Friedmann egyenlet. A Friedmann egyenlet. September 27, 2011

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Friedmann egyenlet. A Friedmann egyenlet. September 27, 2011"

Átírás

1 A September 27, 2011 A

2 A

3 A

4 Robertson-Walker metrika Konvenció: idő komponenseket 4. helyre írom. R-W metrika: R(t) kr 2 g = 0 R(t) R(t) 2 r 2 sin 2 (Θ) Ugyanez más paraméterezéssel (r 2 x 2 + y 2 + z 2 ): R(t) ( kr 2 ) 2 R(t) g = ( kr 2 ) 2 R(t) ( kr 2 ) A

5 Használt fogalmak Konnexió: X Y = (X (Y k ) + X i Y j Γ k ij) k A g metrikus tenzor kijelöl egy konnexiót: Ekkor Torziómentes: X Y Y X [X, Y ] = 0 Zg(X, Y ) g( z X, Y ) g(x, Z Y ) = 0 Riemann tenzor: Γ k ij = 1 2 g ks ( i g js + j g is s g ij ) R.jkl i... = k Γ i...lj lγ i...kj + Γi...km Γm...lj Γ i...lj Γm...kj Ricci tenzor: R jl = R i....jil Skalárgörbület: Scal = R = R j..j A

6 Ricci tenzor, görbület A Ricci tenzor: Itt R µν = A skalárgörbület: f (R)R2 ( kr 2 ) f (R)R2 ( kr 2 ) f (R)R2 ( kr 2 ) R R f (R) = R R + 2Ṙ2 R 2 + 2k R 2 Scal = 6 k + Ṙ2 + R R R 2 A

7 A

8 A származtatása Einstein egyenlet Egyszerűsítések: R µν 1 2 Scal g µν = 8πGT µν + Λg µν Λ = 0 T µ..ν diagonális Izotrópia: T µ..ν térbeli részen identitás Folyadék modell A

9 A származtatása Einstein egyenlet Egyszerűsítések: R µν 1 2 Scal g µν = 8πGT µν + Λg µν Λ = 0 T µ..ν diagonális Izotrópia: T µ..ν térbeli részen identitás Folyadék modell A

10 A származtatása Einstein egyenlet Egyszerűsítések: R µν 1 2 Scal g µν = 8πGT µν Λ = 0 T µ..ν diagonális Izotrópia: T µ..ν térbeli részen identitás Folyadék modell A

11 A származtatása Einstein egyenlet Egyszerűsítések: R µν 1 2 Scal g µν = 8πGT µν Λ = 0 T µ..ν diagonális Izotrópia: T µ..ν térbeli részen identitás Folyadék modell A

12 Az energia-impulzus tenzor Folyadék esetén: Nyugvó folyadék: u = (0, 0, 0, 1) T µν = (ρ + p)u µ u ν + pg µν R(t) p(t) ( kr 2 ) 2 R(t) 0 p(t) T µν = ( kr 2 ) 2 R(t) 0 0 p(t) 2 0 ( kr 2 ) ρ(t) A

13 Az energia-impulzus tenzor Folyadék esetén: Nyugvó folyadék: u = (0, 0, 0, 1) T.ν µ. = g µα T αν = T µν = (ρ + p)u µ u ν + pg µν p(t) p(t) p(t) ρ(t) A

14 Energia megmaradás A Bianchi azonosságokból (energia megmaradás): Nem eltűnő rész: T µν..;ν = 0 3Ṙ(ρ + p) + R ρ = 0 Átalakítva: d dt (R3 ρ) = p d dt (R3 ) Ez gyakorlatilag a TD 1. törvénye. A

15 Állapotegyenlet Állapotegyenlet: w időfüggetlen p(t) = w ρ(t) Ezzel a TD 1. tv-e: (1 + w)ρ d dt R3 = ρr 3 Innen ρ R 3(1+w), 3 aleset van: Sugárzás : w = 1/3 = ρ R 4 Anyag : w = 0 = ρ R 3 Vákuum : w = 1 = ρ const A

16 Az Einstein egyenlet: R µν 1 2 g µνscal = 8πGT µν Felhasználjuk T alakját és az állapotegyenletet. Az idő komponens: A térbeli rész: Ṙ 2 R 2 + k R 2 = 8πG 3 ρ 2 R R + Ṙ2 R 2 + k R 2 = 8πGp A T..;ν µν = 0 energia-megmaradás nem független ezektől (Bianchi) A

