A karaktertáblákban nem beszéltünk az irreducibilis reprezentációk jelöléséről. Ha a T d -táblában látható jelzéseket megnézzük, nem nehéz rájönni,

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A karaktertáblákban nem beszéltünk az irreducibilis reprezentációk jelöléséről. Ha a T d -táblában látható jelzéseket megnézzük, nem nehéz rájönni,"

Átírás

1 1

2 A karaktertáblákban nem beszéltünk az irreducibilis reprezentációk jelöléséről. Ha a T d -táblában látható jelzéseket megnézzük, nem nehéz rájönni, hogy azonos fő betű esetén csak az identitás alatt lévő karakterek egyeznek, ami azt adja meg, hogy mekkora a leíró mátrix dimenziója, hiszen az identitás esetén a transzformációs mátrix minden átlóbeli értéke szükségszerűen 1! Tehát az A azt jelenti, hogy 1x1-es, az E azt, hogy 2x2-es és a T azt, hogy 3x3-as mátrix írja le az adott transzformációt. Ugyanakkor az egynél nagyobb számok azt is jelentik, hogy a bázis két vagy három eleme elválaszthatatlanul, azaz együtt alkotja a reprezentációt! Az MO-elméleti alkalmazásnál pl. egy ilyen pálya esetében csak egy energiaszint, de két vagy három pályafüggvény tartozik ahhoz a szinthez, azaz elfajultak a pályák, tehát mondhatjuk azt is, hogy a reprezentáció elfajultságát mutatja meg. Ha az indexek csak számok, akkor az egyszerűen a sorszámozást jelentik. A reprezentációkat általában emelkedő elfajultságuk sorrendjében adják meg. Az első sor mindig A típusú és csupa 1-es karaktert tartalmaz és a teljesen/totálisan szimmetrikus reprezentációnak nevezik. A Tankönyvükben található karaktertábláknak további oszlopai vannak, amelyeknek tartalma függ attól, hogy milyen célból adták közre a táblázatot, de általában tartalmazzák azt, hogy az adott pontcsoportban a descartes-i tengelyek körüli forgás mely reprezentáció szerint transzformálódik, illetve megtalálható ezen tengelyek viselkedésének megfelelő sor megjelölése is. Ezen soroknak felelnek meg minden vektor jellegű tulajdonság viselkedése is! A körülöttük levő zárójel azt mutatja, hogy együtt alkotják a többdimenziós reprezentáció bázisát. Mivel mi elsősorban kvantummechanikai célokra használjuk a táblákat, ezért olyan függvények kerültek megadásra, amelyik ebből a célból jól használhatók! 2

3 Minden táblában megadják a tengelyek körüli forgás, illetve a tengelyek irányában történő elmozdulás sorát. Ugyanakkor az adott pontcsoportnak megfelelő szimmetriájú környezetben levő atomon lévő atomi pályáknak megfelelő sorokat is jelölik. Az s-pálya, mivel gömb alakú, mindig a teljesen szimmetrikus irreducibilis reprezentációnak megfelelően viselkedik. A p-pályák, mivel a tengelyek irányába mutatnak és polárosak is, azaz a lebenyeiknek előjele van, ezért ugyanúgy viselkednek, mint a tengelyek maguk. A d-pályák már bonyolultabbak, ezért külön jelölik az egyes függvénykombinációikat! 2

4 A C 2v csoport esetében viszont beszéltünk B-jelű irreducibilis reprezentációkról is! Az identitás alatti karakter szerint ezek is egydimenziós reprezentációk. A főtengely az ami megkülönbözteti őket az A jelűektől! A B jelűek antiszimmetrikusak a főtengely körüli elforgatásra! 3

5 Alsó indexként azonban nemcsak számok, hanem a g és az u betűk is szerepelhetnek, a gerade és az umgerade szócskák helyett. Ezek az inverzióval szembeni viselkedésüket jelölik. 4

6 Nemcsak alsó, hanem felső index is lehetséges egy- és kétvesszős irreducibilis reprezentáció formájában. Ez tükörsíkkal szembeni viselkedését jelzi az adott reprezentáció esetében. 5

7 A kötések polaritásának nagyságán túl a molekulák dipólusmomentumának meghatározásában jelentős szerepet játszik azoknak a térbeli elrendeződése, a molekula alakja. Nem véletlen, hogy annak kvalitatív megítélésében, hogy a dipólusmomentum nulla-e vagy sem segítséget nyújt a pontcsoportok elmélete. Bebizonyítható, hogy csak a C n, C nv és a C s csoportokba sorolható molekulák polárosak! 6

8 A kiralitás jelenségét az okozza, hogy megfelelően alacsony szimmetriájú molekuláknál fellép a tükörképi izoméria, azaz enantiomer párok léteznek, amelyek minden fizikai paramétere egyezik, csak a síkban polározott fénnyel szembeni viselkedésük tér el. Bebizonyítható, hogy csak a királis molekulák mindegyike C n, D n pontcsoportokba sorolhatók. 7

9 Mivel a kémiai kötés leírása két szálon fejlődött, és a két változat viszonylag hosszú ideig létezett egymás mellett, ezért sok fogalom neve keveredett át egyikből a másikba, illetve töredékek maradtak meg a VB csatavesztése után a vegyészek továbbra is használnak. Az egyik ilyen töredék a hibridizáció, amelyik kimondottan az arra való törekvés, hogy az elektronpárosítást el tudjuk végezni és a legjobb példa a szénatom különböző kötési állapotainak az esete. Ez a vágy olyan erős, hogy a nagy kvantummechanikai programok, amelyek LCAO-MO alapján működnek, mindegyike tartalmaz egy ún. lokalizációs rutint, mint opcionális lehetőséget, amely a több mint kétcentrumú pályákon lévő elektronokat a klasszikus képnek megfelelő kötések mentén lokalizálja. A hibridizációval a másik gond, hogy van egy másik értelmű használata, amire a LiH a jó példa. Vizsgáljuk meg, hogy melyik mit jelent! 8

10 A VB gondban van a szén négy vegyértékével, amit úgy próbál feloldani, hogy kihasználja, hogy a szén esetében a 2s és a 2p pályák között még kicsi az energiaszintek különbsége, ezért már kis gerjesztés hatására bekövetkezhet a 2s- 2p átmenet és ennek következtében kialakulhat egy olyan állapot, amely négy párosítatlan elektront tartalmaz. Ha a négy elektron egyenértékű, akkor ez magyarázza, hogy a négy -kötés a tetraéder négy csúcsa felé mutat és egyenértékű. Ehhez meg is találták a matematikai módszert, hogy hogyan lehet a 2s és a 3 darab 2p pályából olyan lineáris kombinációt létrehozni, amely az igényeknek megfelel, alakjuk azonos és a négy csúcs felé mutat. (Ezt a könyvük le is írja!) A baj az, hogy azt is feltételezték, hogy ez az állapot ki is alakul a valóságban, holott a szénatom emissziós színképében erre semmi bizonyíték nincs! 9

11 Ugyanakkor a VB szerint az is igaz, hogy mivel a szén esetében a 2s és a 2p pályák között még kicsi az energiaszinte különbsége, ezért már kis gerjesztés hatására bekövetkezhet a 2s-2p átmenet és ennek következtében kialakul három egyenértékű, az egyenlő oldalú háromszög csúcsai felé mutató pálya, amelyek képesek a három egyenértékű -kötést létrehozni, míg a harmadik p-pálya érintetlen marad. Persze a szén emissziós színképében erre sincs bizonyíték! 10

12 Másrészt a VB szerint, az is igaz, hogy mivel a szén esetében a 2s és a 2p pályák között még kicsi az energiaszintek különbsége, ezért már kis gerjesztés hatására bekövetkezhet a 2s-2p átmenet és ennek következtében kialakul két egyenértékű, egymással ellentétes irányba mutató pálya, amelyek képesek a két egyenértékű -kötést létrehozni, míg két p-pálya érintetlen marad. Persze spektroszkópiai bizonyíték erre sincs! 11

13 Egy esemény, háromféle eredmény, magyarázat és kísérleti bizonyíték nélkül! Nem igen tartható elmélet! A VB valójában felcseréli az okot és az okozatot, mert szerinte azért alakul ki az adott geometria, mert az adott pályák létrehozzák a kötéseket. A valóságban az adott geometria kialakulása esetén, amely az adott körülmények között a legalacsonyabb energiájú állapot, a szimmetria követeli meg, hogy az adott atomi pályák hozzájáruljanak az MO-k kialakulásához, amint azt a csoportelmélet segítségével be is lehet bizonyítani! 12

14 Vizsgáljuk meg a tetraéderes szénatom négy ekvivalens -kötésének a T d -csoport szerinti transzformációit, írjuk fel a reducibilis reprezentációját. Az identitás mind a négyet változatlanul hagyja. A C 3 csak az egyiken halad át, ezért karaktere 1. A szögfelezőn lévő C 2 mind a négyet elmozdítja, ezért karaktere 0. A tükörsík két kötésen megy keresztül, ezért karaktere 2. A negyedrendű tükrözéses tengely a C 2 -vel esik egybe és mind a négy kötést elmozdítja, tehát a karakter itt is 0. Ez egy reducibilis reprezentáció, ezért fel kell bontani! 13

15 A felbontás, más néven redukálás igen egyszerű matematikán alapszik! Ahhoz, hogy megtudjuk, hogy egy irreducibilis reprezentáció hányszor szerepel a reducibilis reprezentációban, egy összeget kell képezni a redukálandó reprezentáció megfelelő karakterei, a megfelelő osztályokba foglalt szimmetriaműveletek száma és a vizsgált irreducibilis megfelelő karaktereinek szorzataiból. Ezt az összeget osztva a csoport rendjével kapjuk meg az adott irreducibilis reprezentáció hozzájárulását az összeghez. Jelen esetben ez a hányados A 1 és a T 2 esetében ez 1-1 lesz, míg a további három esetében 0. 14

16 A felbontás azt jelenti, hogy a négy egyenértékű kémiai kötést, nem egy négyszeresen, hanem egy nem elfajult és három elfajult MO írja le, azaz nincs négy egyenértékű pálya! Azt, hogy ezekhez a szénatom melyik atomi pályái járulnak hozzá, a karaktertáblából igen könnyű kiolvasni! 15

17 A teljesen szimmetrikus reprezentáció sorában találhatók a négyzetes függvények, amelyek összege a gömb alakú s-pályát írják le. A T 2 sorban az x,y,z-függvények találhatók, amelyek a három p-pályának felelnek meg. Ezekből és a tetraéder csúcsain lévő pályákból, a pontcsoportok elmélete segítségével, azonban az alapkollégium anyagát meghaladó módon kiszámítható az, hogy a négy molekulapályát mely atomi pályák, milyen jellegű átfedése hozza létre! 16

18 Hasonlóan járhatunk el a D 3h -csoportba tartozó sp 2 hibriddel is! Az identitáson kívül a horizontális tükörsík is önmagába transzformálja mindhárom kötést, karaktereik 3-3. A főtengely azonban mindet elmozdítja, ezért a karakter 0, akárcsak a vele egybeeső S 3 -é is. A főtengelyre merőleges C 2, csak az egyik kötésen megy keresztül, így karaktere 1, akárcsak a vertikális tükörsíké. A redukálás eredményeként a csoport teljesen szimmetrikus nem elfajult reprezentációjának és egy kétszeresen elfajult reprezentáció összegét kapjuk, tehát itt sincs háromszorosan elfajult állapot, azaz három egyenértékű pálya! 17

19 A szénatom megfelelő hozzájárulást adó pályái az s-pálya, a teljesen szimmetrikus MO esetében, és a p x és a p y a kétszeresen elfajult MO-nál. Itt is lehetőség van a pályakombinációk kiszámítására, a pontcsoportok elmélete segítségével. 18

20 Az sp-hibrid a D h csoportba sorolható. A csoport rendje végtelen, a két kötés reprezentációja azonban véges, de nem egyezik a csoport egyetlen kétszeresen elfajult reprezentációjával sem, hanem két nem elfajult reprezentáció összege. Az ezeknek megfelelő MO-khoz a szénatom s- és p z -pályája képes hozzájárulni, a fenti módon. 19

21 Kimutatható tehát mindhárom esetben, hogy a VB által feltételezett elfajultság nem felel meg az alak szimmetriájából számított elfajultságnak. Ez azt jelenti, hogy ha feltételezzük továbbra is, hogy az alak az elektronszerkezet következménye, azaz szimmetria szempontjából izomorfak, akkor csak arra következtethetünk, hogy nincs meg az izomorfia az elektronrendszer és az azt leíró függvények között, ha elfogadjuk a VB feltételezéseit. A VB tehát HIBÁS modell! 20

22 Kicsit más értelemben használja a korábbi kiadású (a kék és a zöld borítójú) Tankönyv a hibridizáció fogalmát a LiH leírása esetében. Itt nem a geometria magyarázata miatt feltételezi, hogy egy összetett sp-hibrid járul hozzá a LiH kötésének létrehozásához, hanem azért mert, ha csak a Li 2s- és a H 1spályájának bázisán végzik el a számításokat, akkor a képződési energia, azaz a kötés erőssége jóval kisebb lesz a kísérleti eredményekből kapott értékeknél. Ellenben ha a Li 2p z -pályáját, amelyen nincs elektron, is figyelembe vesszük, akkor a valóságot igen jól megközelítő eredményt kapunk. A valós ok, azonban a sajátérték probléma már korábban említett tulajdonsága, amely kimondja, hogy a közel azonos energiájú atomi pályák hozzájárulása közel azonos a molekulapályákhoz, azaz a Li 2s- és 2p z -pályája nem választhatók el egymástól, nem hagyható figyelmen kívül egyik sem a számításnál! A valós számításoknál mindig az atomon energetikailag számbajöhető valamennyi atomi pályát felhasználják a molekulapálya energiák számításánál! 21

23 Az MO képes generálni a szilárdtestek viselkedésének leírásakor használt sávelméletet is! Egyszerűen növelni kell a résztvevő atomok számát. 22

24 Használjuk a legegyszerűbb lehetőséget ennek bizonyítására, a Hückel-féle közelítést. A k-adik szint energiája megadható egy általános képlettel, ha N- atomból álló lineáris rendszer esetére. Ekkor persze és nem a p-, hanem pl s- pályák megfelelő paraméterei. Vizsgáljuk meg, hogy van-e korlátja a legalacsonyabb és a legmagasabb energiájú MO-k közötti szintkülönbségnek, ha N minden határon túl nő. 23

25 Az összefüggésből kiesik, a trigonometrikus rész átalakítható. Az így kapott szorzat első tagjából N-is kieseik, a második viszont / alakú. Ezt a l Hospitalszabály segítségével tudjuk feloldani, és kiderül, hogy a tört 1-hez tart. Így már megadható a határérték, mivel sin( /2)=1, azaz a két szélső szint 4 -nél kisebb távolságra van egymástól. 24

26 Vizsgáljuk meg két szomszédos, a k és a k+1-edik szint, közti energiaszint különbséget. Hasonló módon eljárva, a helyzet egyszerűbb, mert a minden határon túl növekedő N, a szinuszfüggvények argumentumának nevezőjében van, azaz a szorzat mindkét tagja nullához tart. Tehát a szintek végtelen közel kerülnek egymáshoz, az 2 tartományban. 25

