Elektroszatika 0-0. Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elektroszatika 0-0. Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0)"

Átírás

1 0-0 Elektroszatika Nyugvó töltések elektromos mezejének vizsgálata. nincs töltésáramlás, se konvektív, se konduktív ( j = 0) térjellemz k nem változnak az id során (id deriváltak elt nnek) mágneses mez t gyelmen kívül hagyjuk ( H= B= 0) Maxwell-egyenletek: div D = 4πρ rot E = 0 Anyagi összefüggés: D=ε E (kivéve elektrétek).

2 1. ELEKTROSZTATIKUS POTENCIÁL Elektrosztatikus potenciál rot E = 0 miatt létezik olyan Φ skalármez (elektrosztatikus potenciál ), hogy E = grad Φ Φ csak egy additív konstans erejéig van deniálva gyakran úgy normálhatjuk, hogy Φ( ) = 0. r2 Fizikai értelmezés: r 1 qe( r) d r = qφ( r 1 ) qφ( r 2 ) munkát kell végeznünk ahhoz, hogy egy q nagyságú ponttöltést a r 1 pontból a r 2 pontba vigyünk (nem függ az úttól: az er tér konzervatív ). Gauss-törvény(homogén, izotrop közeg) Poisson-egyenlet Φ= div grad Φ= div E= 1 ε div D= 4π ε ρ

3 2. PONTTÖLTÉS POTENCIÁLJA Ponttöltés potenciálja q nagyságú ponttöltés az origóban. Gömbszimmetrikus töltéseloszlás Φ( r) csak r -t l függ. (r, φ, ϑ) gömbi koordinátákban Φ = 2 Φ r r Φ r + 1 r 2 sin 2 ϑ ρ=0 az origón kívül, és Φ csak r-t l függ d 2 Φ dr r Φ( ) = 0 normálást kielégít megoldás 2 Φ φ r 2 2 Φ ϑ 2 + dφ dr = 0 cos ϑ r 2 sin ϑ Φ ϑ Φ = A r

4 2. PONTTÖLTÉS POTENCIÁLJA 0-3 V R : R > 0 sugarú gömb. V R -ben az összes töltés mennyisége q (R értékét l függetlenül) ˆ D d f = 4πq Másrészt V R D = εgrad Φ = εa r r 3 V R mentén D párhuzamos d f-fel, és nagysága q = 1 4π ˆ D = εa R 2, így V R D d f = εa 4πR 2 4πR2 = εa R-ben elhelyezked ponttöltés potenciálja Φ( r) = q ε r R

5 2. PONTTÖLTÉS POTENCIÁLJA 0-4 Töltést l mért távolsággal fordítva arányos! ( E = grad Φ = q r ) R ε r R Coulomb-törvény: nyugvó töltések között ható elektrosztatikus er arányos a töltések szorzatával, és fordítva arányos távolságuk négyzetével. Poisson-egyenlet lineáris általános megoldás ponttöltések szuperpoziciójából ( ) ( ) Φ( r) = 1 ˆ ρ R ˆ ε r R d 3 R 1 η R + ε r R d f Használatához szükséges ismerni az összes töltést (polarizációból és/vagy megosztásból származókat is). 3

6 3. PONTSZER DIPÓLUS ELEKTROSZTATIKUS TERE Pontszer dipólus elektrosztatikus tere q és q nagyságú ponttöltés, a a kett t összeköt vektor ( q-ból q-ba mutató): R a dipólus (középpontjának) helyvektora, p = q a a dipólmomentuma, és az egyes töltések helyvektorai. R ± = R ± a 2 A potenciál Φ( r) = q ε r R + q ε r R = q ε ( r R r R ) + r R + r R ( w 2 w + 2) = q ε w + w ( w + w + )