17 A

18 Nagy Bumm A térbeli és időbeli rész: Ṙ 2 R 2 + k R 2 = 8πG 3 A térbeli és időbeli rész különbsége: ρ, 2 R R + Ṙ2 R 2 + k R 2 = 8πGp R R = 4πG (ρ + 3p) 3 Most Ṙ > 0, így ha ρ(t) + 3p(t) 0, akkor R < 0 t. Végig konkáv t : R(t) = 0, Nagy Bumm. A

19 Hubble paraméter Hubble paraméter: H = Ṙ R : Átírva: Ṙ 2 R 2 + k R 2 = 8πG 3 ρ k H 2 R 2 = 8πG 3H 2 ρ 1 = Ω(t) 1 Legyen ρ c (t) = 3H2 8πG, ekkor Ω = ρ/ρ c Nyilván Ω és a geometria összefügg: k = 1, zárt Ω > 1 k = 0, lapos Ω = 1 k < 0, nyílt Ω < 1 A

20 Hubble paraméter R függése Korai univerzum: k elhanyagolható. : 8πG 3 ρ = Ṙ2 R 2 + k R 2 = H2 + k R 2 Így ha k elhanyagolható: ρ H 2 Anyag: ρ R 3 H 2 R 3 Sugárzás: ρ R 4 H 2 R 4 A

21 Vöröseltolódás Ω és a vöröseltolódás kapcsolata (t < t 0 ) Anyag dominancia: Ω 1 R/R 0 = 1 (1+z) Sugárzás dominancia: Ω 1 R EQ/R 0 (R/R EQ ) (1+z) 2 Az Univerzum először sugárzás- majd anyag dominált. R EQ 10 4 : átmenet sugárzás- és anyag dominancia közt A

22 Görbületi sugár A térbeli rész görbülete: Görbületi sugár: Scal 3 = R curv = R(t) k = 6k R(t) 2 = 6H2 (Ω 1) 1 6 H Ω 1 = Scal 3 R curv : görbületi sugár (gömb), k: kiskálázott. Korai univerzum: Ω 1 << 1, görbület elhanyagolható. A

23 Lassulási paraméter Lassulási paraméter: q 0 = R(t 0 ) 1 R(t 0 ) Friedmann és a térbeli komponensek: H 2 0 Ṙ 2 R 2 = H2 = 8πG 3 ρ k R 2, R R = 4πG 3 Kettő hányadosából (állapotegyenlet: p = w ρ): q 0 = Ω 0 (1 + 3w)/2 Anyag: w = 0 q 0 = Ω 0 /2 Sugárzás: w = 1/3 q 0 = Ω 0 Vákuum: w = 1 q 0 = Ω 0 (ρ + 3p) A

24 A

25 Energia megmaradás: Einstein egyenlet: T µν..;ν = 0 d(ρr 3 ) = pd(r 3 ) R µν 1 2 Scal g µν = 8πGT µν (+Λg µν ) Idő komponens = illetve térbeli komponensek: Ṙ 2 R 2 + k R 2 = 8πG 3 ρ, R R = 4πG 3 (ρ + 3p) Nagy bumm: ρ + 3p > 0 Állapotegyenlet: p = ρw, mennyiségek: Ω, R curv, H, q 0 A

26 Irodalom Kolb, Turner, The early universe (1989) Péter Hraskó, Relativitáselmélet (TYPOTEX, 2002) Griffiths, Podolský, Exact space-times in Einstein s relativity (Cambridge University Press, 2009) Szolcsányi, Differenciálgeometria I. (Tankönyvkiadó, Budapest, 1991) A

Az Einstein egyenletek alapvet megoldásai

Az Einstein egyenletek alapvet megoldásai Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann

Részletesebben

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus

Részletesebben

3. FELADATSOR. n(n 1) Meggondolható, hogy B képtere az összes alternáló 4-lineáris függvény tere, magja pedig R. Hesse(f)(X, Y ) = X(Y (f)) X Y (f).

3. FELADATSOR. n(n 1) Meggondolható, hogy B képtere az összes alternáló 4-lineáris függvény tere, magja pedig R. Hesse(f)(X, Y ) = X(Y (f)) X Y (f). 011/1 I. félév 3. FELADATSOR 3-1: Legyen R T 0,4 V az algebrai görbületi tenzorok tere az n-dimenziós V vektortér felett. Mennyi R dimenziója? Mennyi a 0 Ricci-tenzorú görbületi tenzorok terének dimenziója?