27 Tehát minden határon túl növelve N-t, a tartományt az MO-k folytonosan lefedik. Ha minden atomi pályán, amely részt vesz a sáv kialalításában csak egy elektron van, akkor a Pauli-féle kizárási elv miatt, csak a fele lehet betöltve a sávot alkotó pályáknak. Az ilyen sáv a Fermi szintig van betöltve. Az ilyen szilárd test fémes vezető, mert az elektronok a sávon belül szabadon mozognak! Ha két elektront szolgáltat minden atomi pálya, akkor a sáv teljesen betöltött, az elektronok elvileg nem tudnak elmozdulni a sávon belül. Az hogy a test milyen vezető lesz az attól függ, hogy az atomok következő, magasabb energiájú, üres AO-jaiból létrejött sáv milyen messze van a betöltött sávtól. Az elválasztó energiatartomány az ún. tiltott sáv. Ha a tiltott sáv szélessége nagy a termikus energiához képest, azaz az alsó sávból nem nagy valószínűséggel lépnek át a felsőbe elektronok, akkor szigetelőnk anyagunk van. Ha a tiltott sáv keskenyebb, összemérhető a termikus energiával, akkor néhány elektronnak lehetővé teszi, hogy átlépjen a felső sávba. Ez korlátozott vezetést biztosít, azaz félvezetőnk van. Ha a tiltott sáv szélessége kicsi a termikus átlagos energiához képest, akkor az elektronok nagy számban tudnak átugrani ezen a résen, és az adott hőmérsékletre jellemző betöltési profil alakul ki. Emiatt mindkét sáv vezető sávvá válik, és az anyag fémes vezetőként viselkedik. A sávok távolsága szoros összefüggésben van az alkotó atomok AO-inak az energiaszintjével. Ez a modell a szilárdtest fizika, a modern anyagtudomány alapja, képes értelmezni a szennyezésen alapuló p- és az n-típusú félvezetést is. 26

28 27

Fizikai kémia 2. ZH II. kérdések I. félévtől

Fizikai kémia 2. ZH II. kérdések I. félévtől Fizikai kémia 2. ZH II. kérdések 2018-19 I. félévtől Szükséges adatok, állandók és összefüggések: c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált

Részletesebben

A kovalens kötés polaritása

A kovalens kötés polaritása Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása

Részletesebben

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR) 4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált

Részletesebben

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion 06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as

Részletesebben

Elektronszínképek Ultraibolya- és látható spektroszkópia

Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

A hidrogénmolekula. Emlékeztető: az atompályák hullámok (hullámfüggvények!) A hullámokra érvényes a szuperpozíció (erősítés és kioltás) elve!

A hidrogénmolekula. Emlékeztető: az atompályák hullámok (hullámfüggvények!) A hullámokra érvényes a szuperpozíció (erősítés és kioltás) elve! Energia A hidrogénmolekula Emlékeztető: az atompályák hullámok (hullámfüggvények!) A hullámokra érvényes a szuperpozíció (erősítés és kioltás) elve! Ezt két H-atomra alkalmazva: Erősítő átfedés csomósík

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

A hidrogénmolekula. Energia

A hidrogénmolekula. Energia A hidrogénmolekula Emlékeztető: az atompályák hullámok (hullámfüggvények!) A hullámokra érvényes a szuperpozíció (erősítés és kioltás) elve! Ezt két H-atomra alkalmazva: Erősítő átfedés csomósík Energia

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Átmenetifém-komplexek mágneses momentuma

Átmenetifém-komplexek mágneses momentuma Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s

Részletesebben

Átmenetifém-komplexek ESR-spektrumának jellemzıi

Átmenetifém-komplexek ESR-spektrumának jellemzıi Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Általános és szervetlen kémia 3. hét. Kémiai kötések. Kötések kialakítása - oktett elmélet. Az elızı órán elsajátítottuk, hogy.

Általános és szervetlen kémia 3. hét. Kémiai kötések. Kötések kialakítása - oktett elmélet. Az elızı órán elsajátítottuk, hogy. Általános és szervetlen kémia 3. hét Az elızı órán elsajátítottuk, hogy milyen a kvantummechanikai atommodell hogyan épül fel a periódusos rendszer melyek a periodikus tulajdonságok Mai témakörök elsıdleges

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

Kémiai alapismeretek 3. hét

Kémiai alapismeretek 3. hét Kémiai alapismeretek 3. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2013. szeptember 17.-20. 1/15 2013/2014 I. félév, Horváth Attila c : Molekulákon

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet

Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet Általános és szervetlen kémia 3. hét Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek

Részletesebben

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel.

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel. A SZILÁRDTEST FOGALMA Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. a) Méret: b) Szilárdság: molekula klaszter szilárdtest > ~ 100 Å ideálisan rugalmas test: λ = 1 E σ λ : rel. megnyúlás

Részletesebben

A többatomos molekula rezgéseinek a leírása a klasszikus modellen alapul. Abból indulunk ki, hogy egy atom lehetséges elmozdulásait 3 egységvektor

A többatomos molekula rezgéseinek a leírása a klasszikus modellen alapul. Abból indulunk ki, hogy egy atom lehetséges elmozdulásait 3 egységvektor 1 A többatomos molekula rezgéseinek a leírása a klasszikus modellen alapul. Abból indulunk ki, hogy egy atom lehetséges elmozdulásait 3 egységvektor segítségével írhatjuk le. 2 Ennek megfelelően egy N

Részletesebben

Szalai István. ELTE Kémiai Intézet 1/74

Szalai István. ELTE Kémiai Intézet 1/74 Elsőrendű kötések Szalai István ELTE Kémiai Intézet 1/74 Az előadás vázlata ˆ Ismétlés ˆ Ionos vegyületek képződése ˆ Ionok típusai ˆ Kovalens kötés ˆ Fémes kötés ˆ VSEPR elmélet ˆ VB elmélet 2/74 Periodikus

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 13. mérés: Molekulamodellezés PC-n. 2008. április 29.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 13. mérés: Molekulamodellezés PC-n. 2008. április 29. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 13. mérés: Molekulamodellezés PC-n Értékelés: A beadás dátuma: 2008. május 6. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást! FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben 06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

Kémiai kötés: több atom reakcióba lépése során egy közös, stabil (telített) külső elektronhéj alakul ki.

Kémiai kötés: több atom reakcióba lépése során egy közös, stabil (telített) külső elektronhéj alakul ki. 19. Kémiai kötések (Elsődleges és másodlagos kötések. Elektronegativitás, elektronaffinitás, ionizációs energia. Ionos, fémes és kovalens kötés. A kovalens kötések fajtái, működésük, osztályozásuk, hibridizáció.

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Algebra2, alapszint 11. előadás 1 / 11. Algebra2, alapszint. ELTE Algebra és Számelmélet Tanszék. Előadó: Kiss Emil 11.

Algebra2, alapszint 11. előadás 1 / 11. Algebra2, alapszint. ELTE Algebra és Számelmélet Tanszék. Előadó: Kiss Emil 11. Algebra2, alapszint 11. előadás 1 / 11 Algebra2, alapszint ELTE Algebra és Számelmélet Tanszék Előadó: Kiss Emil ewkiss@cs.elte.hu 11. előadás Kristályok szimmetriái Algebra2, alapszint 11. előadás 2 /

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai köté magaabb zinten 5-1 Mit kell tudnia a kötéelméletnek? 5- Vegyérték köté elmélet 5-3 Atompályák hibridizációja 5-4 Többzörö kovalen kötéek 5-5 Molekulapálya elmélet 5-6 Delokalizált elektronok:

Részletesebben

Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc

Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc Környezetvédelmi analitika - Rezgési spektroszkópia Billes, Ferenc Tartalom Előszó... xi 1. A MOLEKULÁK SZIMMETRIAVISZONYAI... 1 1. 1.1

Részletesebben

Szénhidrogének II: Alkének. 2. előadás

Szénhidrogének II: Alkének. 2. előadás Szénhidrogének II: Alkének 2. előadás Általános jellemzők Általános képlet C n H 2n Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C = C kötést

Részletesebben

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Cikloalkánok és származékaik konformációja

Cikloalkánok és származékaik konformációja 1 ikloalkánok és származékaik konformációja telített gyűrűs szénhidrogének legegyszerűbb képviselője a ciklopropán. Gyűrűje szabályos háromszög alakú, ennek megfelelően szénatomjai egy síkban helyezkednek

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

1. BEVEZETÉS A MOLEKULÁK SZIMMETRIACSOPORTJA Szimmetriaelemek a pontcsoportokban Forgástengelyek

1. BEVEZETÉS A MOLEKULÁK SZIMMETRIACSOPORTJA Szimmetriaelemek a pontcsoportokban Forgástengelyek Szalay Zsófia Csoportelmélet a kémiában Témavezető: Hermann Péter Eötvös Loránd Tudományegyetem Algebra és Számelmélet Tanszék Budapest, 008. Tartalomjegyzék. BEVEZETÉS... 3. A MOLEKULÁK SZIMMETRIACSOPORTJA...

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET

DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET MISKOLCI EGYETEM VILLAMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKAI- ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. (DISZKRÉT FÉLVEZETŐK, ERŐSÍTŐK) ELŐADÁS JEGYZET 2003. 2.0. Diszkrét félvezetők és alkalmazásaik

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Fullerének vizsgálata infravörös spektroszkópiával Kamarás Katalin, Pergerné Klupp Gyöngyi MTA SzFKI,

Fullerének vizsgálata infravörös spektroszkópiával Kamarás Katalin, Pergerné Klupp Gyöngyi MTA SzFKI, Fullerének vizsgálata infravörös spektroszkópiával Kamarás Katalin, Pergerné Klupp Gyöngyi MTA SzFKI, email: kamaras@szfki.hu, klupp@szfki.hu A gyakorlat célja a C 60 molekulakristály és a lineáris szerkezet

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Periciklusos reakciók

Periciklusos reakciók Periciklusos reakciók gyűrűs átmeneti állapoton keresztül, köztitermék képződése nélkül, egyetlen lépésben lejátszódó ( koncertáló ) reakciókat Woodward javaslatára periciklusos reakcióknak nevezzük. Ezeknek

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

Energiaminimum- elve

Energiaminimum- elve Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 7 KRISTÁLYTAN VII. A KRIsTÁLYOK szimmetriája 1. BEVEZETÉs Az elemi cella és ebből eredően a térrácsnak a szimmetriáját a kristályok esetében az atomok, ionok

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül

Részletesebben

Periódusos rendszer (Mengyelejev, 1869) nemesgáz csoport: zárt héj, extra stabil

Periódusos rendszer (Mengyelejev, 1869)   nemesgáz csoport: zárt héj, extra stabil s-mezı (fémek) Periódusos rendszer (Mengyelejev, 1869) http://www.ptable.com/ nemesgáz csoport: zárt héj, extra stabil p-mezı (nemfém, félfém, fém) d-mezı (fémek) Rendezés elve: növekvı rendszám (elektronszám,

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

1. Szimmetriák. Háromszög-szimmetria. Rubin Zafir Kalcit aluminium-oxid: Al 2 O 3 kalcium-karbonát: CaCO 3

1. Szimmetriák. Háromszög-szimmetria. Rubin Zafir Kalcit aluminium-oxid: Al 2 O 3 kalcium-karbonát: CaCO 3 Egy kis reklám A Matematikatanárok Klubjának honlapja: https://www.cs.elte.hu/ miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. https://www.youtube.com/watch?v=iy4dzcwyf5s

Részletesebben

Kémiai kötés Lewis elmélet

Kémiai kötés Lewis elmélet Kémiai kötés 10-1 Lewis elmélet 10-2 Kovalens kötés: bevezetés 10-3 Poláros kovalens kötés 10-4 Lewis szerkezetek 10-5 A molekulák alakja 10-6 Kötésrend, kötéstávolság 10-7 Kötésenergiák Általános Kémia,

Részletesebben

A kémiai kötés. Kémiai kölcsönhatás

A kémiai kötés. Kémiai kölcsönhatás A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS KOVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Ionos kötés Na Cl Ionpár képződése e - Na + Cl - Na:

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

2. ZH IV I.

2. ZH IV I. Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=

Részletesebben