A magnetosztatika törvényei anyag jelenlétében

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A magnetosztatika törvényei anyag jelenlétében"

Átírás

1 TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok a tövények, mint levegőben (levegő nem módosítja lényegesen a tövényeket). Mi töténik, ha a mágneses eőteet keltő áamokat más anyagok veszik köül (pl. folyadék, szilád anyag)? KÍSÉRETEK: Az elektomágneses indukciónál, láttuk, hogy az indukáló tekecsbe vasmagot téve, az indukált feszültség egyébként változatlan köülmények között jelentősen nagyobb. Áam bekapcsolásako az önindukciós tekecs áamkésleltető hatása lényegesen nagyobb, ha a tekecsben vasmag van. A kíséletek tehát azt mutatják, hogy a mágneses teet keltő tekecsek mágneses hatása függ a tekecset kitöltő anyagtól. Mi okozza az anyagoknak a mágneses eőteet befolyásoló hatását? Ahhoz, hogy a kédése válaszolni tudjunk, az atomok felépítését és viselkedését kell ismenünk. Az anyagot felépítő atomok töltött észecskékből (atommag és elektonok) állnak, amelyek állandó mozgásban vannak. Az atommag töltéseinek mozgását első közelítésben elhanyagolhatjuk, az elektonok azonban atomi léptékkel méve jelentős mozgásokat végeznek, ami azt jelenti, hogy az atomban elektomos áamok jönnek léte. Ezek az atomi áamok mágneses dipólmomentumokat és mágneses eőteet hoznak léte. Az így létejött atomi mágneses eőteek képesek megváltoztatni az eedeti külső mágneses eőteet. Az anyagok atomjaiban az elektonok kétféle mozgást végeznek, amelyek mindegyike elemi mágneses dipólus megjelenését eedményezi. Az egyik mozgás az elektonnak az atommag köüli mozgása, amelyet a mágneses jelenségek egyszeű leíásánál azzal az igen egyszeű (de a valóságnak nem teljesen megfelelő) modellel közelíthetünk, hogy az elektonoknak az atommag köüli mozgását elemi köáamokként fogjuk fel, és ezek az elemi köáamok atomi mágneses dipólusoknak felelnek meg. Ezek adják az elektonok ún. pályamozgásából számazó dipólmomentumot. Az anyagok mágneses viselkedése bizonyos anyagok esetén nem ételmezhető egyedül az elektonok pályamozgásából számazó mágneses dipólmomentumok segítségével. Kideült, hogy az elektonoknak van egy sajátos belső mozgása is, amit a legegyszeűbb (de a valósággal több szempontból nem egyező) modell szeint úgy képzelhetünk el, hogy az elekton a saját tengelye köül foog, ami a benne lévő töltés kömozgása miatt egy újabb mágneses dipólmomentumot eedményez. Ezt spin mágneses dipólmomentumnak nevezik. Az anyagok többségében az atomok mágneses dipólmomentumainak eedője nem nulla, tehát az atomoknak van egy eedő mágneses dipólmomentuma. Ezek a dipólmomentumok azonban külső mágneses té nélkül endezetlenül helyezkednek el, és átlagos eedő mágneses eőteük nulla. A külső mágneses eőté ezeket a dipólusokat endezi, és ekko nullától különböző eedő mágneses eőteük lesz, ami megváltoztatja az eedeti külső mágneses eőteet. Az anyagok egy észében külső mágneses eőté nélkül az atomokban az elektonok mágneses dipólmomentumai egymást kompenzálják, így az atomoknak nincs eedő mágneses dipólmomentuma. A külső mágneses eőté azonban az ilyen anyagok atomjaiban eedő mágneses dipólusokat (ún. indukált dipólmomentumot) hozhat léte, és