Részletesebben

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések

Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések A Riemann-terekkel kapcsolatos fogalmak, jelölések Az R m euklideszi tér természetes bázisának az e 1 = (1, 0,..., 0),..., e m = (0,..., 0, 1) vektorokból álló bázist mondjuk. Legyen M egy összefügg nyílt

Részletesebben

AZ UNIVERZUM GYORSULÓ TÁGULÁSA

AZ UNIVERZUM GYORSULÓ TÁGULÁSA bességet adunk irányukat pedig a helyvektorokkal ugyanakkora szöget bezárónak vesszük A rendszert ily módon elindítva a testek Kepler-mozgást végeznek miközben konfigurációjuk önmagához hasonló (konvex

Részletesebben

Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20.

Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20. A görbületek világa 1 Kristály Sándor Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest 2015. június 20. 1 Az MTA Bolyai János Kutatói Ösztöndíj által támogatott kutatás. Eukleidészi világnézet

Részletesebben

Bevezetés a kozmológiába 1: a Világegyetem tágulása

Bevezetés a kozmológiába 1: a Világegyetem tágulása Horváth Dezső: Kozmológia-1 HTP-2011, CERN, 2011.08.17. p. 1/24 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2011, CERN, 2011 augusztus 17. Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Bevezetés a kozmológiába 1: a Világegyetem tágulása

Bevezetés a kozmológiába 1: a Világegyetem tágulása Horváth Dezső: Kozmológia-1 HTP-2016, CERN, 2016.08.16. p. 1 Bevezetés a kozmológiába 1: a Világegyetem tágulása HTP-2016, CERN, 2016 augusztus 16. Horváth Dezső horvath.dezso@wigner.mta.hu MTA KFKI Wigner

Részletesebben

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram

Részletesebben

2 Wigner Fizikai Kutatóintézet augusztus / 17

2 Wigner Fizikai Kutatóintézet augusztus / 17 Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1

Részletesebben

Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja

Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával Szondy György ELFT tagja? GPS ELFT Fizikus Vándorgyűlés Szombathely, 2004. Augusztus 24.-27. Ált. Rel. GRAVITÁCIÓ

Részletesebben

Nonrelativistic, non-newtonian gravity

Nonrelativistic, non-newtonian gravity Nonrelativistic, non-newtonian gravity Dieter Van den Bleeken Bog azic i University based on arxiv:1512.03799 and work in progress with C ag ın Yunus IPM Tehran 27th May 2016 Nonrelativistic, non-newtonian

Részletesebben

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására

Részletesebben

Gáz/gőzbuborék dinamikus szimulációja áramlási térben

Gáz/gőzbuborék dinamikus szimulációja áramlási térben Gáz/gőzbuborék dinamikus szimulációja áramlási térben Dr. Hős Csaba csaba.hos@hds.bme.hu 2009. november 16. Dr. Hős Csaba csaba.hos@hds.bme.hu Gáz/gőzbuborék dinamikus szimulációja áramlási térben 2009.

Részletesebben

Gravitációs fényelhajlás gömbszimmetrikus téridőkben

Gravitációs fényelhajlás gömbszimmetrikus téridőkben SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar ELMÉLETI FIZIKA TANSZÉK Fizika BSc Szakdolgozat Gravitációs fényelhajlás gömbszimmetrikus téridőkben Deák Bence Témavezető: Dr. Keresztes

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok)

Részletesebben

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő 1 / 32 Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő Fodor Gyula MTA KFKI Részecske- és Magfizikai Kutatóintézet Integrálhatóság Nyári Iskola Budapest, 2008 augusztus 25 Bevezetés 2 / 32

Részletesebben

A klasszikus mechanika matematikai módszerei

A klasszikus mechanika matematikai módszerei A klasszikus mechanika matematikai módszerei Házi feladatok 2015/16 tavasz A feladatok közül szabadon lehet választani. Az összpontszám alapján alakul ki az érdemjegy a szokásos ponthatárokkal: 40-55-70-85.

