Fizika és 16 Előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizika és 16 Előadás"

Átírás

1 Fizika 5. és 6 lőadás

2 Önindukció, RL kö, kölcsönös indukció, mágneses té enegiája, tanszfomáto, mágnesség, Ampèe tövény általános alakja Mágneses adattáolás

3 Az önindukció B ds µ o s j I j µ B oni l Szolenoidban kialakuló mágneses fluxus: Φ m µ BA onia l ε N dφ m V ind.( t) µ on l A di ε L di Példák: tooid, koaxiális kábel métékegysége a Heny Vs/A, jele: H

4 Az RL kö V V ind L di + V IR ind Megoldás: I V R exp t R L V L di IR di R L I + V L

5 A kölcsönös indukció ε di M ε di M vagy Be lehet bizonyítani, hogy M M és ezután má csak M el jelöljük a kölcsönös indukciós tényezőt. M N Φ B I vagy M N Φ B I Példák: két tekecs, két huok

6 Az indukciós té enegiája gy szolenoida vagy tooida a t időpontban i(t) áamot kapcsolunk: Bemenő teljesítmény: W ε L P ε i I Li di di Li di LI B W Al µ µ B o NI µ A L on l l B m Az elektomágneses té B ε ε µ enegiasűűsége: + µ Szolenoid esetében: ε felhasználtuk:

7 A tanszfomáto Tehelés nélkül: ε N ε N Távvezeték vesztesége: I R Ideális (veszteségmentes) tanszfomáto: U N és U N I I N N U I UI Letaszfomálás: fodítva Feltanszfomáljuk a feszültséget (N >N ).

8 Szétszedhető tanszfomáto: Övényáamok (veszteség) vasmag vaslemezekből

9 Az Ampèe-tövény általános alakja Síkkondenzáto: Q(t) I(t) Q Aε Q Aε dq I ε A d Az elektomos té fluxusa: Φ A I d ε A ε dφ s Bds I + µ µ o o ε dφ D ε s B ds µ I + µ o o dφ D

10 Paamágnesség Külső té hatásáa endeződnek. edő eő: vonzás egy paamágnes a nagyobb téeősségű hely felé igyekszik elmozdulni

11 Diamágnesség e - e - v N+ F L N+ F L e - e - v Külső té hiányában az eedő momentum zéus. B: homogén a kép síkjából kifelé mutat N+ e - v egy diamágnes a kisebb téeősségű hely felé igyekszik elmozdulni v e -

12 Feomágnesség Fe, Co, Ni, Gd, Dy ill. azok ötvözetei Cuie-hőméséklet felett az anyag feomágnessége megszűnik

13 Szolenoid vasmaggal Vasmag nélkül: Vasmaggal: µ B oni l µ B o NI l µ B µ NI l µ NI ( µ ) o µ o( + χ l o + ) χ az anyag mágneses szuszceptibilitása NI l B µ oµ H H: mágneses té (métékegysége: A/m) A vasmag nélküli szolenoidban kialakuló mágneses té: B µ o ( H + M ) M: mágnesezettség Analógia: H D εo + A mágneses téeősség H vektoa az, amit megfizetünk, a mágneses indukció B vektoa pedig az, amit kapunk éte. P NI l

14 A mágneses hiszteézis Telítésbe vitt feomágnes hiszteézis van lehetőség demagnetizálni

15 Mágneses adattáolás I. Adatögzítés (íás)

16 Mágneses adattáolás II. Adat kiolvasása: Óiás mágneses ellenállás (3 óta) Kb. 97-ig feitgyűűs memóia:

17 Memóia áak alakulása Tanziszto sűűség alakulása 955-5

18 Mooe tövény az integált áamköök összetettsége a legalacsonyabb áú ilyen komponenst figyelembe véve köülbelül 8 hónaponként megduplázódik. (965) Az dolláét vásáolható számítási teljesítmény növekedése Godon. Mooe, az Intel Copoation egyik alapítója (Wikipedia) Amint a tanzisztook méete -ól 8 nanométee csökken, a félvezetőipai temékek keeskedelmi célú gyátásainak költsége a endkívül apó alkatészek integálása miatt gazdaságilag ellehetetlenül: ilyen apó méeteknél ugyanis a gyátók lassacskán szembesülni fognak azzal, hogy a félvezetők előállításához használatos beendezések magas áa miatt gyakolatilag nem lesz kifizetődő a temékek előállítása. (IT café, 9.)

19 A Maxwell-egyenletek endszee I. Vákuumban: I. da q ε II. BdA III. Bdl µ I + ε IV. d l dφ B dφ James Clek Maxwell (83-79) té mező Megold.: hullámegyenlet e.m. hullámok

20 A Maxwell-egyenletek endszee II. anyag jelenlétében: + anyagi egyenletek: hatáfeltételek: t t, D n D n H t H t, B n B n I. DdA q II. BdA dφ III. Hd l I + dφ IV. d B l V. J σ VI. D ε + P o VII. B µ ( H + M ) o D VIII. F q( + v B)

21 Váltakozó áam és feszültség U ( t) U sin( ωt) I( t) I sin( ωt ϕ) f 5 Hz

22 ffektív áam és feszültség U ( t) U sin( ωt) P( t) U ( t) I( t) U I( t) sin( ωt) R U sin ( ωt) R P átl T U. P( t) U ( t) I( t) P( t) Pátl. sin ( ωt) T T R P átl T U. sin ( ωt) T R ffektív feszültség: U eff U P átl U R. RIeff Ueff Ieff P átl. T U R Hasonlóan effektív áam: U eff R I eff I

23 Átlagteljesítmény U ( t) U sin( ωt) I( t) I sin( ωt ϕ) P T T átl. P( t) UI sin( ωt)sin( ωt ϕ T T ) P U I átl. eff eff cosϕ

24 Komplex íásmód és ábázolás U ( t) U cos( ωt) [ U exp( iω )] U ( t) Re t ~ i( ωt ) ( t) Ie ϕ I ~ U( t) U exp( iω ) t

25 Kapacitív ellenállás Huoktövény alkalmazása: C I( t) I( t) CωU cos( ωt) Q C U sin( ω ) t U sin( ωt) I U U t) cos( ω t) sin( ωt + X X ( π C C ) Kapacitív eaktancia: X C Cω

26 Induktív ellenállás Huoktövény alkalmazása: di U sin( ωt) L di U ( t) L I U U t) cos( ωt) sin( ωt Lω X ( π L ) Induktív eaktancia: X L Lω

27 Soos RLC kö I. Huoktövény alkalmazása: di Q U ( t) L RI C d Q dq Q L R U ( t) C U(t)U o sin(ωt) vagy U(t)U o cos(ωt) Megoldható, de más megoldást keesünk:

28 Soos RLC kö II. ~ U ~ + U ~ + U R L C ~ U ( t) ~ ~ UL U tgϕ ~ U R C X L R X C

29 Soos RLC kö III. I o -val leosztva: fazo ába: ~ Z R + i( X L X C ) R + i Lω Cω ~ Z U I U eff R + ( X L XC ) R + Ieff Lω Cω P átl P U I cosϕ R Z cosϕ átl. eff eff R Ueff. Ueff Ieff cos ϕ Ueff Ieff Ieff R φ cos φ!!! Z R

30 Soos RLC kö IV. Rezonancia: ω o LC Félétékszélesség: ω ~ R

31 Soos RLC kö V. Jósági tényező: Q a endszeben táolt enegia π egy peiódus alatt disszipált enegia Lω R Q Kiszámolni

32 Soos RLC kö csillapított kényszeezgés I. ma kx λ v + F cos( ωt) t && x + β x& + ω x f cos( ω ) f cos( ω t) f Re[exp( iωt)] Megoldást keessük: x( t) Ae iωt

33 Soos RLC kö csillapított kényszeezgés II. ( ) ~ iωt i t ω + i βω Ae f e ω ω ~ A ω A ω f + iβω Ae iϕ ( ) ω ω + 4β ω tanϕ f ω βω ω x( t) Acos( ωt ϕ) U I R + Lω Cω ~ ~ UL UC X X tg L ϕ ~ U R R I( t) I cos( ωt ϕ) C

34 Páhuzamos RLC kö ~ Z R + ilω Cω i R + i Cω Lω tgϕ L ω R Cω V I(t) sin( t ) Z ~ o ω ϕ I eff V Z ~ eff

35 lektomágneses hullámok (MH) I.

36 Az elektomágneses síkhullám I. Időben változó elektomos té mágneses (indukciós) té: Bdl µ I + ε dφ Vákuum: I (nincsenek töltött észecskék, áamok) Időben változó mágneses (indukciós) té elektomos té: Hipotézis: Bdl µ ε dφ dl dφ B (t) B(t)

37 Az elektomágneses síkhullám II. x y z s l A z z+ z B C D F (z) ) ( z z + ( z) z B + B (z) ),,) ( ( t x ),) (, ( t B B y i t z ), ( j t z B B ), (

38 Az elektomágneses síkhullám III. Faaday-tövény: dl dφ B Ampèe-tövény: Bdl µ ε dφ [ (z + z) - (z)] x x s s z B t y [ B (z + z) + B (z)] µ εl z t - x y y l x (z + z) - z x (z) B t y B y (z + z) - By(z) µ ε z t x z x B t y B y z µ ε t x

39 Az elektomágneses síkhullám IV. t B z y x t z B x y ε µ z t t ε µ z x x hullámegyenlet Megoldása: ) ( ~ kz t i x e (z,t) ± ω ) cos( kz t (z,t) x ± ω f T π π ω λ π k k c ω ε µ c Def.: c m/s

40 Az elektomágneses síkhullám V. t B z y x t z B x y ε µ z t t B ε µ z B y y hullámegyenlet ) cos( kz t B (z,t) B y ± ω Megoldása:

41 Az elektomágneses síkhullám VI. (z,t) x cos( ωt kz) (z,t) B y B cos( ωt kz) Behelyettesítünk: z x B t y c x(z, t) B y (z, t) o Bo c

42 Az elektomágneses síkhullám VII. x (z,t) B y (z,t) cos( ω t kz + ϕ B cos( ω t kz + ϕ) ) x z y f c λ λ

43 Az elektomágneses spektum lnevezés vöös naancs sága zöld kék ibolya Hullámhossz (nm) Néhány édekesség: Az embei szem legézékenyebb a zöld fénye. A CD és a DVD vöös lézefénnyel dolgozik. A blue-ay disc ibolya nyalábbal íható és olvasható. (a kisebb hullámhossz temészetesen nagyobb íássűűséget jelent) Ultaibolya ( nm < λ < 38 nm) lámpák ovosi endelők, vagy műtők fetőtlenítése. UV alkalmazzák élelmiszeek baktéiummentesítésée is. A kemény UV (λ < nm) fényfoás litogáfia pocesszogyátásban.

44 A Poynting-vekto x x (z,t) B y (z,t) cos( ω t kz + ϕ B cos( ω t kz + ϕ) ) y z S Hullám tejedési iánya Poynting-vekto: B H obo cos ( ωt µ µ o o kz) S c H o B o S ε S o o cos ( ωt kz) µ o átlagolás S ε µ o o o

45 Az MH intenzitása ε ε o Beeső enegia: W ε B µ u B Ac t emh Felülete meőlegesen beeső síkhullám: A intenzitás W A t u c A c t u ε + εb εo B εoo cos ( ωt µ u o ε + εb εo µ o B Láttuk: kz) S ε µ o o o S c u intenzitás S

46 A napsugázás intenzitása, napenegia A Föld légköét eléő napsugázás : 35 W/m A légköben elnyelődik : 5 W/m A világűbe eflektálódik : W/m (Föld enegiaszükéglete) Földfelszíne jutó átlagos sugázás : W/m Magyaoszágon: Téli hónapokban : 5-6 W/m Nyái hónapokban : 6 - W/m Napsütéses óák száma (Bp) : 57 óa M.o. teljes enegiafelhasználása: 7 J Összehasonlítás:???

47 Kédés: van-e a hullámnak impulzusa? Az e.m. síkhullám impulzusa I. i t z ), ( j t z B B ), ( bv d q F b q v d bc q B b q B qv F d L

48 Az e.m. síkhullám impulzusa II. F q bv d v d q b F L qv d B q b B q bc dw q q dw Fvd q cfl b b... dw c dp W cp Az emh impulzussűűsége: p u c S c

49 Az e.m. síkhullám impulzusa III. dw cf L F L PA dw cpa Fénynyomás: dw ca P P c I (int.) c S átl. u???

50 Fénynyomás példák: Napfény-vitolás R % P c I(int.) S c átl. u

51 MH polaizációja I. x y (z,t) x cos( ωt kz) (z,t) y cos( ωt kz) Lineáisan polaizált hullám ϕ Cikuláisan polaizált hullám ϕ 9

52 MH polaizációja II. Hetz kíséleti szűője:

53 Síkhullám, gömbhullám Síkhullám: hullámfont x (z,t) cos( ω t ± kz) B y (z,t) B cos( ωt ± kz) Gömbhullám: (z,t) cos( t k B ω ± ) B(z,t) cos( ωt ± k ) Huygens elv

54 Töltött észecske sugázása gy gyosuló észecske elektomos és mágneses tee távoltében (R >> d, ahol d az emh foásának jellemző méete) H ~ ~ S q R q R & e R ( & e ) R er & H S S ( &) ~ & ~

55 Sugázási teljesítmény P sug A SdA ( &) P sug ~ &

56 MH keltése I. Töltött észecskék gyosítása: észecskegyosító igen dága Másik lehetőség: magneton Mikohullámú sütőben: Radaban: Légi iányítás Tolató ada

57 MH keltése II. A Hetz féle kísélet: ω R o LC

58 MH keltése III. Láttuk: H ~ ~ q R Rezgő dipól: q R & e R ( & e ) R er & + - x x(t) p( t) qx( t) qasin( ωt) I( t) I sin( ω t) q( t) q sin( ωt) p( t) p sin( ω ) t

59 Rezgő dipól sugázási kaakteisztikája H q R & ~ e R ~ ( e ) R er q R &

60 Reflexió, tanszmisszió, abszopció I. Ideális vezető: σ (nincs ohmikus veszteség) Beeső hullám: Visszavet hullám: Ideális vezető Fázistolás: ϕ π Reális vezető (fém): behatolás R < % Beeső hullám vezető alumínium tüköe R 98% Visszavet hullám

61 Reflexió, tanszmisszió, abszopció II. eedő Beeső hullám Visszavet hullám efl. be Ideális vezető ϕ be ϕ efl. ϕ be ϕ efl.

62 Reflexió, tanszmisszió, abszopció III. Intenzitás Reális vezető, dielektikum Beeső hullám Visszavet hullám Tanszmittált hullám x abszopció I be I efl. + I absz. + I t. R R( ω ) és σ σ ( ω)

63 Reflexió, tanszmisszió, abszopció IV. Paabola antenna Rada Rádiócsillagászat Antenna eflekto

64 Reflexió, tanszmisszió, abszopció V. URH R R( ω ) és σ σ ( ω)

65 Kommunikáció I. Moduláció: Amplitúdó moduláció: Fekvencia moduláció: Hullámcsomag (impulzus):

66 Kommunikáció II. f(t) F(ω) Bukoló fgv.: f(t) F.T. t ω Gauss imp. t t ω ω

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

OPTIKA. Elektromágneses hullámok. Dr. Seres István

OPTIKA. Elektromágneses hullámok. Dr. Seres István OPTIK D. Sees István Faaday-féle indukiótövény Faaday féle indukió tövény: U i t d dt Lenz tövény: z indukált feszültség mindig olyan polaitású, hogy az általa létehozott áam akadályozza az őt létehozó

Részletesebben

Fizika és 14. Előadás

Fizika és 14. Előadás Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

Modern fizika és alkalmazásai

Modern fizika és alkalmazásai Moden fizika és alkalmazásai.előadás Fizika Tsz. h előadás http://fizipedia.bme.hu/inde.php/moden_fizika_ és_alkalmazásai Miét éppen fizika? Fizikai kutatások Alkalmazások Számítógépes hálózat Intenet

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Fizika és 3. Előadás

Fizika és 3. Előadás Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Elektromágneses hullámok OPTIKA. Dr. Seres István

Elektromágneses hullámok OPTIKA. Dr. Seres István lektomágneses hullámok OPTIK D. Sees István mehatonika szak. Faaday-féle indukiótövény Faaday féle indukió tövény: U i Φ tt dφ dt lektomágneses hullámok Lenz tövény: z indukált feszültség mindig olyan

Részletesebben

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2 . Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

Fizika és 6. Előadás

Fizika és 6. Előadás Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn

Részletesebben

3. GYAKORLATI ELEKTROMOSSÁGTAN

3. GYAKORLATI ELEKTROMOSSÁGTAN 3. GYKORLI ELEKROMOSSÁGN 1. lapfogalmak z elektomos töltés z anyagi testek általában elektomosan semlegesek, de egyszeű fizikai módszeel (pl. dözselektomosság) pozitív vagy negatív töltésűvé tehetők. z

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Elektromosságtan. Farzan Ruszlán SZE, Fizika és Kémia Tsz szeptember 29.

Elektromosságtan. Farzan Ruszlán SZE, Fizika és Kémia Tsz szeptember 29. Elektromosságtan Farzan Ruszlán SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Coulomb-törvény Gauss-tétel Elektromos dipólus Az elektromos dipólus erővonalai Elektromos tér feszültsége Kondenzátor Elektrosztatikai

Részletesebben

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között? Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

MIB02 Elektronika 1. Passzív áramköri elemek

MIB02 Elektronika 1. Passzív áramköri elemek MIB02 Elektronika 1. Passzív áramköri elemek ELLENÁLLÁSOK -állandóértékű ellenállások - változtatható ellenállások - speciális ellenállások (PTK, NTK, VDR) Állandó értékű ellenállás Felépítés: szigetelő

Részletesebben

Teljesítm. ltség. U max

Teljesítm. ltség. U max 1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete

Részletesebben

HARDVEREK VILLAMOSSÁGTANI ALAPJAI

HARDVEREK VILLAMOSSÁGTANI ALAPJAI HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat ellenőizte Macsa Dániel, okl. villamosménök Széchenyi István

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

s levegő = 10 λ d sin α 10 = 10 λ (6.1.1)

s levegő = 10 λ d sin α 10 = 10 λ (6.1.1) 6. gyakorlat 6.. Feladat: (HN 38B-) Kettős rést 6 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n,65) készült lemezt helyezünk

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

A femtoszekundumos lézerektől az attoszekundumos fizikáig

A femtoszekundumos lézerektől az attoszekundumos fizikáig A femtoszekundumos lézerektől az attoszekundumos fizikáig Varjú Katalin, Dombi Péter Kapcsolódási pont: ultrarövid impulzusok: karakterizálás, alkalmazások egy attoszekundumos impulzus előállításához kell

Részletesebben

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i 0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni

Részletesebben

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp Elektomos állapot Göög tudomány, Thales ηλεκτρνboostyán (elekton) Elektomos állapot alapjelenségei Kétféle elektomos állapot pozitív üveg negatív ebonit Elektoszkóp Tapasztalatok Testek alapállapota semleges

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

Elektrosztatika (Vázlat)

Elektrosztatika (Vázlat) lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus

Részletesebben

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:

Részletesebben

2.11. Feladatok megoldásai

2.11. Feladatok megoldásai Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz

Részletesebben

A Maxwell-egyenletrendszer:

A Maxwell-egyenletrendszer: Maxwell-egyenletendsze: Ez a XIX. sz. egyik legnagyobb hatású egyenletendszee, főleg azét, met ebből az egyenletendszeből vezették le az elektomágneses hullámok létezését.. mpèe-maxwell féle gejesztési

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30.

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30. Budapesti Műszaki- és Gazdaságtudományi Egyetem Gazdaság- és ársadalomtudományi Kar Fizika dolgozat 4. Váltakozó áramú áramkörök munkája és teljesítménye Kovács Emese Műszaki szakoktató hallgató 4-es tankör

Részletesebben

Elektromágneses terek gyakorlat, 6.

Elektromágneses terek gyakorlat, 6. Elektromágneses terek gyakorlat, 6. Síkhullámok - Hertz-dipólus Reichardt András 2007. május 2. Reichardt András (SzHV, BME) Elektromágneses terek gyakorlat # 6. 2007.05.02. 1 / 43 Poynting-vektor Elméleti

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Infomáció megjelenítés Számítógépes ábázolás D. Iványi Péte Megvilágítás, ányékolás Realisztikus képhez ányékolás kell Modellezés összetett nagy számítási igenyű Megvilágítás, ányékolás OpenGL egyszeűsített

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH : ielektikumok (kibővített óavázlat) z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alaptövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

Zaj és rezgésvédelem

Zaj és rezgésvédelem OMKT felsőfokú munkavédelmi szakiányú képzés Szekesztette: Mákus Miklós zaj- és ezgésvédelmi szakétő Lektoálta: Mákus Péte zaj- és ezgésvédelmi szakétő Budapest 2010. febuá Tatalomjegyzék Tatalomjegyzék...

Részletesebben

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat

Részletesebben

Fazorok március 18.

Fazorok március 18. Fazorok 2016. március 18. A fazorok fázist ábrázoló vektorok. Használatukkal a zika legkülönböz bb területein (mechanikai rezgések és hullámok, váltóáramú hálózatok, optika) tudunk egyszer en megoldani

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. 1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Fizika A2E, 11. feladatsor

Fizika A2E, 11. feladatsor Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk

Részletesebben

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet) Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007 ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos

Részletesebben

Kvázistacionárius jelenségek

Kvázistacionárius jelenségek 0-0 Kvázistacionárius jelenségek Majdnem időben állandó = lassú (periodikus) változás. Időben lassan változó mezők: eltolási áram elhanyagolható a konduktív áram mellet Maxwell-egyenletek: rot E = 1 c

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

XIII. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

XIII. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA XIII. FIATA ŰSAKIAK TUDOÁNYOS ÜÉSSAKA Kolozsvá, 008. mácius 14-15. A RFID RNDSR TRJDÉSI HUÁAINAK A RÁDIÓNAVIGÁCIÓJA Tóth nikő, Pof. D. Illés Béla Abstact In ecent yeas automatic identification pocedues

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó

Részletesebben

A fény mint hullám. Az interferencia feltételei, koherencia.

A fény mint hullám. Az interferencia feltételei, koherencia. A fény mint hullám. Az intefeencia feltételei, koheencia. Iodalom [3]: 75-76 Az elektomágneses fényelmélet szeint a (látható) fény egy olyan elektomágneses hullám, amelynek hullámhossza (vákuumban) 38

Részletesebben

El adó: Unger Tamás István Konzulens: Dr. Kolos Tibor f iskolai docens április 23.

El adó: Unger Tamás István   Konzulens: Dr. Kolos Tibor f iskolai docens április 23. El adó: Unger Tamás István e-mail: ungert@maxwell.sze.hu Konzulens: Dr. Kolos Tibor f iskolai docens 2014. április 23. Az el adás tartalma A patch antenna felépítése M ködési elv Bementi impedancia csökkentése

Részletesebben