2 TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 2 ezeknek a endezett mágneses dipólusoknak az átlagos tee má nem nulla, ami szintén befolyásolja a kialakuló mágneses eőteet. Azt a folyamatot, amelynek soán az anyagban az atomi mágneses dipólmomentumok endeződnek, az anyag mágnesezésének, az ilyen állapotba keült anyagot pedig mágnesezettnek nevezik. Az atomokban végbemenő töltésmozgásból számazó áamokat szemben a vezetékekben folyó ún. makoszkopikus áamokkal gyakan mikoszkopikus áamoknak nevezik. Ezzel a teminológiával élve azt mondhatjuk, hogy a makoszkopikus áamok által létehozott mágneses eőteet az anyag jelenléte az atomi szinten jelentkező, mikoszkopikus áamok évén módosítja. Mágneses eőté anyagokban Az atomi mágneses dipólusok hatása a mágneses eőtée homogén, izotóp anyagokban A mágnesezett anyagokban váhatóan más lesz a mágneses eőté, mint a külső té, hiszen a mágneses dipólusok tee módosítja azt. Homogén, izotóp anyagokban a tapasztalat szeint egy áam által egy meghatáozott helyen okozott mágneses indukció vákuumbeli ( ) és anyag jelenlétében méhető étékei ( B ) között egyszeű aányosság áll fenn, így az anyag jelenléte által okozott változás egyetlen, anyagtól függő számmal vehető figyelembe: B = B. v Itt az anyagi minőségtől függő szám, az illető anyag elatív pemeabilitása. A különböző anyagok mágneses eőtében különböző módon viselkednek, ami elatív pemeabilitásuk étékében is kifejeződik. A homogén, izotóp anyagok a mágneses téel kapcsolatos viselkedésük alapján két nagy csopotba oszthatók: 1. Paamágneses anyagok Azokban az anyagokban, amelyekben az atomoknak nullától különböző mágneses dipólmomentuma van (ez az anyagok többsége) az atomi dipólusok külső mágneses té nélkül endezetlenül helyezkednek el, és mágneses eőteeik átlagosan semlegesítik egymást (a) ába). Ha azonban az anyagot mágneses eőtébe tesszük, akko a dipólmomentumok igyekeznek beállni az eőté iányába (a tökéletes endeződést a hőmozgás akadályozza meg, de a anyag átl Batomi dipólusok többsége az eőtéel közel páhuzamosan áll be; b) ába). A külső eőté iányába befodult atomi dipólus dipólmomentum vektoa ( d ) B külső páhuzamos a külső eőté mágneses indukcióvektoával (ába). Ilyenko a dipólust alkotó áamhuok belsejében a dipólus által a) m anyag átl Batomi b) d m I B dipól B külsõ