Részletesebben

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015 Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 2015 Egyenletek a hengerkoordináta-rendszerben (HKR) SP = OQ = r z QP = z e r = cos ϕ e x + sin ϕ e y e ϕ = sin ϕ

Részletesebben

Holográfia a részecskefizikában

Holográfia a részecskefizikában Atomoktól a csillagokig: 2017. október 12. Holográfia a részecskefizikában Bajnok Zoltán MTA, Wigner Fizikai Kutatóközpont 4D Minkowski tér 5D gömb 5D anti de Sitter tér idö tér extra dimenzió Hány dimenziós

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

Egyesített funkcionális renormálási csoport egyenlet

Egyesített funkcionális renormálási csoport egyenlet Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika

Részletesebben

Fogalmi alapok Mérlegegyenletek

Fogalmi alapok Mérlegegyenletek 1. Fogalmi alapok Mérlegegyenletek Utolsó módosítás: 2013. február 11. A transzportfolyamatokról általában 1 A természetben lezajló folyamatok leírására szolgáló összefoglaló elmélet, amely attól függetlenül

Részletesebben

= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s

= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s 3. TENZORANALÍZIS Legyen V egy n-dimenziós vektortér, V a duális tere, T (k,l) V = V V V V a (k, l)-típusú tenzorok tere. Megállapodás szerint T (0,0) V = R (általában az alaptest). Ha e 1,..., e n V egy

Részletesebben

Kozmológia egzakt tudomány vagy modern vallás?

Kozmológia egzakt tudomány vagy modern vallás? Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015 Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 05 Példák (folyt.) 5. feladat Fajlagos térfogatváltozás DDKR-ben és HKR-ben. dv = [ e x e y e z]dxdydz dv = [( a x

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER

Részletesebben

Ősrobbanás: a Világ teremtése?

Ősrobbanás: a Világ teremtése? Horváth Dezső: A kozmológia alapjai Telki, 2010.01.14 p. 1/37 Ősrobbanás: a Világ teremtése? (A kozmológia alapjai) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10. 2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)

Részletesebben

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül.

A TételWiki wikiből. A Big Bang modell a kozmológia Standard modellje. Elsősorban megfigyelésekre és az általános relativitáselméletre épül. 1 / 5 A TételWiki wikiből 1 Newton-féle gravitációs erőtörvény 2 Az ősrobbanás elmélet alapvető feltevései 3 Friedmann-egyenletek szemléletes értelme 4 Galaxisok kialakulása, morfológiája, Hubble törvény

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

ERŐ-E A GRAVITÁCIÓ? 1. példa:

ERŐ-E A GRAVITÁCIÓ? 1. példa: ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási r rendszer, ahol érvényes Newton első törvénye ( F e = 0 " a r = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben

Részletesebben

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P

Részletesebben

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854):  ' #$ * $ ( ' $*  ' #µ Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből

Részletesebben

2011 Fizikai Nobel-díj

2011 Fizikai Nobel-díj 2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784

Részletesebben

A mikroskálájú modellek turbulencia peremfeltételeiről

A mikroskálájú modellek turbulencia peremfeltételeiről A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása

Részletesebben

Az Univerzum felforrósodása

Az Univerzum felforrósodása Az Univerzum felforrósodása Patkós András Eötvös Egyetem, Fizikai Intézet Vázlat Az inflációs korszak vége (gyors áttekintés) Az inflaton elbomlásának két hatásos módja: TACHYONIKUS INSTABILITÁS vs. PARAMETRIKUS

Részletesebben

METRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva:

METRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: METRIKA D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: dl = dx + dy Általános alak ha nem feltétlenül Descartes-koordinátákat használunk: dl =... dx 1 +... dx +...dx 1 dx +...dx

Részletesebben

Geodetikus gömbök metszetér l. Horváth Márton

Geodetikus gömbök metszetér l. Horváth Márton Geodetikus gömbök metszetér l doktori értekezés Horváth Márton Témavezet : Csikós Balázs tanszékvezet egyetemi docens a matematikai tudományok kandidátusa Matematika Doktori Iskola iskolavezet : Laczkovich

Részletesebben

Az Információgeometria a kvantummechanikában

Az Információgeometria a kvantummechanikában BME Matematikai Intézet Analízis Tanszék Andai Attila: Az Információgeometria a kvantummechanikában című doktori értekezés tézisei Témavezető: Petz Dénes matematikai tudományok doktora, egyetemi tanár

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

A v n harmonikusok nehézion-ütközésekben

A v n harmonikusok nehézion-ütközésekben A v n harmonikusok nehézion-ütközésekben Bagoly Attila ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014. november 27. Bagoly Attila (ELTE TTK) A v n harmonikusok nehézion-ütközésekben 2014.

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Szegedi Tudományegyetem. Diplomamunka

Szegedi Tudományegyetem. Diplomamunka Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék Diplomamunka Eikonál-módszer az árapály-töltésű fekete lyukak gravitációs lencsézésében Dwornik Marek Témavezető:

Részletesebben

Határozatlansági relációk származtatása az

Határozatlansági relációk származtatása az az állapottér BME TTK Matematikus MSc. 1. évf. 2012. november 14. Vázlat: Történeti áttekintés Nemkommutatív (kvantum) valószín ségelmélet Az állapottér geometriája: Az állapottér mint Riemann-sokaság

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz

Részletesebben

Feketetest sugárzás. E = Q + W + W sug. E = Q + W + I * dt. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan (XI.

Feketetest sugárzás. E = Q + W + W sug. E = Q + W + I * dt. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan (XI. ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 0-. (XI. 29-30) Feketetest sugárzás A sugárzás egy újfajta energia transzport (W sug. ), ahol I * = S da, ρ t w j w, t w A kontinuitási egyenletbıl:

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

mezontömegek közegbeli viselkedése PQM

mezontömegek közegbeli viselkedése PQM Királis fázisátalakulás, termodinamika és mezontömegek közegbeli viselkedése PQM modellből Kovács Péter Wigner FK RMI ELMO kovacs.peter@wigner.mta.hu 16. augusztus 5. Magyar Fizikus Vándorgyűlés, Szeged

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban! Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Részletesebben

A kolloidika alapjai. 4. Fluid határfelületek

A kolloidika alapjai. 4. Fluid határfelületek A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2

Részletesebben

Dinamika. p = mυ = F t vagy. = t

Dinamika. p = mυ = F t vagy. = t Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus

Részletesebben

A nagyenergiás nehézion-ütközések direkt foton spektrumának hidrodinamikai vizsgálata

A nagyenergiás nehézion-ütközések direkt foton spektrumának hidrodinamikai vizsgálata EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A nagyenergiás nehézion-ütközések direkt foton spektrumának hidrodinamikai vizsgálata B.SC. SZAKDOLGOZAT SZERZŐ : Kasza Gábor az ELTE TTK Fizika BSc

Részletesebben

Gravitáció az FLRW univerzumban Egy szimpla modell

Gravitáció az FLRW univerzumban Egy szimpla modell Gravitáció az FLRW univerzumban Egy szimpla modell Összefoglaló Az FLRW metrikát alkalmazva, a Friedmann-egyenletekből kiindulva, az elektromágneses és gravitációs sugárzás hasonlósága alapján meghatározható

Részletesebben

Gömbhéjak és héjrendszerek dinamikája és alkalmazásuk az általános relativitáselméletben

Gömbhéjak és héjrendszerek dinamikája és alkalmazásuk az általános relativitáselméletben Doktori értekezés Gömbhéjak és héjrendszerek dinamikája és alkalmazásuk az általános relativitáselméletben írta Gáspár Merse El d témavezet Rácz István Budapest 2011 Tartalomjegyzék 1. Bevezetés 5 2.

Részletesebben

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások

Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Távcsövek és kozmológia Megoldások Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 7. Távcsövek és kozmológia Megoldások Bécsy Bence, Dálya Gergely 1. Bemelegítő feladatok B1. feladat A nagyítást az objektív és az

Részletesebben

( ) 3. Okawa, Fujisawa, Yasutake, Yamamoto, Ogata, Yamada in prep.

( ) 3. Okawa, Fujisawa, Yasutake, Yamamoto, Ogata, Yamada in prep. 6 P PC-Phys, 9//6 OF T W TITI Y YI I T O T. Fujisawa, Okawa, Yamamoto, Yamada, AstoPhys.. 7, 559. Okawa, Fujisawa, Yamamoto, iai, Yasutake, agakua, Yamada, axiv/cs:9.95 3. Okawa, Fujisawa, Yasutake, Yamamoto,

Részletesebben

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18 Az erős és az elektrogyenge kölcsönhatás elmélet Csanád Máté ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Bevezető kozmológia az asztrofizikus szemével. Gyöngyöstarján, 2004 május

Bevezető kozmológia az asztrofizikus szemével. Gyöngyöstarján, 2004 május Bevezető kozmológia az asztrofizikus szemével Gyöngyöstarján, 2004 május Tartalmi áttekintés A tágulás klasszikus megközelítése Ált. rel. analógiák Az Ősrobbanás pillérei A problémák és a megoldás, az

Részletesebben

r tr r r t s t s② t t ① t r ② tr s r

r tr r r t s t s② t t ① t r ② tr s r r tr r r t s t s② t t ① t r ② tr s r r ás③ r s r r r á s r ② s ss rt t s s tt r t r t r P s ② Pá③ á ② Pét r t rs t② t② r t ② s s ás t r s ② st s t t r t t r s t s t t t t s s s str t r r t r t ① r t r

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Geodetikus gömbök metszetér l. Horváth Márton. doktori értekezés tézisei

Geodetikus gömbök metszetér l. Horváth Márton. doktori értekezés tézisei Geodetikus gömbök metszetér l doktori értekezés tézisei Horváth Márton Témavezet : Csikós Balázs tanszékvezet egyetemi docens a matematikai tudományok kandidátusa Matematika Doktori Iskola iskolavezet

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:

Részletesebben

7. Pörgetty -precesszió az elektromágneses jelenségekben

7. Pörgetty -precesszió az elektromágneses jelenségekben 64 7. Pörgetty -precesszió az elektromágneses jelenségekben 7.1. Az elektron Thomas-precessziója A Thomas-precesszió közvetlen felfedezése az elektronhoz kapcsolódik. A hidrogénatom Zeeman-eektusának vizsgálata

Részletesebben

A relativitáselmélet története

A relativitáselmélet története A relativitáselmélet története a parallaxis keresése közben felfedezik az aberrációt (1725-1728) James Bradley (1693-1762) ennek alapján becsülhető a fény sebessége a csillagfény ugyanúgy törik meg a prizmán,

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Modern differenciálgeometria Sokaságok és a Riemann-geometria elemei Szilasi József

Modern differenciálgeometria Sokaságok és a Riemann-geometria elemei Szilasi József Modern differenciálgeometria Sokaságok és a Riemann-geometria elemei Szilasi József DE, Matematikai Intézet 2015-16. 2. félév Tartalomjegyzék Panoráma 0 Jelölések, megállapodások, előismeretek 1 Sima sokaságok

Részletesebben

Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény

Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Csanád Máté, Nagy Márton, Lőkös Sándor ELTE Atomfizikai Tanszék Magfizikus Találkozó Jávorkút 2012. szeptember

Részletesebben

EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA. 1. Bevezetés

EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA. 1. Bevezetés Alkalmazott Matematikai Lapok 26 (2009), 9-15. EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA SZEMLÉLETES BIZONYÍTÁST ADUNK A FELÜLETELMÉLET FONTOS TÉTELÉRE FARKAS MIKLÓS 1.

Részletesebben

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

f = n - F ELTE II. Fizikus 2005/2006 I. félév

f = n - F ELTE II. Fizikus 2005/2006 I. félév ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Molekulák mozgásban a kémiai kinetika a környezetben

Molekulák mozgásban a kémiai kinetika a környezetben Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak

Részletesebben

A dobó-topa-transzformáció egy újabb tulajdonságáról

A dobó-topa-transzformáció egy újabb tulajdonságáról Dobó Andor A dobó-topa-transzformáció egy újabb tulajdonságáról Az [1]-ben említést tettünk az affin transzformációk néhány fontosabb alcsoportjáról. Az alábbiakban ezekhez tartozóan bevezetünk egy újabb

Részletesebben

Verhóczki László. Riemann-geometria. el adásjegyzet. ELTE TTK Matematikai Intézet Geometriai Tanszék

Verhóczki László. Riemann-geometria. el adásjegyzet. ELTE TTK Matematikai Intézet Geometriai Tanszék Verhóczki László Riemann-geometria el adásjegyzet ELTE TTK Matematikai Intézet Geometriai Tanszék A jegyzetben használt jelölések a sokaságokkal kapcsolatosan u i : R m R a természetes i-edik koordináta-függvény

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

X Physique MP 2013 Énoncé 2/7

X Physique MP 2013 Énoncé 2/7 X Physique MP 2013 Énoncé 1/7 P P P P P ré r s t s t s tr s st s t r sé r tt é r s t t r r q r s t 1 rés t ts s t s ér q s q s s ts t r t t r t rô rt t s r 1 s2stè s 2s q s t q s t s q s s s s 3 é tr s

Részletesebben

A REAKCIÓKINETIKA ALAPJAI

A REAKCIÓKINETIKA ALAPJAI A REAKCIÓKINETIKA ALAPJAI Egy kémiai reakció sztöchiometriai egyenletének általános alakja a következő formában adható meg k i=1 ν i A i = 0, (1) ahol A i a reakcióban résztvevő i-edik részecske, ν i pedig

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

A kötélsúrlódás képletének egy általánosításáról

A kötélsúrlódás képletének egy általánosításáról 1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben