FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István"

Átírás

1 Ma igazán feltöltődhettek! () D. Sees István

2 Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu

3 Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha, szék feltöltődik Van de Gaf geneáto fft.szie.hu 3 Sees.Istvan@gek.szie.hu

4 Elektomágnesesség, elektomos alapjelenségek Töltésmegosztás Elektoszkóp fft.szie.hu 4 Sees.Istvan@gek.szie.hu

5 Elektomágnesesség, elektomos alapjelenségek Csúcshatás fft.szie.hu 5 Sees.Istvan@gek.szie.hu

6 Elektomágnesesség, elektomos alapjelenségek Töltésmegosztás Elektomos té fémekben, Faaday kalitka fft.szie.hu 6 Sees.Istvan@gek.szie.hu

7 Elektomágnesesség Coulomb tövény Q 1 Q 2 Eő nagysága: F k Q 1 Q 2 2 Eő iánya: vonzó, ha ellentétes előjelűek taszító, ha azonos előjelűek fft.szie.hu 7 Sees.Istvan@gek.szie.hu

8 Elektomágnesesség Elektomos téeősség Q E =? Ponttöltés esetén: E k Q Téeősség iánya: sugá iányba kifele, ha Q pozitív sugá iányba befele, ha Q negatív 2 fft.szie.hu 8 Sees.Istvan@gek.szie.hu

9 Elektomágnesesség Eővonalak Eővonalak éintője: téeősség iánya Eővonalak sűűsége ~ téeősség nagysága fft.szie.hu 9 Sees.Istvan@gek.szie.hu

10 Elektomágnesesség Elektomos té fémekben Faaday kalitka fft.szie.hu 10

11 Elektomágnesesség Elektomos fluxus homogén tében: E Ecos inhomogén tében Ed E me Ecosd E E me d fft.szie.hu 11 Sees.Istvan@gek.szie.hu

12 Elektomágnesesség Gauss tövény: Egy zát felülete az elektomos fluxus a felület által bezát töltés étékével aányos. E d E me d Q 0 fft.szie.hu 12 Sees.Istvan@gek.szie.hu

13 Elektomágnesesség Gauss tövény: feltöltött fémlemez elektomos tee Egy zát felülete alkalmazzuk: téglatest felszíne lemez töltés sűűsége: h C/m 2 E d E d alap E d fed ő E d z oldallapon: E és meőleges, z alap és fedőlapon: E és egyiányú oldal E d fft.szie.hu 13 Sees.Istvan@gek.szie.hu

14 Elektomágnesesség Gauss tövény: feltöltött fémlemez elektomos tee Egy zát felülete alkalmazzuk: téglatest felszíne lemez töltés sűűsége: h C/m 2 E d alap E d fed ő E d 0 E alap 1d E fed ő 1d 2E bezát töltés: Q= h fft.szie.hu 14 Sees.Istvan@gek.szie.hu

15 Elektomágnesesség Gauss tövény: feltöltött fémlemez elektomos tee Egy zát felülete alkalmazzuk: téglatest felszíne lemez töltés sűűsége: h C/m 2 E d 2E bezát töltés: Q= h E d Q h 2E fft.szie.hu 15 Sees.Istvan@gek.szie.hu E h Q 0

16 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Q B B Mennyi munkát kell végeznünk, míg egy q töltést az pontból B pontba viszünk? Qq WB Fds k cos( 180 ) ds 2 s B B 1 2 WB kqq ds kqq s ds 2 s fft.gau.hu 16 Sees.Istvan@gek.szie.hu

17 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Q B B Mennyi munkát kell végeznünk, míg egy q töltést az pontból B pontba viszünk? W B W B kqq kqq B 2 s B ds 1 s 2 ds kqq 1 kqq s B B s 2 B ds kqq kqq fft.gau.hu 17 Sees.Istvan@gek.szie.hu

18 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében E pot kqq W = E pot,b E pot, Feszültség: z egységnyi pozitív töltésen végzett munka U B fft.gau.hu 18 Sees.Istvan@gek.szie.hu W q B

19 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Feszültség: z egységnyi pozitív töltésen végzett munka WB U B q Ponttöltés könyezetében két pont közötti feszültség: U B kqq B q kqq kq B kq fft.gau.hu 19 Sees.Istvan@gek.szie.hu

20 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Töltések mozgása egymás elektomos teében Potenciál: kiválasztott 0 ponthoz ( távoli hely) viszonyított feszültség. U U kq kq kq (Megjegyzés: feszültség = potenciálkülönbség) fft.gau.hu 20 Sees.Istvan@gek.szie.hu

21 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, ekvipotenciális felület: azonos potenciálú pontok pontjai között nincs feszültség (pl. fém övidzá) fft.gau.hu 21 Sees.Istvan@gek.szie.hu

22 I. Elektomágnesesség : Elektomos potenciál, potenciális enegia, Földelés fft.gau.hu 22 Sees.Istvan@gek.szie.hu

23 Elektomágnesesség Kondenzátook Kapacitás C Q U Kapacitás meghatáozása síkkondenzátoa: C 0 d 0 = 8, Vs/m, a szigetelőanyag elatív dielektomos állandója d fft.szie.hu 23 Sees.Istvan@gek.szie.hu

24 Elektomágnesesség Kondenzátook Kapacitás meghatáozása síkkondenzátoa: Homogén elektomos té: Síkkondenzáto elektomos tee: Kívül: E eedő = 0 Belül:E = 2 E 1 E Q 0 Kívül: E eedő = 0 fft.szie.hu 24 Sees.Istvan@gek.szie.hu

25 Elektomágnesesség Kondenzátook Kapacitás meghatáozása síkkondenzátoa: Homogén elektomos té: Q U Q E d Q Q C 0 0 d d fft.szie.hu 25 Sees.Istvan@gek.szie.hu

26 Elektomágnesesség Dielektikum (szigetelő) Levegő ~ 1 E 0 F F E szigetelő E 0 dipólmolekulákat az elektomos té befogatja. fft.szie.hu 26 Sees.Istvan@gek.szie.hu

27 Elektomágnesesség Dielektikum (szigetelő) E = E 0 E E E 0 dielektikum csökkenti a téeősséget, és emiatt a feszültséget. E szigetelő E 0 U Ed E 0 E0d U0 d fft.szie.hu 27 Sees.Istvan@gek.szie.hu

28 Elektomágnesesség Dielektikum (szigetelő) feszültség ed észée csökken: U U 0 zaz a kapacitás megnő: E 0 E szigetelő C Q U Q U0 Q U 0 U 0 C 0 d fft.szie.hu 28 Sees.Istvan@gek.szie.hu

29 Elektomágnesesség Dielektikum (szigetelő) feszültség ed észée csökken: U U 0 zaz a kapacitás megnő: E 0 E szigetelő C Q U Q U0 Q U 0 U 0 C 0 d fft.szie.hu 29 Sees.Istvan@gek.szie.hu

30 Elektomágnesesség Hengekondenzáto fft.szie.hu 30

31 Elektomágnesesség Hengekondenzáto Gauss tétellel meghatáozzuk az elektomos téeősséget E x = feszültség a téeősség elmozdulás szeinti integálja R U = න E x dx = න Így a kapacitás C = Q U = Q Q ln R 2 π l ε 0 fft.szie.hu 31 Sees.Istvan@gek.szie.hu Q 2 π l ε 0 1 x Q 1 2 π l ε 0 x dx = Q ln R 2 π l ε 0 = 2 π l ε 0 ln R

32 Elektomágnesesség Kondenzátook soos kapcsolása Bekapcsolás előtti töltés: Q 1 Q 1 Q 2 Q 2 Bekapcsolás utáni töltés Töltésmegmaadás tövénye: 0 = Q 1 Q 2 Q 1 = Q 2 = Q fft.szie.hu 32 Sees.Istvan@gek.szie.hu

33 Elektomágnesesség Kondenzátook páhuzamos kapcsolása C 1 U 1 Q 1 C 2 U 2 Q 2 U (1) U 1 = U 2 = U (2) Q 1 Q 2 = Q e (1) C 1 U C 2 U= C e U /:U (3) C e = C 1 C 2 fft.szie.hu 33 Sees.Istvan@gek.szie.hu

34 Elektomágnesesség Kondenzáto a gyakolatban Katódsugácső fft.szie.hu 34 Sees.Istvan@gek.szie.hu

35 Elektomágnesesség Kondenzáto a gyakolatban Vaku a villanáshoz nagy áam, egyszee sok töltés kell, ezt az elem nem bíja leadni: ideiglenesen kondenzátoban táolják fft.szie.hu 35 Sees.Istvan@gek.szie.hu

36 Elektomágnesesség Kondenzáto a gyakolatban MEMS Mico ElectoMechanical Sytems Gyosulásméő (g szenzo) Gioszkóp fft.szie.hu 36 Sees.Istvan@gek.szie.hu

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

Elektrosztatika (Vázlat)

Elektrosztatika (Vázlat) lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

Fizika és 14. Előadás

Fizika és 14. Előadás Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A

Részletesebben

HARDVEREK VILLAMOSSÁGTANI ALAPJAI

HARDVEREK VILLAMOSSÁGTANI ALAPJAI HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat ellenőizte Macsa Dániel, okl. villamosménök Széchenyi István

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i 0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni

Részletesebben

A Maxwell-egyenletrendszer:

A Maxwell-egyenletrendszer: Maxwell-egyenletendsze: Ez a XIX. sz. egyik legnagyobb hatású egyenletendszee, főleg azét, met ebből az egyenletendszeből vezették le az elektomágneses hullámok létezését.. mpèe-maxwell féle gejesztési

Részletesebben

3. GYAKORLATI ELEKTROMOSSÁGTAN

3. GYAKORLATI ELEKTROMOSSÁGTAN 3. GYKORLI ELEKROMOSSÁGN 1. lapfogalmak z elektomos töltés z anyagi testek általában elektomosan semlegesek, de egyszeű fizikai módszeel (pl. dözselektomosság) pozitív vagy negatív töltésűvé tehetők. z

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó

Részletesebben

Elektrosztatika. I. Az elektrosztatika alapegyenleteinek leszármaztatása a Maxwell-egyenletekből

Elektrosztatika. I. Az elektrosztatika alapegyenleteinek leszármaztatása a Maxwell-egyenletekből Elektosztatika I. z elektosztatika alapegyenleteinek leszámaztatása a Maxwell-egyenletekből Ha a négy Maxwell-egyenletbe behelyettesítjük a sztatika feltételeit, azaz akko a következő egyenletendszet kapjuk:

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

OPTIKA. Elektromágneses hullámok. Dr. Seres István

OPTIKA. Elektromágneses hullámok. Dr. Seres István OPTIK D. Sees István Faaday-féle indukiótövény Faaday féle indukió tövény: U i t d dt Lenz tövény: z indukált feszültség mindig olyan polaitású, hogy az általa létehozott áam akadályozza az őt létehozó

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

2. STATIKUS ELEKTROMOS TÉR

2. STATIKUS ELEKTROMOS TÉR . STATIKUS ELEKTROMOS TÉR A nyugvó töltések iőben állanó elektomos teet keltenek amelyet statikus elektomos tének az elektomágneses témoellt elektosztatikus tének nevezzük. Az elektosztatikus té jelenlétét

Részletesebben

ELEKTROSZTATIKA Thalész Gilbert A testek dörzsöléssel hozhatók elektromos állapotba. Az elektromos állapot oka az elektromos töltés.

ELEKTROSZTATIKA Thalész Gilbert A testek dörzsöléssel hozhatók elektromos állapotba. Az elektromos állapot oka az elektromos töltés. ELEKTROSZTATIKA I.e. 600-ban Thalész (i.e. 64-547) felfedezte, hogy a megdözsölt boostyánkő apó testeket magához vonz, majd eltaszít. Például poszem, madátoll, száaz fűszál. Gilbet (1544-1603) 1600-ban

Részletesebben

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2 . Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =

Részletesebben

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007 ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív) Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

Matematikai ismétlés: Differenciálás

Matematikai ismétlés: Differenciálás Matematikai ismétlés: Diffeenciálás A skalá- és vektoteek diffeenciálásával kapcsolatban szokás bevezetni a nabla-opeátot: = xx = yy zz A nabla egy vektoopeáto, amellyel hatása egy skalá vagy vektomezőe

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH.: Dielektikumok (kibővített óavázlat) 1 z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alatövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

I. Bevezetés, alapfogalmak

I. Bevezetés, alapfogalmak I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltésmennyiség jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s.

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp Elektomos állapot Göög tudomány, Thales ηλεκτρνboostyán (elekton) Elektomos állapot alapjelenségei Kétféle elektomos állapot pozitív üveg negatív ebonit Elektoszkóp Tapasztalatok Testek alapállapota semleges

Részletesebben

IV.2 Az elektrosztatika alaptörvényei felületi töltéseloszlás esetén

IV.2 Az elektrosztatika alaptörvényei felületi töltéseloszlás esetén IV Az elektosztatka alaptövénye felület töltéseloszlás esetén Az előző paagafusban láttuk, hogy a töltések a vezető felületén helyezkednek el, gyakolatlag kétdmenzós vagy más szóval felület töltéseloszlást

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

I. Bevezetés, alapfogalmak

I. Bevezetés, alapfogalmak I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltésmennyiség jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s.

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

I. Bevezetés, alapfogalmak

I. Bevezetés, alapfogalmak I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltésmennyiség jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s.

Részletesebben

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH : ielektikumok (kibővített óavázlat) z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alaptövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

I. Bevezetés, alapfogalmak

I. Bevezetés, alapfogalmak I. Bevezetés, lpfoglmk villmos töltés villmos töltés z nyg egyik lpvető tuljdonság, mit előjeles sklá töltésmennyiség jellemez. töltés jele, SI métékegysége Coulom tiszteletée: []=C=coulom=s. C töltés

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ. 5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági

Részletesebben

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály II. rész: Elektrosztatika Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék II. rész:

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

0. Matematika és mértékegységek

0. Matematika és mértékegységek . Matematka és métékegységek Defnált fogalom Meghatáozás Kö keülete, teülete K = π [m], = π [m ] églalap keülete, teülete K = (a+b) [m], = ab [m ] Deékszögű háomszög keülete, teülete K = a+b+c [m], = ab

Részletesebben

felületi divergencia V n (2) V n (1), térfogati töltéseloszlás esetében

felületi divergencia V n (2) V n (1), térfogati töltéseloszlás esetében IV Az elektosztatka alaptövénye felület töltéseloszlás esetén Az előző paagafusban láttuk, hogy a töltések a vezető felületén helyezkednek el, gyakolatlag kétdmenzós vagy más szóval felület töltéseloszlást

Részletesebben

Az elektromosságtan alapjai

Az elektromosságtan alapjai Az elektromosságtan alapjai Elektrosztatika Áramkörök Ohm-törvény Türmer Kata 2012. október 8-9. Tudománytörténet Már az ókori görögök is tudták a gyapjúval megdörzsölt borostyánkő magához vonz apró, könnyű

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye TÓTH : lektosztatka/ (kbővített óavázlat) lektomos töltés helyzet enegája, elektomos potencál, az elektosztatka I alaptövénye mechankában láttuk, hogy konzevatív eőtében helyzet enega vezethető be zt a

Részletesebben

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez lméleti összefoglaló a I. éves vegyészhallgatók oláis molekula dipólusmomentumának meghatáozása című mééséhez 1.1 ipólusmomentum Sok molekula endelkezik pemanens dipólus-momentummal, ugyanis ha a molekulát

Részletesebben

Fizika és 3. Előadás

Fizika és 3. Előadás Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye Tóth : lektosztatka/2 lektomos töltés helyzet enegája, elektomos potencál, az elektosztatka I alaptövénye mechankában láttuk, hogy konzevatív eőtében helyzet enega vezethető be zt a kédést, hogy az elektosztatkus

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között? Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái

Részletesebben

Elektrosztatika tesztek

Elektrosztatika tesztek Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges

Részletesebben

2012.05.02. 1 tema09_20120426

2012.05.02. 1 tema09_20120426 9. Elektokémia kísélet: vasszög éz-szulfát oldatban cink eszelék éz-szulfát oldatban buttó eakció: + = + oxidációs folyamat: = + 2e edukciós folyamat: + 2e = Tegyünk egy ézlemezt éz-szulfát oldatba! Rövid

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás Tóth.: lektosztatka/1 1 z elektomos kölcsönhatás Rég tapasztalat, hogy megdözsölt testek különös eőket tudnak kfejten. Megdözsölt műanyagok (pl. fésű), megdözsölt üveg- vagy ebontúd papídaabokat, apó poszemcséket,

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

3. GYAKORLATI ELEKTROMOSSÁGTAN

3. GYAKORLATI ELEKTROMOSSÁGTAN 3. GYAKORLATI ELEKTROMOSSÁGTAN Ez a fejezet egyészt a középiskolás fizika anyag és az Elektodinamika eladás idevágó ismeeteinek összefoglalását tatalmazza, másészt olyan számítási módszeeket, amelyek egyenáamú

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú

Részletesebben

É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í

Részletesebben

ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö

Részletesebben

É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á

Részletesebben

ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektosztatka/ (kbővített óavázlat) z elektomos kölcsönhatás Rég tapasztalat, hogy megdözsölt testek különös eőket tudnak kfejten. Így pl. megdözsölt műanyagok (fésű), megdözsölt üveg- vagy ebontúd

Részletesebben

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk.

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. 1) Villamos töltések rekombinációja a) mindig energia felszabadulással jár; b) energia felvétellel jár; c) nincs kapcsolata

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

Fizika és 16 Előadás

Fizika és 16 Előadás Fizika 5. és 6 lőadás Önindukció, RL kö, kölcsönös indukció, mágneses té enegiája, tanszfomáto, mágnesség, Ampèe tövény általános alakja Mágneses adattáolás Az önindukció B ds µ o s j I j µ B oni l Szolenoidban

Részletesebben

1. ELEKTROSZTATIKA. 1.1 Elektromos kölcsönhatás. Fizika 10.

1. ELEKTROSZTATIKA. 1.1 Elektromos kölcsönhatás. Fizika 10. Fizika.. ELEKTOSZTATKA. Elektromos kölcsönhatás. Elektromosság a görög (elektron) borostyánkő szóból származik, amely megdörzsölve magához vonz kisebb testeket.. A foncsorozott bőrrel megdörzsölt üvegrúd,

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

Zaj és rezgésvédelem

Zaj és rezgésvédelem OMKT felsőfokú munkavédelmi szakiányú képzés Szekesztette: Mákus Miklós zaj- és ezgésvédelmi szakétő Lektoálta: Mákus Péte zaj- és ezgésvédelmi szakétő Budapest 2010. febuá Tatalomjegyzék Tatalomjegyzék...

Részletesebben

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika. Elektromosságtan és mágnességtan az életfolyamatokban Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 0.november 8. Az életjelenségek elektromos

Részletesebben

A stacionárius elektromos áram és a mágneses tér kapcsolata

A stacionárius elektromos áram és a mágneses tér kapcsolata A stacionáius elektomos áam és a mágneses té kapcsolata I. Az áamtól átfolyt vezető mágneses tee. Oested és Ampèe kíséletei. Az elektomos és mágneses jelenségek sokban hasonlítanak egymása, és ezét égóta

Részletesebben

1. TRANSZPORTFOLYAMATOK

1. TRANSZPORTFOLYAMATOK 1. TRNSZPORTFOLYMTOK 1.1. halmazállapot és az anyagszekezet kapcsolata. folyadékállapot általános jellemzése - a szilád, folyadék és gáz halmazállapotok jellemzése (téfogat, alak, endezettség, észecskék

Részletesebben

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN ELEKTOKÉMI ELEKTOMOSN TÖLTÖTT ÉSZECSKÉKET TTLMZÓ HOMOGÉN ÉS HETEOGÉN ENDSZEEK TEMODINMIKÁN Homogén vs. inhomogén rendszer: ha a rendszert jellemz fizikai mennyiségek értéke független vagy függ a helytl.

Részletesebben

FIZIKA II. Egyenáram. Dr. Seres István

FIZIKA II. Egyenáram. Dr. Seres István Dr. Seres István Áramerősség, Ohm törvény Áramerősség: I Q t Ohm törvény: U I Egyenfeszültség állandó áram?! fft.szie.hu 2 Seres.Istvan@gek.szie.hu Áramerősség, Ohm törvény Egyenfeszültség U állandó Elektromos

Részletesebben