7 3. PONTSZER DIPÓLUS ELEKTROSZTATIKUS TERE 0-6 ahol w ± = r R ±. Másrészt ( w 2 w + 2 = w w w + w + =( w + w + ) ( w w + )=2 a r R ) A dipólustól nagy távolságra (ahol r R a ) w + w r R így Φ( r) = q ε ( 2 a r R ) 2 r R 3 = ( p r R ) ε r R 3 = 1 ε p grad 1 r R a sorfejtés vezet tagja ( a 0 határesetben a pontos kifejezést kapjuk). Az elektromos térer sség hengerszimmetrikus, és nagysága a távolság köbével fordítva arányos (dipólus az origóban) ( ) E( r) = grad Φ = 1 3 ( p r) r ε r 5 p r 3

8 3. PONTSZER DIPÓLUS ELEKTROSZTATIKUS TERE 0-7 pontszer dipólusok közötti er a távolságuk negyedik hatványával fordítva arányos. V korlátos térrészbe koncentrált töltéseloszlás, ρ( r) térfogati töltéss r - séggel ( ) Φ( r) = 1 ˆ ρ R ε V r R d 3 R Milyen a mez nagy távolságra a töltésekt l? r akkor van nagy távolságra V-t l, ha r R minden V-beli R pontra (origót válasszuk V belsejében). R r esetén Taylor-sorfejtés. 1 r R = 1 r + r r 3 R +

9 3. PONTSZER DIPÓLUS ELEKTROSZTATIKUS TERE 0-8 töltésrendszert l nagy távolságra Φ( r) = 1 ˆ 1 ( ) ˆ ε r ρ R d 3 R 1 + ε V V r ( ) r 3 ρ R Rd 3 R + = Q ε r + p r ε r 3 + multipól-kifejtés. Q = ( ) ( ) V ρ R d 3 R a töltésrendszer teljes töltése, p = V ρ R Rd 3 R a dipólmomentuma. Q 0 esetén nagy távolságból olyan, mintha összes töltés az origóban lenne: töltésrendszer ponttöltésként viselkedik. Q = 0 (töltéssemleges eloszlás) esetén dipólus tag dominál, feltéve, hogy p 0 (dipólus-közelítés). p = 0 esetén magasabb (kvadrupól, stb.) tagok megjelenése.

10 4. FOLYTONOS DIPÓLELOSZLÁSOK Folytonos dipóleloszlások Kett sréteg: olyan felületi dipóluseloszlás, ahol az elemi dipólmomentumok normális irányúak (felület két oldala ellentétes töltés ). Jellemzése ν( r) skaláris felületi dipólmomentum-s r séggel ( f felületelem dipólmomentuma p( r) = ν( r) f). Kett sréteg potenciálja az elemi dipólusok potenciáljainak összege Φ( r) = p i ( r ) ( )( R i i ε r R 3 = 1 ˆ ν R r ) R ε i r R 3 d f Potenciál nem folytonos, ugrása a kett sréteg mentén Φ + ( r) Φ ( r)=4πν( r) Elektrét: metastabil állapot, térfogati P( r) dipóleloszlással ( V térfogatú térrész dipólmomentuma p( r) = P( r) V ).

11 4. FOLYTONOS DIPÓLELOSZLÁSOK 0-10 A potenciál Φ( r) = i p i ( r R ) i ε r R 3 i = 1 ε ˆ ( r R ) r R ( ) P R 3 d 3 R Felhasználva az ( r R ) r R 3 P( r)= grad 1 r R P( r)= div P( r) r R + div P( r) r R azonosságot, azt kapjuk, hogy Φ( r) = 1 ε ˆ V div P ˆ r R d 3 R 1 + ε V P r R d f Olyan a potenciál, mintha div P térfogati és P felületi töltéss r ség keltené (polarizációs töltések ).