3 TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 3 keltett B dipól mágneses indukció egy iányú a dipólmomentum vektoal és így a külső eőtéel is. Mivel pedig a dipólus eőtee éppen itt a legeősebb (itt a legsűűbbek az indukcióvonalak), az eőtéel egy iányban beálló dipólus jelenléte eősíti az átlagos mágneses eőteet. Ebben az esetben tehát a mikoszkopikus mágneses dipólusok eedője a mágneses eőté iányába mutat, ezét B >. Ennek megfelelően a elatív pemeabilitás 1-nél nagyobb pozitív szám: > 1, étéke azonban a méések szeint 1-től alig különbözik (nagysága között van). Az ilyen anyagokat paamágneses anyagoknak nevezik. Nevüket onnan kapták, hogy a belőlük készült hosszú, vékony úd a mágneses téel páhuzamosan (paalell) igyekszik beállni. A homogén, izotóp anyagok döntő többsége paamágneses. 2. Diamágneses anyagok Az anyagok egy másik csopotjánál az atomok eedő mágneses dipólmomentuma nulla. Ha azonban egy ilyen anyagot mágneses eőtébe teszünk, akko itt nem észletezett okok miatt az atomokban létejön egy ún. indukált mágneses dipólmomentum. Az így keletkezett mágneses dipólusok a külső eőtéel ellenkező iányban igyekeznek beállni (a hőmozgás hatása itt is jelentkezik). Ez a fenti meggondolások alapján azt jelenti, hogy a endeződött dipólusok mágneses eőtee ezekben az anyagokban a külső eőtéel ellenkező iányú, így az anyagban az átlagos mágneses indukció kisebb, mint a vákuumbeli éték ( B < ). Ennek megfelelően a elatív pemeabilitás 1-nél kisebb pozitív szám: < 1, amelynek étéke a méések szeint alig különbözik 1-től (nagysága köülbelül ). Az ilyen anyagokat diamágneses anyagoknak nevezik. Nevüket onnan kapták, hogy a belőlük készült hosszú, vékony úd a mágneses eőtée meőlegesen (diametálisan) igyekszik beállni. Diamágneses anyag pl. a bizmut, a higany, a éz, a víz, a gázok közül pedig a nitogén és a hidogén. A két csopot közös jellemzője tehát az, hogy elatív pemeabilitásuk nagysága alig különbözik 1-től. Vákuumban nincs mágnesezés, ezét = 1. Mivel gázokban jó közelítéssel = 1, a levegőben végzett kíséletek eedményeit jó közelítéssel vákuumbeli eedményeknek fogadhatjuk el. Mivel az anyag jelenléte módosítja a mágneses eőteet, felmeül a kédés: hogyan módosulnak a magnetosztatika alaptövényei? A magnetosztatika Gauss-tövénye anyag jelenlétében Az anyagokban az atomi töltésmozgásból számazó mágneses eőteet ugyanolyan töltéseknek (elektonok) a mozgása okozza, mint amelyek a makoszkopikus áamokat keltik. Ezek a mikoszkopikus áamok feltehetőleg ugyanolyan temészetű mágneses eőteet keltenek, mint a makoszkopikus áamok, ezét feltehetjük, hogy az így keletkezett mágneses indukcióvekto vonalai is zát hukok. Ebből következik, hogy a Gausstövény változatlan fomában évényes anyag jelenlétében is: BdA =. A tapasztalat ezt a feltevést igazolja. A Gejesztési tövény anyag jelenlétében A gejesztési tövény az áamok és a mágneses eőté kapcsolatát ögzíti, ezét ebben figyelembe kell venni a mikoszkopikus áamok eőteét is.

4 TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 4 Ez fomálisan a mikoszkopikus áamoknak a tövénybe töténő beíását jelenti: Bd = ( I + I miko ). (Itt I illetve I miko a zát huok által köülvett felületen átmenő valódi illetve mikoszkopikus áamok előjeles összegét jelenti.) Ezzel az összefüggéssel azonban az a pobléma, hogy a mikoszkopikus áamok jáuléka általában csak igen bonyolult módon számítható ki. Ezét itt csak a legegyszeűbb esettel, a homogén izotóp anyagok esetével foglalkozunk. Homogén, izotóp anyagok esetén a gejesztési tövény egyszeűen átalakítható az anyag jelenlétében évényes alaka. Ehhez csak a B = B v összefüggést kell behelyettesíteni a vákuumban évényes egyenletbe: = B B v d = I d. Ha ezt az egyenletet átendezzük, akko a gejesztési tövény a Bd = I alakot ölti. Eszeint az anyag jelenléte a mágneses eőtée vonatkozó alaptövényt, és így az összes többi összefüggést is úgy módosítja, hogy azonos makoszkopikus áamok esetén minden vákuumban évényes összefüggésben, ahol szeepel a, az anyagban évényes alakot a cseével kapjuk meg. A = mennyiséget az anyag abszolút pemeabilitásának nevezik. Így íható át pl. az egyenes vezető illetve a tekecs mágneses tee I I IN IN B = Bv = = illetve B = Bv = =. 2π 2π l l ********************** ********************** ********************* A mágneses eőté jellemzésée a B mágneses indukcióvekto mellett gyakan egy másik témennyiséget is bevezetnek, amelyet mágneses téeősség-vektonak neveznek, és endszeint H-val jelölnek. Homogén, izotóp, anyagokban a két témennyiség között az egyszeű B H = H = összefüggés áll fenn. Ha a gejesztési tövényt átíjuk a B d = I alakba, akko látható, hogy a H mágneses téeősség bevezetésével a tövénye a fomailag egyszeűbb alakot kapjuk. Hd = I ********************** ********************** ********************* Bonyolultabb anyagok A mikoszkopikus áamok hatása a mágneses eőtée inhomogén, anizotóp anyagban általában bonyolult: az atomi dipólusok mágneses eőtee általában nem páhuzamos a külső eőtéel, és a mágneses dipólusok bizonyos anyagokban külső eőté nélkül is

5 TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 5 endeződhetnek. Ez utóbbi esetben az anyagnak saját mágneses eőtee lehet, vagyis mágnesként viselkedhet. Feomágneses anyagok Ha az anyagban a dipólusok maguktól endeződnek, akko azt mondjuk, hogy az anyagnak spontán mágnesezettsége van. Ilyen anyagok az ún. a feomágneses anyagok, amelyek egy bizonyos anyagtól függő hőméséklet, az ún. Cuie-pont felett paamágnesesek, a Cuiepont alatt viszont külső mágneses té nélkül is kialakul bennük egy spontán mágnesezettség. Enegetikai okokból egy makoszkopikus mintában a mágnesezettség nem azonos iányú a teljes anyagban, hanem ellenkező mágnesezettségű tatományok (ún. domének) jönnek léte. Az ilyen anyag kifelé nem mutat mágneses tulajdonságokat. Ha azonban az anyagot eős mágneses tébe tesszük, akko a domének mágnesezettsége egy iányúvá tehető, és ez az állapot a té megszűnte után is fennmaad. Az ilyen anyag mágnesként viselkedik. Feomágneses anyag pl. a vas, a nikkel és számos ötvözet. A feomágneses anyagok fontos jellemzője, hogy elatív pemeabilitásuk ( ) igen nagy lehet, eléheti a étéket is. Ha a mágneses eőteet létehozó áamok közötti téészt ilyen anyaggal töltjük ki, akko ott a mágneses indukció nagysága a vákuumbeli étéknél nagyságendekkel nagyobb lehet. Ezét tesznek pl. a tekecsekbe vasmagot, ha a mágneses indukció megnövelése a cél.

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH : ielektikumok (kibővített óavázlat) z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alaptövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez lméleti összefoglaló a I. éves vegyészhallgatók oláis molekula dipólusmomentumának meghatáozása című mééséhez 1.1 ipólusmomentum Sok molekula endelkezik pemanens dipólus-momentummal, ugyanis ha a molekulát

Részletesebben

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH.: Dielektikumok (kibővített óavázlat) 1 z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alatövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i 0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni

Részletesebben

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007 ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos

Részletesebben

Elektrosztatika (Vázlat)

Elektrosztatika (Vázlat) lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus

Részletesebben

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között? Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

Bokor Mónika. Doktori disszertáció. Témavezető: Vértes Attila Tompa Kálmán 1999.

Bokor Mónika. Doktori disszertáció. Témavezető: Vértes Attila Tompa Kálmán 1999. Molekuláis mozgások vizsgálata hexakisz-(-alkil- H-tetazol)-vas(II) és -cink(ii) bótetafluoid kistályokban multinukleáis magspin-ács elaxáció alapján Boko Mónika Doktoi disszetáció Témavezető: Vétes Attila

Részletesebben

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

A FÖLD PRECESSZIÓS MOZGÁSA

A FÖLD PRECESSZIÓS MOZGÁSA A ÖLD PRECEZIÓ MOZGÁA Völgyesi Lajos BME Általános- és elsőgeodézia Tanszék A öld bonyolult fogási jelenségeinek megismeéséhez pontos fizikai alapismeetek szükségesek. A fogalmak nem egységes és hibás

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu

Részletesebben

OPTIKA. Elektromágneses hullámok. Dr. Seres István

OPTIKA. Elektromágneses hullámok. Dr. Seres István OPTIK D. Sees István Faaday-féle indukiótövény Faaday féle indukió tövény: U i t d dt Lenz tövény: z indukált feszültség mindig olyan polaitású, hogy az általa létehozott áam akadályozza az őt létehozó

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

2. előadás: Földmágneses alapfogalmak

2. előadás: Földmágneses alapfogalmak . előadás: Földmágneses alapfogalmak. előadás: Földmágneses alapfogalmak Földmágneses anomáliák A súlypontján keesztül felfüggesztett mágnestű a Föld tópusi és mésékeltövi tájain megközelítőleg a földajzi

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

f r homorú tükör gyűjtőlencse O F C F f

f r homorú tükör gyűjtőlencse O F C F f 0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ. 5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

Elektromos áram mágneses erőtere, a Biot Savart-törvény

Elektromos áram mágneses erőtere, a Biot Savart-törvény TÓTH A: Mágneses eőté/ (ibővített óavázlat) 1 Eletomos áam mágneses eőtee, a iot Savat-tövény A mágneses eőtében fellépő eőhatáso számításánál mindig feltételeztü, hogy a té minden pontjában ismejü a mágneses

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket) Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

HARDVEREK VILLAMOSSÁGTANI ALAPJAI

HARDVEREK VILLAMOSSÁGTANI ALAPJAI HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat ellenőizte Macsa Dániel, okl. villamosménök Széchenyi István

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag, Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése

Részletesebben

3. GYAKORLATI ELEKTROMOSSÁGTAN

3. GYAKORLATI ELEKTROMOSSÁGTAN 3. GYKORLI ELEKROMOSSÁGN 1. lapfogalmak z elektomos töltés z anyagi testek általában elektomosan semlegesek, de egyszeű fizikai módszeel (pl. dözselektomosság) pozitív vagy negatív töltésűvé tehetők. z

Részletesebben

Lencsék fókusztávolságának meghatározása

Lencsék fókusztávolságának meghatározása Lencsék fókusztávolságának meghatáozása Elméleti összefoglaló: Két szabályos, de legalább egy göbe felület által hatáolt fénytöő közeget optikai lencsének nevezünk. Ennek speciális esetei a két gömbi felület

Részletesebben

SCHWARTZ 2009 Emlékverseny A TRIÓDA díj-ért kitűzött feladat megoldása ADY Endre Líceum Nagyvárad, Románia 2009. november 7.

SCHWARTZ 2009 Emlékverseny A TRIÓDA díj-ért kitűzött feladat megoldása ADY Endre Líceum Nagyvárad, Románia 2009. november 7. SCHWARTZ 009 Emlékveseny A TRIÓA díj-ét kitűzött feldt megoldás AY Ende Líceum Ngyvád, Románi 009. novembe 7. Az elekton fjlgos töltésének meghtáozás mgneton módszeel A szező áltl jánlott teljes megoldás,

Részletesebben

Elektrosztatika. I. Az elektrosztatika alapegyenleteinek leszármaztatása a Maxwell-egyenletekből

Elektrosztatika. I. Az elektrosztatika alapegyenleteinek leszármaztatása a Maxwell-egyenletekből Elektosztatika I. z elektosztatika alapegyenleteinek leszámaztatása a Maxwell-egyenletekből Ha a négy Maxwell-egyenletbe behelyettesítjük a sztatika feltételeit, azaz akko a következő egyenletendszet kapjuk:

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Az atomok vonalas színképe

Az atomok vonalas színképe Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH.: Dielektrikumok (kibővített óravázlat) 1 z elektrosztatika törvényei anyag jelenlétében, dielektrikumok z elektrosztatika alatörvényeinek vizsgálata a kezdeti időkben levegőben történt, és a különféle

Részletesebben

A stacionárius elektromos áram és a mágneses tér kapcsolata

A stacionárius elektromos áram és a mágneses tér kapcsolata A stacionáius elektomos áam és a mágneses té kapcsolata I. Az áamtól átfolyt vezető mágneses tee. Oested és Ampèe kíséletei. Az elektomos és mágneses jelenségek sokban hasonlítanak egymása, és ezét égóta

Részletesebben

A Maxwell-egyenletrendszer:

A Maxwell-egyenletrendszer: Maxwell-egyenletendsze: Ez a XIX. sz. egyik legnagyobb hatású egyenletendszee, főleg azét, met ebből az egyenletendszeből vezették le az elektomágneses hullámok létezését.. mpèe-maxwell féle gejesztési

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

tema09_

tema09_ 9. Elektokémia kísélet: vas szög éz-szulfát oldatban cink lemez éz-szulfát oldatban buttó eakció: + 2+ = 2+ + oxidációs folyamat: = 2+ + 2e edukciós folyamat: 2+ + 2e = Ha ézlemezt teszünk éz-szulfát oldatba,

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás Tóth.: lektosztatka/1 1 z elektomos kölcsönhatás Rég tapasztalat, hogy megdözsölt testek különös eőket tudnak kfejten. Megdözsölt műanyagok (pl. fésű), megdözsölt üveg- vagy ebontúd papídaabokat, apó poszemcséket,

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektosztatka/ (kbővített óavázlat) z elektomos kölcsönhatás Rég tapasztalat, hogy megdözsölt testek különös eőket tudnak kfejten. Így pl. megdözsölt műanyagok (fésű), megdözsölt üveg- vagy ebontúd

Részletesebben

Elektromágneses indukció kísérleti vizsgálata

Elektromágneses indukció kísérleti vizsgálata A kísérlet célkitűzései: Kísérleti úton tapasztalja meg a diák, hogy mi a különbség a mozgási és a nyugalmi indukció között, ill. milyen tényezőktől függ az indukált feszültség nagysága. Eszközszükséglet:

Részletesebben

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye TÓTH : lektosztatka/ (kbővített óavázlat) lektomos töltés helyzet enegája, elektomos potencál, az elektosztatka I alaptövénye mechankában láttuk, hogy konzevatív eőtében helyzet enega vezethető be zt a

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll

Részletesebben

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules)

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) Atomok (molekulák) fotoionizációja soán jelentkező ezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) BORBÉLY Sándo, NAGY László Babeş-Bolyai Tudományegyetem, Fizika ka, 484

Részletesebben

Elektrokémia 03. (Biologia BSc )

Elektrokémia 03. (Biologia BSc ) lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető

Részletesebben

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye TÓTH : lektosztatka/ (kbővített óavázlat) lektomos töltés helyzet enegája, elektomos potencál, az elektosztatka I alaptövénye mechankában láttuk, hogy konzevatív eőtében helyzet enega vezethető be zt a

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Bevezetés az anyagtudományba II. előadás

Bevezetés az anyagtudományba II. előadás Bevezetés az anyagtudományba II. előadás 010. febuá 11. Boh-féle atommodell 1914 Niels Henik David BOHR 1885-196 Posztulátumai: 1) Az elekton a mag köül köpályán keing. ) Az elektonok számáa csak bizonyos

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

ELEKTROSZTATIKA Thalész Gilbert A testek dörzsöléssel hozhatók elektromos állapotba. Az elektromos állapot oka az elektromos töltés.

ELEKTROSZTATIKA Thalész Gilbert A testek dörzsöléssel hozhatók elektromos állapotba. Az elektromos állapot oka az elektromos töltés. ELEKTROSZTATIKA I.e. 600-ban Thalész (i.e. 64-547) felfedezte, hogy a megdözsölt boostyánkő apó testeket magához vonz, majd eltaszít. Például poszem, madátoll, száaz fűszál. Gilbet (1544-1603) 1600-ban

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

Matematikai ismétlés: Differenciálás

Matematikai ismétlés: Differenciálás Matematikai ismétlés: Diffeenciálás A skalá- és vektoteek diffeenciálásával kapcsolatban szokás bevezetni a nabla-opeátot: = xx = yy zz A nabla egy vektoopeáto, amellyel hatása egy skalá vagy vektomezőe

Részletesebben

Fizika és 14. Előadás

Fizika és 14. Előadás Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

FIZIKAI MODELL AZ OLDASHŐ KONCENTRACIÓ-FÜGGÉSÉRE

FIZIKAI MODELL AZ OLDASHŐ KONCENTRACIÓ-FÜGGÉSÉRE FIZIKAI MODELL AZ OLDASHŐ KOCETRACIÓ-FÜGGÉSÉRE Wiedemann László Főváosi Pedagógiai Intézet Szoítkozzunk olyan anyagoka, melyek vizes oldata eős elektolitot képez, mikois tehát az oldott anyag teljesen

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás

Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások Mérje meg a Mikola csőben lévő buborék sebességét, két különböző alátámasztás esetén! Több mérést végezzen! Milyen mozgást végez a buborék? Milyen

Részletesebben

A fény mint hullám. Az interferencia feltételei, koherencia.

A fény mint hullám. Az interferencia feltételei, koherencia. A fény mint hullám. Az intefeencia feltételei, koheencia. Iodalom [3]: 75-76 Az elektomágneses fényelmélet szeint a (látható) fény egy olyan elektomágneses hullám, amelynek hullámhossza (vákuumban) 38

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 izika ménm nök k infomatikusoknak 1. BNxE-1 Mechanika 6. előadás D. Geetovszky Zsolt 2010. októbe 13. Ismétl tlés Ütközések tágyalása Egymáshoz képest mozgó vonatkoztatási endszeek egymáshoz képest EVEM-t

Részletesebben

Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

XII. előadás április 29. tromos

XII. előadás április 29. tromos Bevezetés s az anyagtudományba nyba XII. előadás 2010. április 29. Ferroelektr tromos kerámi miák Ferroelektromosság: elektromos tér hiányában spontán polarizáltak (a ferromágneses viselkedés elektromos

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Optikai hullámvezető fénymódus spektroszkópia Majerné Baranyi Krisztina Adányiné Dr. Kisbocskói Nóra

Optikai hullámvezető fénymódus spektroszkópia Majerné Baranyi Krisztina Adányiné Dr. Kisbocskói Nóra Optikai hullámvezető fénymódus spektoszkópia Majené Baanyi Kisztina Adányiné D. Kisbocskói Nóa NAIK ÉKI 1022 Budapest, Heman Ottó út 15. 4. épület Az optikai hullámvezető fénymódus spektoszkópia (OWLS)

Részletesebben

2012.05.02. 1 tema09_20120426

2012.05.02. 1 tema09_20120426 9. Elektokémia kísélet: vasszög éz-szulfát oldatban cink eszelék éz-szulfát oldatban buttó eakció: + = + oxidációs folyamat: = + 2e edukciós folyamat: + 2e = Tegyünk egy ézlemezt éz-szulfát oldatba! Rövid

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 14. Elektromosságtan és mágnességtan az életfolyamatokban 3.. Bari Ferenc egyetemi tanár SZTE ÁOK-TTK Orvosi Fizikai és Orvosi nformatikai ntézet Szeged, 2011. december 19. 2. DEMO eredménye

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

Segédlet a Tengely gördülő-csapágyazása feladathoz

Segédlet a Tengely gördülő-csapágyazása feladathoz Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy

Részletesebben

Alapvető mechanikai elvek

Alapvető mechanikai elvek Mi a biomechanika? Biomechanika Mechanika: a testek mozgásával, a testeke ható eőkkel foglalkozó tudományág Biomechanika: a mechanika tövényszeűségeinek alkalmazása élő szevezeteke, elsősoban az embei

Részletesebben

Fizika és 16 Előadás

Fizika és 16 Előadás Fizika 5. és 6 lőadás Önindukció, RL kö, kölcsönös indukció, mágneses té enegiája, tanszfomáto, mágnesség, Ampèe tövény általános alakja Mágneses adattáolás Az önindukció B ds µ o s j I j µ B oni l Szolenoidban

Részletesebben