FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
|
|
- Kornélia Pintér
- 6 évvel ezelőtt
- Látták:
Átírás
1 Ma igazán feltöltődhettek! () D. Sees István
2 Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu
3 Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha, szék feltöltődik Van de Gaf geneáto fft.szie.hu 3 Sees.Istvan@gek.szie.hu
4 Elektomágnesesség, elektomos alapjelenségek Töltésmegosztás Elektoszkóp fft.szie.hu 4 Sees.Istvan@gek.szie.hu
5 Elektomágnesesség, elektomos alapjelenségek Csúcshatás fft.szie.hu 5 Sees.Istvan@gek.szie.hu
6 Elektomágnesesség, elektomos alapjelenségek Töltésmegosztás Elektomos té fémekben, Faaday kalitka fft.szie.hu 6 Sees.Istvan@gek.szie.hu
7 Elektomágnesesség Coulomb tövény Q 1 Q 2 Eő nagysága: F k Q 1 Q 2 2 Eő iánya: vonzó, ha ellentétes előjelűek taszító, ha azonos előjelűek fft.szie.hu 7 Sees.Istvan@gek.szie.hu
8 Elektomágnesesség Elektomos téeősség Q E =? Ponttöltés esetén: E k Q Téeősség iánya: sugá iányba kifele, ha Q pozitív sugá iányba befele, ha Q negatív 2 fft.szie.hu 8 Sees.Istvan@gek.szie.hu
9 Elektomágnesesség Eővonalak Eővonalak éintője: téeősség iánya Eővonalak sűűsége ~ téeősség nagysága fft.szie.hu 9 Sees.Istvan@gek.szie.hu
10 Elektomágnesesség Elektomos té fémekben Faaday kalitka fft.szie.hu 10
11 Elektomágnesesség Elektomos fluxus homogén tében: E Ecos inhomogén tében Ed E me Ecosd E E me d fft.szie.hu 11 Sees.Istvan@gek.szie.hu
12 Elektomágnesesség Gauss tövény: Egy zát felülete az elektomos fluxus a felület által bezát töltés étékével aányos. E d E me d Q 0 fft.szie.hu 12 Sees.Istvan@gek.szie.hu
13 Elektomágnesesség Gauss tövény: feltöltött fémlemez elektomos tee Egy zát felülete alkalmazzuk: téglatest felszíne lemez töltés sűűsége: h C/m 2 E d E d alap E d fed ő E d z oldallapon: E és meőleges, z alap és fedőlapon: E és egyiányú oldal E d fft.szie.hu 13 Sees.Istvan@gek.szie.hu
14 Elektomágnesesség Gauss tövény: feltöltött fémlemez elektomos tee Egy zát felülete alkalmazzuk: téglatest felszíne lemez töltés sűűsége: h C/m 2 E d alap E d fed ő E d 0 E alap 1d E fed ő 1d 2E bezát töltés: Q= h fft.szie.hu 14 Sees.Istvan@gek.szie.hu
15 Elektomágnesesség Gauss tövény: feltöltött fémlemez elektomos tee Egy zát felülete alkalmazzuk: téglatest felszíne lemez töltés sűűsége: h C/m 2 E d 2E bezát töltés: Q= h E d Q h 2E fft.szie.hu 15 Sees.Istvan@gek.szie.hu E h Q 0
16 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Q B B Mennyi munkát kell végeznünk, míg egy q töltést az pontból B pontba viszünk? Qq WB Fds k cos( 180 ) ds 2 s B B 1 2 WB kqq ds kqq s ds 2 s fft.gau.hu 16 Sees.Istvan@gek.szie.hu
17 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Q B B Mennyi munkát kell végeznünk, míg egy q töltést az pontból B pontba viszünk? W B W B kqq kqq B 2 s B ds 1 s 2 ds kqq 1 kqq s B B s 2 B ds kqq kqq fft.gau.hu 17 Sees.Istvan@gek.szie.hu
18 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében E pot kqq W = E pot,b E pot, Feszültség: z egységnyi pozitív töltésen végzett munka U B fft.gau.hu 18 Sees.Istvan@gek.szie.hu W q B
19 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Feszültség: z egységnyi pozitív töltésen végzett munka WB U B q Ponttöltés könyezetében két pont közötti feszültség: U B kqq B q kqq kq B kq fft.gau.hu 19 Sees.Istvan@gek.szie.hu
20 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Potenciál: kiválasztott 0 ponthoz ( távoli hely) viszonyított feszültség. U U kq kq kq (Megjegyzés: feszültség = potenciálkülönbség) fft.gau.hu 20 Sees.Istvan@gek.szie.hu
21 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, ekvipotenciális felület: azonos potenciálú pontok pontjai között nincs feszültség (pl. fém övidzá) fft.gau.hu 21 Sees.Istvan@gek.szie.hu
22 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Földelés fft.gau.hu 22 Sees.Istvan@gek.szie.hu
23 Elektomágnesesség Kondenzátook Kapacitás C Q U Kapacitás meghatáozása síkkondenzátoa: C 0 d 0 = 8, Vs/m, a szigetelőanyag elatív dielektomos állandója d fft.szie.hu 23 Sees.Istvan@gek.szie.hu
24 Elektomágnesesség Kondenzátook Kapacitás meghatáozása síkkondenzátoa: Homogén elektomos té: Síkkondenzáto elektomos tee: Kívül: E eedő = 0 Belül:E = 2 E 1 E Q 0 Kívül: E eedő = 0 fft.szie.hu 24 Sees.Istvan@gek.szie.hu
25 Elektomágnesesség Kondenzátook Kapacitás meghatáozása síkkondenzátoa: Homogén elektomos té: Q U Q E d Q Q C 0 0 d d fft.szie.hu 25 Sees.Istvan@gek.szie.hu
26 Elektomágnesesség Dielektikum (szigetelő) Levegő ~ 1 E 0 F F E szigetelő E 0 dipólmolekulákat az elektomos té befogatja. fft.szie.hu 26 Sees.Istvan@gek.szie.hu
27 Elektomágnesesség Dielektikum (szigetelő) E = E 0 E E E 0 dielektikum csökkenti a téeősséget, és emiatt a feszültséget. E szigetelő E 0 U Ed E 0 E0d U0 d fft.szie.hu 27 Sees.Istvan@gek.szie.hu
28 Elektomágnesesség Dielektikum (szigetelő) feszültség ed észée csökken: U U 0 zaz a kapacitás megnő: E 0 E szigetelő C Q U Q U0 Q U 0 U 0 C 0 d fft.szie.hu 28 Sees.Istvan@gek.szie.hu
29 Elektomágnesesség Dielektikum (szigetelő) feszültség ed észée csökken: U U 0 zaz a kapacitás megnő: E 0 E szigetelő C Q U Q U0 Q U 0 U 0 C 0 d fft.szie.hu 29 Sees.Istvan@gek.szie.hu
30 Elektomágnesesség Hengekondenzáto fft.szie.hu 30
31 Elektomágnesesség Hengekondenzáto Gauss tétellel meghatáozzuk az elektomos téeősséget E x = feszültség a téeősség elmozdulás szeinti integálja R U = න E x dx = න Így a kapacitás C = Q U = Q Q ln R 2 π l ε 0 fft.szie.hu 31 Sees.Istvan@gek.szie.hu Q 2 π l ε 0 1 x Q 1 2 π l ε 0 x dx = Q ln R 2 π l ε 0 = 2 π l ε 0 ln R
32 Elektomágnesesség Kondenzátook soos kapcsolása Bekapcsolás előtti töltés: Q 1 Q 1 Q 2 Q 2 Bekapcsolás utáni töltés Töltésmegmaadás tövénye: 0 = Q 1 Q 2 Q 1 = Q 2 = Q fft.szie.hu 32 Sees.Istvan@gek.szie.hu
33 Elektomágnesesség Kondenzátook páhuzamos kapcsolása C 1 U 1 Q 1 C 2 U 2 Q 2 U (1) U 1 = U 2 = U (2) Q 1 Q 2 = Q e (1) C 1 U C 2 U= C e U /:U (3) C e = C 1 C 2 fft.szie.hu 33 Sees.Istvan@gek.szie.hu
34 Elektomágnesesség Kondenzáto a gyakolatban Katódsugácső fft.szie.hu 34 Sees.Istvan@gek.szie.hu
35 Elektomágnesesség Kondenzáto a gyakolatban Vaku a villanáshoz nagy áam, egyszee sok töltés kell, ezt az elem nem bíja leadni: ideiglenesen kondenzátoban táolják fft.szie.hu 35 Sees.Istvan@gek.szie.hu
36 Elektomágnesesség Kondenzáto a gyakolatban MEMS Mico ElectoMechanical Sytems Gyosulásméő (g szenzo) Gioszkóp fft.szie.hu 36 Sees.Istvan@gek.szie.hu
FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,
RészletesebbenA Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :
Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye
RészletesebbenA Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
RészletesebbenElektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
Részletesebben9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
RészletesebbenElektrosztatika (Vázlat)
lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus
RészletesebbenA Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
RészletesebbenFizika és 14. Előadás
Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A
RészletesebbenHARDVEREK VILLAMOSSÁGTANI ALAPJAI
HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat ellenőizte Macsa Dániel, okl. villamosménök Széchenyi István
Részletesebben1. Elektromos alapjelenségek
1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos
RészletesebbenElektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i
0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni
RészletesebbenA Maxwell-egyenletrendszer:
Maxwell-egyenletendsze: Ez a XIX. sz. egyik legnagyobb hatású egyenletendszee, főleg azét, met ebből az egyenletendszeből vezették le az elektomágneses hullámok létezését.. mpèe-maxwell féle gejesztési
Részletesebben3. GYAKORLATI ELEKTROMOSSÁGTAN
3. GYKORLI ELEKROMOSSÁGN 1. lapfogalmak z elektomos töltés z anyagi testek általában elektomosan semlegesek, de egyszeű fizikai módszeel (pl. dözselektomosság) pozitív vagy negatív töltésűvé tehetők. z
RészletesebbenRugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
Részletesebben1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)
Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I
RészletesebbenIVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI
IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat
RészletesebbenVezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
RészletesebbenBSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet
SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó
RészletesebbenElektrosztatika. I. Az elektrosztatika alapegyenleteinek leszármaztatása a Maxwell-egyenletekből
Elektosztatika I. z elektosztatika alapegyenleteinek leszámaztatása a Maxwell-egyenletekből Ha a négy Maxwell-egyenletbe behelyettesítjük a sztatika feltételeit, azaz akko a következő egyenletendszet kapjuk:
RészletesebbenELEKTROSZTATIKA. Ma igazán feltöltődhettek!
ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással
RészletesebbenOPTIKA. Elektromágneses hullámok. Dr. Seres István
OPTIK D. Sees István Faaday-féle indukiótövény Faaday féle indukió tövény: U i t d dt Lenz tövény: z indukált feszültség mindig olyan polaitású, hogy az általa létehozott áam akadályozza az őt létehozó
Részletesebben1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r
A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi
Részletesebben5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR
5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb
RészletesebbenA semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Részletesebben2. STATIKUS ELEKTROMOS TÉR
. STATIKUS ELEKTROMOS TÉR A nyugvó töltések iőben állanó elektomos teet keltenek amelyet statikus elektomos tének az elektomágneses témoellt elektosztatikus tének nevezzük. Az elektosztatikus té jelenlétét
RészletesebbenELEKTROSZTATIKA Thalész Gilbert A testek dörzsöléssel hozhatók elektromos állapotba. Az elektromos állapot oka az elektromos töltés.
ELEKTROSZTATIKA I.e. 600-ban Thalész (i.e. 64-547) felfedezte, hogy a megdözsölt boostyánkő apó testeket magához vonz, majd eltaszít. Például poszem, madátoll, száaz fűszál. Gilbet (1544-1603) 1600-ban
Részletesebben(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2
. Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =
RészletesebbenELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007
ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos
RészletesebbenMegoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:
3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő
RészletesebbenAz elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
RészletesebbenVillamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.
III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.
Részletesebbena térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
RészletesebbenMozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
Részletesebben1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik
. Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy
RészletesebbenMatematikai ismétlés: Differenciálás
Matematikai ismétlés: Diffeenciálás A skalá- és vektoteek diffeenciálásával kapcsolatban szokás bevezetni a nabla-opeátot: = xx = yy zz A nabla egy vektoopeáto, amellyel hatása egy skalá vagy vektomezőe
Részletesebben1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik
. Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy
RészletesebbenQ 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
RészletesebbenElektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság
Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos
RészletesebbenAz elektrosztatika törvényei anyag jelenlétében, dielektrikumok
TÓTH.: Dielektikumok (kibővített óavázlat) 1 z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alatövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések
Részletesebben4. STACIONÁRIUS MÁGNESES TÉR
4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt
RészletesebbenA semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
RészletesebbenIdőben változó elektromos erőtér, az eltolási áram
őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát
RészletesebbenElektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
RészletesebbenI. Bevezetés, alapfogalmak
I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltésmennyiség jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s.
RészletesebbenXV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.
A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék
RészletesebbenElektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp
Elektomos állapot Göög tudomány, Thales ηλεκτρνboostyán (elekton) Elektomos állapot alapjelenségei Kétféle elektomos állapot pozitív üveg negatív ebonit Elektoszkóp Tapasztalatok Testek alapállapota semleges
RészletesebbenIV.2 Az elektrosztatika alaptörvényei felületi töltéseloszlás esetén
IV Az elektosztatka alaptövénye felület töltéseloszlás esetén Az előző paagafusban láttuk, hogy a töltések a vezető felületén helyezkednek el, gyakolatlag kétdmenzós vagy más szóval felület töltéseloszlást
RészletesebbenA +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
RészletesebbenI. Bevezetés, alapfogalmak
I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltésmennyiség jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s.
RészletesebbenElektrosztatikai alapismeretek
Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba
RészletesebbenI. Bevezetés, alapfogalmak
I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltésmennyiség jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s.
RészletesebbenSugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy
Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény
Részletesebben1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
RészletesebbenAz elektrosztatika törvényei anyag jelenlétében, dielektrikumok
TÓTH : ielektikumok (kibővített óavázlat) z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alaptövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések
RészletesebbenI. Bevezetés, alapfogalmak
I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltés jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s. C töltés
RészletesebbenA semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test
Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,
Részletesebben( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.
5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági
RészletesebbenELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály II. rész: Elektrosztatika Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék II. rész:
RészletesebbenElektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Részletesebben0. Matematika és mértékegységek
. Matematka és métékegységek Defnált fogalom Meghatáozás Kö keülete, teülete K = π [m], = π [m ] églalap keülete, teülete K = (a+b) [m], = ab [m ] Deékszögű háomszög keülete, teülete K = a+b+c [m], = ab
Részletesebbenfelületi divergencia V n (2) V n (1), térfogati töltéseloszlás esetében
IV Az elektosztatka alaptövénye felület töltéseloszlás esetén Az előző paagafusban láttuk, hogy a töltések a vezető felületén helyezkednek el, gyakolatlag kétdmenzós vagy más szóval felület töltéseloszlást
RészletesebbenAz elektromosságtan alapjai
Az elektromosságtan alapjai Elektrosztatika Áramkörök Ohm-törvény Türmer Kata 2012. október 8-9. Tudománytörténet Már az ókori görögök is tudták a gyapjúval megdörzsölt borostyánkő magához vonz apró, könnyű
Részletesebben1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Részletesebben1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
RészletesebbenElektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye
TÓTH : lektosztatka/ (kbővített óavázlat) lektomos töltés helyzet enegája, elektomos potencál, az elektosztatka I alaptövénye mechankában láttuk, hogy konzevatív eőtében helyzet enega vezethető be zt a
RészletesebbenElméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez
lméleti összefoglaló a I. éves vegyészhallgatók oláis molekula dipólusmomentumának meghatáozása című mééséhez 1.1 ipólusmomentum Sok molekula endelkezik pemanens dipólus-momentummal, ugyanis ha a molekulát
RészletesebbenFizika és 3. Előadás
Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???
RészletesebbenHobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás
Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába
RészletesebbenFizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
RészletesebbenElektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye
Tóth : lektosztatka/2 lektomos töltés helyzet enegája, elektomos potencál, az elektosztatka I alaptövénye mechankában láttuk, hogy konzevatív eőtében helyzet enega vezethető be zt a kédést, hogy az elektosztatkus
RészletesebbenMérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
RészletesebbenHősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?
Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái
RészletesebbenElektrosztatika tesztek
Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges
Részletesebben2012.05.02. 1 tema09_20120426
9. Elektokémia kísélet: vasszög éz-szulfát oldatban cink eszelék éz-szulfát oldatban buttó eakció: + = + oxidációs folyamat: = + 2e edukciós folyamat: + 2e = Tegyünk egy ézlemezt éz-szulfát oldatba! Rövid
RészletesebbenAz elektromos kölcsönhatás
Tóth.: lektosztatka/1 1 z elektomos kölcsönhatás Rég tapasztalat, hogy megdözsölt testek különös eőket tudnak kfejten. Megdözsölt műanyagok (pl. fésű), megdözsölt üveg- vagy ebontúd papídaabokat, apó poszemcséket,
RészletesebbenX. MÁGNESES TÉR AZ ANYAGBAN
X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének
Részletesebben3. GYAKORLATI ELEKTROMOSSÁGTAN
3. GYAKORLATI ELEKTROMOSSÁGTAN Ez a fejezet egyészt a középiskolás fizika anyag és az Elektodinamika eladás idevágó ismeeteinek összefoglalását tatalmazza, másészt olyan számítási módszeeket, amelyek egyenáamú
Részletesebben6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk
RészletesebbenA magnetosztatika törvényei anyag jelenlétében
TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok
RészletesebbenÁ Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú
RészletesebbenÉ ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í
Részletesebbenű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö
RészletesebbenÉ á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á
Részletesebbenó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő
RészletesebbenPótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
Részletesebbenα v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1
Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató
RészletesebbenTANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
RészletesebbenAz elektromos kölcsönhatás
TÓTH.: lektosztatka/ (kbővített óavázlat) z elektomos kölcsönhatás Rég tapasztalat, hogy megdözsölt testek különös eőket tudnak kfejten. Így pl. megdözsölt műanyagok (fésű), megdözsölt üveg- vagy ebontúd
RészletesebbenA válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk.
A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. 1) Villamos töltések rekombinációja a) mindig energia felszabadulással jár; b) energia felvétellel jár; c) nincs kapcsolata
RészletesebbenFizika A2 Alapkérdések
Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések
RészletesebbenFizika és 16 Előadás
Fizika 5. és 6 lőadás Önindukció, RL kö, kölcsönös indukció, mágneses té enegiája, tanszfomáto, mágnesség, Ampèe tövény általános alakja Mágneses adattáolás Az önindukció B ds µ o s j I j µ B oni l Szolenoidban
Részletesebben1. ELEKTROSZTATIKA. 1.1 Elektromos kölcsönhatás. Fizika 10.
Fizika.. ELEKTOSZTATKA. Elektromos kölcsönhatás. Elektromosság a görög (elektron) borostyánkő szóból származik, amely megdörzsölve magához vonz kisebb testeket.. A foncsorozott bőrrel megdörzsölt üvegrúd,
RészletesebbenGépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
Részletesebben2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
RészletesebbenZaj és rezgésvédelem
OMKT felsőfokú munkavédelmi szakiányú képzés Szekesztette: Mákus Miklós zaj- és ezgésvédelmi szakétő Lektoálta: Mákus Péte zaj- és ezgésvédelmi szakétő Budapest 2010. febuá Tatalomjegyzék Tatalomjegyzék...
RészletesebbenOrvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika. Elektromosságtan és mágnességtan az életfolyamatokban Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 0.november 8. Az életjelenségek elektromos
RészletesebbenA stacionárius elektromos áram és a mágneses tér kapcsolata
A stacionáius elektomos áam és a mágneses té kapcsolata I. Az áamtól átfolyt vezető mágneses tee. Oested és Ampèe kíséletei. Az elektomos és mágneses jelenségek sokban hasonlítanak egymása, és ezét égóta
Részletesebben1. TRANSZPORTFOLYAMATOK
1. TRNSZPORTFOLYMTOK 1.1. halmazállapot és az anyagszekezet kapcsolata. folyadékállapot általános jellemzése - a szilád, folyadék és gáz halmazállapotok jellemzése (téfogat, alak, endezettség, észecskék
RészletesebbenELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN
ELEKTOKÉMI ELEKTOMOSN TÖLTÖTT ÉSZECSKÉKET TTLMZÓ HOMOGÉN ÉS HETEOGÉN ENDSZEEK TEMODINMIKÁN Homogén vs. inhomogén rendszer: ha a rendszert jellemz fizikai mennyiségek értéke független vagy függ a helytl.
RészletesebbenFIZIKA II. Egyenáram. Dr. Seres István
Dr. Seres István Áramerősség, Ohm törvény Áramerősség: I Q t Ohm törvény: U I Egyenfeszültség állandó áram?! fft.szie.hu 2 Seres.Istvan@gek.szie.hu Áramerősség, Ohm törvény Egyenfeszültség U állandó Elektromos
Részletesebben