12 5. DIELEKTRIKUMOK POLARIZÁCIÓJA Dielektrikumok polarizációja Dielektrikumot küls er tér polarizálja, abban térfogati dipólmomentums r séget indukál. Termikus uktuációk (h mozgás) a polarizáció csökkenése irányában hatnak, a dipólusok irányainak véletlenszer vé tétele révén. Deformációs polarizáció (elektronpolarizáció): molekulák elektronfelh inek deformációja, miáltal dipólmomentum indukálódik; apoláros molekulák (pl. H 2, CH 4, stb.) esetén az egyetlen releváns jelenség, de minden esetben fellép. Orientációs polarizáció: poláros molekulák (pl. H 2 O, NH 3, stb.) momentumainak a küls tér irányába történ befordítása (h mérséklet és frekvencia függ ). Ritka gázok esetében domináns eektusok (molekuláris dipólusok nem hatnak kölcsön).

13 5. DIELEKTRIKUMOK POLARIZÁCIÓJA 0-12 S r ség növekedésével dipólusok közelednek polarizáció nagyobb, mint ha csak küls tér okozná (pl. folyadékok). Kristályos anyagok (pl. NaCl) esetén új mechanizmus: ionos polarizáció során ellentétes töltés ionok ellentétes irányban mozdulnak el. Elektrétekben állandó dipólmomentum-s r ség (termikus uktuációk ritkák a rácspontokban elhelyezked poláros molekulák momentumának átfordításához szükséges túl nagy energiaigény miatt). Ferroelektromos anyagokban (pl. bárium-titanát, kálium-dihidrogénfoszfát) er s dipól-dipól kölcsönhatás miatt makroszkopikus domének (minden elemi dipólus párhuzamos) makroszkopikus dipólmomentum. Magas h mérsékleten doméneken belüli momentum változás ritka domének momentumai egyszerre fordulnak nagy szuszceptibilitás. H mérséklet csökkenésével szuszceptibilitás növekszik a T c Curie-h mérsékletig (fordítva arányos T T c -vel), az alatt állandó dipólmomentums r ség.

14 5. DIELEKTRIKUMOK POLARIZÁCIÓJA 0-13 Homogén, izotrop közegben, D = ε E anyagi összefüggés esetén Poissonegyenlet megoldása Φ = Φ v + Φ d. Φ v vákuumbeli, míg Φ d a dielektrikum polarizációjából származó potenciáljárulék. miatt Φ d = Φ Φ v = 4πρ ε Φ d ( r) = 1 ε ε ˆ 4π (1 ε) 4πρ= ρ ε ( ) ρ R r R d 3 R Gauss-törvény következtében ezért ρ= 1 4π div D= ε 4π div E

15 5. DIELEKTRIKUMOK POLARIZÁCIÓJA 0-14 Φ d ( r) = 1 ε ˆ 4π = 1 ε ˆ 4π div E r R d 3 R ( ) E R div r R grad 1 r R E ( ) R d3 R adódik, felhasználva a div(φ v) = grad Φ v+φ div v azonosságot. Els tag integrálja zérus (végtelen távoli felületre vett integrál) ˆ Φ d ( r) = grad 1 r R P ( ) R d 3 R ahol P = ε 1 4π E polarizációs töltéss r ség ρ p = div P = 1 ε ε ρ. D = E + 4π P eltolási vektor teljesíti a div D = 4πρ Gauss-törvényt. Ponttöltések közötti er lecsökken polarizálható közegben (árnyékolás).

16 6. VEZETŽK ELEKTROSZTATIKUS TÉRBEN Vezet k elektrosztatikus térben Küls tér hatására vezet ben található szabad töltéshordozók elmozdulnak (konduktív áramok lépnek fel). Sztatikában nincsenek mozgó töltések elektromos térer sség zérus kell legyen vezet belsejében! Kontinuitási egyenlet + Ohm-törvény: ρ exponenciálisan csökken az id vel a vezet belsejében (töltések kiszorulnak a vezet felületére); felületi töltéseloszlás pont olyan, hogy leárnyékolja a küls (vezet n kívüli) elektrosztatikus teret. E = 0 miatt Φ potenciál konstans a vezet ben elektródák ekvipotenciális tartományok! grad Φ = 4π η mer leges a vezet felületére, ahol η a felületi töltéss - r ség (illesztési feltételb l, vezet körül vákuum).

17 6. VEZETŽK ELEKTROSZTATIKUS TÉRBEN 0-16 Töltött vezet gömb elektrosztatikus tere vákuumban Töltése Q, sugara R, a felületi töltéss r ség ( izotropia miatt egyenletes eloszlású) η = Q 4πR 2 Nincs kitüntetett irány Φ = Φ(r) (gömbi koordináták), a Poissonegyenlet Φ = d2 Φ dr dφ r dr = 0 Megoldása Φ = A + B r. Két tartomány: vezet gömb belseje (r < R) és külseje (r > R) esetén más-más megoldások. Bels tartományban a potenciál konstans (mert ekvipotenciális): Φ = A. Küls tartományban Φ elt nik a végtelenben Φ= B r.

18 6. VEZETŽK ELEKTROSZTATIKUS TÉRBEN 0-17 Két tartomány határán potenciál folytonos Φ(R)=A= B R, másrészt Q R 2 = 4πη = az illesztési feltételb l lim grad Φ lim grad Φ = B r R r R+ R 2 Φ( r) = E( r) = Q R Q r 0 Q r r 3 ha r < R ha r > R ha r < R ha r > R r > R esetén (küls tartomány) olyan a potenciál, mintha az egész töltés az origóban lenne.

19 6. VEZETŽK ELEKTROSZTATIKUS TÉRBEN 0-18 Ponttöltés tere földelt vezet sík közelében (tükrözési módszer) Földelt vezet féltért l d távolságra elhelyezked q nagyságú ponttöltés tere. Töltésmegosztás következtében felületi töltéss r ség indukálódik a vezet felületén (leárnyékolja a ponttöltés terét a vezet belsejében). Vezet felülete az xy-sík, ponttöltés a z-tengely mentén (d e z a helyvektora). Feltételek: 1. Φ = 0 Poisson-egyenlet a vezet n kívül; 2. Φ=0 a vezet belsejében és felületén, azaz Φ(x, y, 0)=0; 3. Gauss-törvény: D felületi integrálja a ponttöltést körülvev R < d sugarú gömbfelületre = 4πq.

20 6. VEZETŽK ELEKTROSZTATIKUS TÉRBEN 0-19 Képzeljünk el egy q nagyságú virtuális töltést a sík túloldalán d távolságra, a d e z helyvektorú pontban (tükörtöltés). Valódi és virtuális ponttöltések potenciáljainak szuperpozíciója Φ(x, y, z) = q 1 1 ε x 2 + y 2 + (z d) 2 x 2 + y 2 + (z + d) 2 1. Poisson-egyenlet teljesül z > 0-ra (mindkét tag teljesíti); 2. Φ(x, y, 0) = 0 peremfeltétel teljesül; 3. tükörtöltés az z = 0 sík túloldalán Gauss-törvény teljesül. q 1 1 ha z >0 Φ(x, y, z)= ε x 2 +y 2 +(z d) 2 x 2 +y 2 +(z+d) 2 0 ha z <0

21 6. VEZETŽK ELEKTROSZTATIKUS TÉRBEN 0-20 Elektromos térer sség: E= grad Φ= q r d e z ε (x 2 + y 2 + (z d) 2) 3/2 r + d e z (x 2 + y 2 + (z + d) 2) 3/2 Az xy-sík mentén (a z > 0 féltérb l közelítve) E(x, y, 0)= 2q ε d e z (x 2 + y 2 + d 2 ) 3 /2 Innen az illesztési feltétel miatt η(x, y) = qd 2π e z (x 2 + y 2 + d 2 ) 3 /2 A felületen indukált töltés (a végtelenb l áramlik be a földelés miatt) Q = ˆ z=0 + η d f = η(x, y) dxdy = q

22 7. KONDENZÁTOR KAPACITÁSA Kondenzátor kapacitása Kondenzátor: töltött elektródák szigetel vel (esetleg vákuum) elválasztva (fontos az elektrotechnikában). Elektromos töltés tárolására alkalmas (de lassan kisül). Fajtái: sík, henger, gömb, stb. Kapacitás: töltés és potenciálkülönbség hányadosa C = Q Φ + Φ Síkkondenzátor: két nagyméret ('végtelen'), egymással párhuzamos síklap azonos nagyságú, de ellentétes el jel felületi töltéssel. Elektródák legyenek az x = d 2 és x = d 2 felületi töltéss r séggel. síkok, η és +η egyenletes Φ csak x-t l függ, és kondenzátoron kívül (x< d 2 és x> d 2 ) nem észlelni

23 7. KONDENZÁTOR KAPACITÁSA 0-22 töltést potenciál konstans Φ(x, y, z) = { Φ x< d 2 Φ + x> d 2 d 2 <x< d 2 tartományban Poisson-egyenlet megoldása Φ(x,y,z)=Ax+B. Nincs kett sréteg Φ folytonos az elektródáknál ( Φ ± = Φ ± d ) = ±A d B εe x ugrása x=± d 2 -nél ±4πη, ezért εa = 4πη és Φ + Φ = 2A d 2 = 4πηd ε Véges síkkondenzátor esetén C = εf távolságuk. 4πd, ahol F a lemezek felülete és d a Gömbkondenzátor: C = εr 1R 2 R 2 R 1, ahol R 1 ill. R 2 a bels (küls ) sugár.

24 8. ELEKTROSZTATIKUS ENERGIA Elektrosztatikus tér energiája; Thomson tétele Homogén izotrop szigetel tölti ki a V térrészt, amelyet Q 1, Q 2,..., Q n töltés és Φ 1, Φ 2,..., Φ n potenciálú F 1,..., F n vezet elektródák határolnak. ˆ E E = D 8π d3 r = 1 ˆ grad Φ 8π D d 3 r Felhasználva, hogy D grad Φ = div V V ( ΦD ) Φdiv D és div D = 4πρ E = 1 8π ˆ V { div ( ΦD ) } 4πΦρ d 3 r = 1 2 ˆ V Φρ d 3 r 1 8π ˆ V Φ D d f

25 8. ELEKTROSZTATIKUS ENERGIA 0-24 Φ állandó az egyes elektródák mentén ˆ ˆ ΦD d f = Φ k D d f = Φk ( 4πQ k ) F k F k Mivel V = F F n, így E = 1 ˆ Φρ d 3 r V 2 n Φ k Q k k=1 Thomson tétele: amennyiben ismert a közeg dielektromos állandója, a térfogati töltéss r ség és a közeget határoló vezet elektródák töltései, akkor az elektrosztatikai feladat megoldása egyértelm, és a Maxwellegyenleteknek a peremfeltételeket kielégít megoldásai közül a minimális energiájú.

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Hosszú (relaxációs időnél hosszabb) időfejlődés után minden fizikai rendszer

Hosszú (relaxációs időnél hosszabb) időfejlődés után minden fizikai rendszer 1 BEVEZETÉS Elektrosztatika 1. Bevezetés Hosszú (relaxációs időnél hosszabb) időfejlődés után minden fizikai rendszer általában statikus egyensúlyi állapotba kerül, ahol minden állapotváltozás megszűnik.

Részletesebben

Elektro- és magnetosztatika, áramkörök

Elektro- és magnetosztatika, áramkörök 1. fejezet Elektro- és magnetosztatika, áramkörök Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. Vezet k, szigetel k, dielektrikumok, kondenzátor, magnetosztatika. Stacionárius áram,

Részletesebben

A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció.

A Maxwellegyenletek. Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. A Maxwellegyenletek Elektromágneses térjellemz k: E( r, t) és H( r, t) térer sségek, D( r, t) elektromos eltolás és B( r, t) mágneses indukció. Milyen általános, a konkrét szituációtól (pl. közeg anyagi

Részletesebben

Elektromágneses alapjelenségek

Elektromágneses alapjelenségek 0-0 I. rész Elektromágneses alapjelenségek Thalész (i.e. 600 körül): gyapjúval dörzsölt borostyánk ('élektron') az apróbb tárgyakat magához vonzza, majd eltaszítja. Dörzsölés hatására a testek elektromos

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

Mágnesség. 1. Stacionárius áramok mágneses mezeje. Oersted (1820): áramvezet drót közelében a mágnest az áram irányára

Mágnesség. 1. Stacionárius áramok mágneses mezeje. Oersted (1820): áramvezet drót közelében a mágnest az áram irányára 1 STACIONÁRIUS ÁRAMOK MÁGNESES MEZEJE Mágnesség 1. Stacionárius áramok mágneses mezeje Oersted (1820): áramvezet drót közelében a mágnest az áram irányára mer legesen áll be elektromos töltések áramlása

Részletesebben

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve 1 ELEKTROMOS TÖLTÉSEK Alapjelenségek 1. Elektromos töltések és kölcsönhatásaik Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve eltaszít apró, könny tárgyakat. Elektromos töltés:

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Mindkét oldal divergenciáját véve, és kihasználva a másik E térre vonatkozó egyenletet, Laplace-egyenletet kapunk:

Mindkét oldal divergenciáját véve, és kihasználva a másik E térre vonatkozó egyenletet, Laplace-egyenletet kapunk: 1 / 6 A TételWiki wikiből 1 Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. [1] 2 Vezetők, szigetelők, dielektrikumok, elektormos polarizáció, magnetosztatika. 2.1 Vezetők [3] 2.2 Dielektrikumok

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve

Alapjelenségek. 1. Elektromos töltések és kölcsönhatásaik. Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve 1 ELEKTROMOS TÖLTÉSEK Alapjelenségek 1. Elektromos töltések és kölcsönhatásaik Thalész meggyelése: gyapjúval dörzsölt borostyánk magához vonz, illetve eltaszít apró, könny tárgyakat. Elektromos töltés:

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B= Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN ELEKTOKÉMI ELEKTOMOSN TÖLTÖTT ÉSZECSKÉKET TTLMZÓ HOMOGÉN ÉS HETEOGÉN ENDSZEEK TEMODINMIKÁN Homogén vs. inhomogén rendszer: ha a rendszert jellemz fizikai mennyiségek értéke független vagy függ a helytl.

Részletesebben

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Stacionárius töltésáramlás (egyenáramok)

Stacionárius töltésáramlás (egyenáramok) 0-0 Stacionárius töltésáramlás (egyenáramok) Id ben állandó konduktív áramok és elektromágneses térjellemz k. Mozgó töltések mágneses mez hatására eltérülnek mozgó töltések mágneses mez t keltenek. div

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Elektrosztatikai jelenségek

Elektrosztatikai jelenségek Elektrosztatika Elektrosztatikai jelenségek Ebonit vagy üveg rudat megdörzsölve az az apró tárgyakat magához vonzza. Két selyemmel megdörzsölt üvegrúd között taszítás, üvegrúd és gyapjúval megdörzsölt

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Fizika A2E, 5. feladatsor

Fizika A2E, 5. feladatsor Fiika A2E, 5. feladatsor Vida György Jósef vidagyorgy@gmail.com. feladat: Mi a homogén E térer sség potenciálja? A potenciál deníciója: E(x,y, = U(x,y,, amely kifejtve a három komponensre: Utolsó módosítás:

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika. Elektromosságtan és mágnességtan az életfolyamatokban Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 0.november 8. Az életjelenségek elektromos

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban! Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Fizika 2 - Gyakorló feladatok

Fizika 2 - Gyakorló feladatok 2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Elektromágneses sugárzás

Elektromágneses sugárzás 0-0 Elektromágneses sugárzás Maxwell-egyenletek források (töltések és áramok) hiányában rot H = 1 D c t rot E = 1 B c t div D = 0 div B = 0 valamint D=D( E) és B=B( H) anyagi összefüggések. Létezik nem-triviális

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Stacionárius töltésáramlás

Stacionárius töltésáramlás 1 BEVEZETÉS Stacionárius töltésáramlás 1 Bevezetés Stacionárius (id független) konduktív töltésáramlást ('egyenáram') megengedve, de minden más id beli változást kizárva id független térjellemz k és J

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív) Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Elektromágneses hullámok Maxwell-egyenletek töltések és áramok hiányában rot H = 1 D c t rot E = 1 B c t div E = 0 div H = 0 Energiát és impulzust (impulzusmomentumot, stb.) szállító nem-triviális megoldások

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER

Részletesebben

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

Elektrodinamika, optika. A modern zika elemei.

Elektrodinamika, optika. A modern zika elemei. Elektrodinamika, optika. A modern zika elemei. Vitéz Gábor Miskolci Egyetem, Fizikai Tanszék 2005. február 24. zvitez@gold.uni-miskolc.hu Tartalomjegyzék 1. Elektrosztatika 2 1.1. Az elektrosztatikus mez............................

Részletesebben

Elméleti zika 2. Klasszikus elektrodinamika. Bántay Péter. ELTE, Elméleti Fizika tanszék

Elméleti zika 2. Klasszikus elektrodinamika. Bántay Péter. ELTE, Elméleti Fizika tanszék Elméleti zika 2 Klasszikus elektrodinamika Bántay Péter ELTE, Elméleti Fizika tanszék El adás látogatása nem kötelez, de gyakorlaté igen! Prezentációs anyagok & vizsgatételek: http://elmfiz.elte.hu/~bantay/eldin.html

Részletesebben

Hőerőgépek, hűtőgépek, hőszivattyúk. Feladat: 12. Körfolyamat esetén az összes belső energia változás nulla. Hőtan I. főtétele::

Hőerőgépek, hűtőgépek, hőszivattyúk. Feladat: 12. Körfolyamat esetén az összes belső energia változás nulla. Hőtan I. főtétele:: Hőerőgépek, hűtőgépek, hőszivattyúk Körfolyamat esetén az összes belső energia változás nulla. Hőtan I. főtétele:: Feladat: 12 A hőtan második főtétele Vannak olyan folyamatok amik nem megfordíthatók,

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika. Elektromosságtan és mágnességtan az életfolyamatokban. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 0.november 6. Az életjelenségek elektromos

Részletesebben

ELEKTRODINAMIKA. BSC 2 kredit

ELEKTRODINAMIKA. BSC 2 kredit ELEKTRODINAMIKA BSC 2 kredit Gálfi László Tartalomjegyzék 1. A Maxwell-egyenletek 2 2. Elektrosztatika 6 3. Dielektrikumok 12 4. Stacionárius áram 16 5. Kvázistacionárius áram 24 6. Energia, impulzus,

Részletesebben

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Mágneses monopólusok?

Mágneses monopólusok? 1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus

Részletesebben

Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika)

Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika) Eötvös Loránd Tudományegyetem Természettudományi Kar TANTÁRGYI ADATLAP és tantárgyi követelmények 2006/07 Földtudományi Szak Kötelező tantárgy Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika)

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

dc_322_11 Ionok és dielektrikumok ionhomogén rendszereinek Monte Carlo szimulációs vizsgálata MTA DOKTORI ÉRTEKEZÉS BODA DEZSŽ

dc_322_11 Ionok és dielektrikumok ionhomogén rendszereinek Monte Carlo szimulációs vizsgálata MTA DOKTORI ÉRTEKEZÉS BODA DEZSŽ MTA DOKTORI ÉRTEKEZÉS Ionok és dielektrikumok ionhomogén rendszereinek Monte Carlo szimulációs vizsgálata BODA DEZSŽ Pannon Egyetem Kémia Intézet, Fizikai Kémiai Intézeti Tanszék Veszprém 212 Szüleimnek.

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben