés után minden fizikai rendszer
1 BEVEZETÉS Elektrosztatika 1. Bevezetés Hosszú (relaxációs időnél hosszabb) időfejlődés után minden fizikai rendszer általában statikus egyensúlyi állapotba kerül, ahol minden állapotváltozás megszűnik.
ELEKTROKÉMIA. Alapmennyiségek. I: áramersség, mértékegysége (SI alapegység): A:
ELEKTOKÉMIA Alapmennyiségek I: áramersség, mértékegysége (SI alapegység): A: A az áram erssége, ha 2 végtelen hosszú, elhanyagolható átmérj vezetben áramló konstans áram hatására a két vezet között 2 0-7
7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
A mágneses szuszceptibilitás vizsgálata
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR
VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási
Az anyagok mágneses tulajdonságainak leírásához (a klasszikus fizika szintjén) az alábbi összefüggésekre van szükségünk. M m. forg
4. MÁGNESES JELENSÉGEK ANYAGBAN (Mágneses mmentum, Mágnesezettség, Mágneses térerősség, Mágneses szuszceptibilitás, Relatív és Abszlút permeabilitás, Lenztörvény, Diamágnesesség, Paramágnesesség, Curie-törvény,
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
Az Ising-modell figyelembe veszi a szomszédos spinek közötti kölcsönhatást, egy (ferromágneses) rendszer energiája így: s i s j H s i i
1. Ising-modell Az Ising-modell figyelembe veszi a szomszédos spinek közötti kölcsönhatást, egy (ferromágneses) rendszer energiája így: E = J i,j s i s j H s i i A második összegzés csak azokra az i, j
A teljes elektromágneses spektrum
A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor
1. Fizikai mennyiségek Jele: (1), (2), (3) R, (4) t, (5) Mértékegysége: (1), (2), (3) Ohm, (4) s, (5) V 3:06 Normál Számítása: (1) /, (2) *R, (3) *t, (4) /t, (5) / Jele Mértékegysége Számítása dő Töltés
TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor
Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika 14. Elektromosságtan és mágnességtan az életfolyamatokban 3.. Bari Ferenc egyetemi tanár SZTE ÁOK-TTK Orvosi Fizikai és Orvosi nformatikai ntézet Szeged, 2011. december 19. 2. DEMO eredménye
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Mágnesesség. Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény. j g I A. A zárt görbe által körülfogott áramok előjelezése
Mágnesesség... Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény... A mágneses indukció-vektor bevezetése... A Lorentz-erő... 3 orgatónyomaték homogén mágneses mezőben nyugvó sík áramhurokra...
Nanoelektronikai eszközök III.
Nanoelektronikai eszközök III. Dr. Berta Miklós bertam@sze.hu 2017. november 23. 1 / 10 Kvantumkaszkád lézer Tekintsünk egy olyan, sok vékony rétegbõl kialakított rendszert, amelyre ha külsõ feszültséget
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja