Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest június 20.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20."

Átírás

1 A görbületek világa 1 Kristály Sándor Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest június Az MTA Bolyai János Kutatói Ösztöndíj által támogatott kutatás.

2 Eukleidészi világnézet Eukleidész: Kr. e. 300, Alexandria Eukleidészi posztulátum: Ha egy egyenes úgy metsz két másikat, hogy az egyoldalon fekvő belső szögek összege két derékszögnél kisebb, akkor a két másik egyenes találkozzon egymással, ha végtelenül meghosszabbítjuk őket, éspedig azon az oldalon, ahol a szögek összege kisebb két derékszögnél; Párhuzamossági tranzitivitás: d 1 d 2 és d 2 d 3 d 1 d 3 ; Háromszög szögeinek összege pontosan Egyenesek: a legrövidebb hosszúságú görbék.

3 Eukleidészi világnézet Eukleidész: Kr. e. 300, Alexandria Aquinói Szt. Tamás (Summa contra Gentiles, 13. sz.) a Mindenhatósági Paradoxonról: Tud-e Isten olyan háromszöget alkotni, melynek szögösszege 180 0? Immanuel Kant (A tiszta ész kritikája, 18. sz.): Az euklideszi axiómák a tapasztalást szükségszerűen megelőző emberi ismeretek. Párhuzamossági axióma megtámadása!

4 Gömbi geometria Egyenesek helyett főkörök (geodetikus vonalak); Geodetikus háromszög szögeinek összege >180 0 : Mercator-térkép (térképészet); Megjelenik a görbület: a metszetgörbület K = 1 R 2 ; Ha R, akkor K 0: flat eset. Föld esetén: R közép = 6372, 797km, K közép

5 Hiperbolikus geometria Úttörők Bolyai János ( ); Carl Friedrich Gauss ( ); Nyikolaj Ivanovics Lobacsevszkij ( ). Az elmélet kiépítése 1860-tól: Arthur Cayley, Felix Klein, Eugenio Beltrami, Henri Poincaré, Bernhard Riemann, Paul Finsler, stb.

6 Hiperbolikus geometria Úttörők Bolyai János ( ); Carl Friedrich Gauss ( ); Nyikolaj Ivanovics Lobacsevszkij ( ). Az elmélet kiépítése 1860-tól: Arthur Cayley, Felix Klein, Eugenio Beltrami, Henri Poincaré, Bernhard Riemann, Paul Finsler, stb.

7 Hiperbolikus geometria I Egy egyenesen kívül eső ponton több párhuzamos is huzható; Párhuzamossági tranzitivitás: nem teljesül! Háromszög szögeinek összege < Mik a geodetikus vonalak?

8 Hiperbolikus geometria II: példák

9 Hopf-klasszifikáció (Riemann sokaságok)

10 Riemann geometria és a relativitáselmélet B. Riemann: 1870-es évek Einstein egyenlet (általános relativitáselmélet): G ij + Λg ij = 8πG c 4 T ij. A tér(idő) negatívan meggörbül a gravitáció hatására: nem-eukleidészi geometria; Alátámasztás: csillagok mellett elhaladó fény meghajlása.

11 Riemann geometria és a relativitáselmélet B. Riemann: 1870-es évek Einstein egyenlet (általános relativitáselmélet): G ij + Λg ij = 8πG c 4 T ij. A tér(idő) negatívan meggörbül a gravitáció hatására: nem-eukleidészi geometria; Alátámasztás: csillagok mellett elhaladó fény meghajlása.

12 Busemann (vagy Thalész) egyenlőtlenség H. Busemann: 1950-es évek eleje Egy (M, d) metrikus tér Busemann-görbült, ha minden γ 1, γ 2 : [0, 1] M geodetikus vonal esetén, melyekre γ 1 (0) = γ 2 (0), teljesül d ( γ 1 ( 1 2 ), γ 2 ( 1 2 )) 1 2 d(γ 1(1), γ 2 (1)). [Középvonal hosszúsága nem nagyobb, mint a hozzatartozó alapvonal hosszúságának fele.] Eukleidészi eset:

13 Thalész tétele Riemann esetben Busemann (1955): Legyen (M, g) egy Riemannian sokaság. (M, d g ) Busemann-görbült akkor és csakis akkor, ha az (M, g) szekcionális görbülete nem-pozitív. Nyílt kérdés (Busemann, 1955): Milyen nem-pozitívan görbült Finsler sokaságok lesznek Busemann-görbültek? Fontos kérdés alkalmazások perspektívájából (is)!!! spaces Euclidean

14 Thalész tétele Riemann esetben Busemann (1955): Legyen (M, g) egy Riemannian sokaság. (M, d g ) Busemann-görbült akkor és csakis akkor, ha az (M, g) szekcionális görbülete nem-pozitív. Nyílt kérdés (Busemann, 1955): Milyen nem-pozitívan görbült Finsler sokaságok lesznek Busemann-görbültek? Fontos kérdés alkalmazások perspektívájából (is)!!! spaces Euclidean

15 Thalész tétele Riemann esetben Busemann (1955): Legyen (M, g) egy Riemannian sokaság. (M, d g ) Busemann-görbült akkor és csakis akkor, ha az (M, g) szekcionális görbülete nem-pozitív. Nyílt kérdés (Busemann, 1955): Milyen nem-pozitívan görbült Finsler sokaságok lesznek Busemann-görbültek? Fontos kérdés alkalmazások perspektívájából (is)!!! spaces Euclidean

16 Finsler-Poincaré korong, K = 1/4 Fekete lyukak leírása M = { (x 1, x 2) R 2 : x x 2 2 < 4 }. Nem-reverzibilis Finsler metrika M en: 1 F ((r, θ), V) = p2 + r 2 q 2 + pr, V = p 1 r2 1 r4 r +q θ T (r,θ)m d F ( M, (0, 0)) = ln 2; d F ((0, 0), M) = +. Ábra :(a) d F (p 1, p 2 ) = és d F (m 1, m 2 ) =

17 Nem-projektív Finsler metrika; görbület 0 M = { p = ((x 1, x 2), x 3) R 2 R m 2 : x x 2 2 < 1 }, m 2; y = ((y 1, y 2), ỹ 3) T pm = R m legyen ( x 2y 1 + x 1y 2) 2 + y 2 (1 x 2 1 F (p, y) = x2 2 ) ( x2y1 + x1y2) 1 x 2 1. x2 2 Ábra : (a) m = 2, d F (p 1, p 2 ) = 1 és d F (m 1, m 2 ) = ; (b) m = 3, d F (p 1, p 2 ) = és d F (m 1, m 2 ) =

18 Busemann kérdése Válasz Berwald terekre Tétel (A. Kristály, L. Kozma; J. Geom. Phys., 2006) Minden nem-pozitívan görbült Berwald tér egyben Busemann-görbült is (teljesül Thalész tétele). spaces Euclidean Következmény γ 1, γ 2 geodetikusok. Ekkor t d F (γ 1 (t), γ 2 (t)) konvex. Megjegyzés: űrhajók burkolatának optimalizálása (IMPAN) geodetikus konvexitás.

19 Weber optimizáció Torricelli pont: a pap és a három falu min S (AS + BS + CS) = AT + BT + CT; Analitikusan nem számolható ki a T pont helyzete (Galois elmélet).

20 Létezési és egyértelműségi tételek igazolása A. Kristály, Á. Róth, G. Moroşanu, J. Optim. Theory Appl., 2008 min (SP 1 + SP 2 + SP 3 ) = T f P 1 + T f P 2 + T f P 3 ; S (S α) min (P 1S + P 2 S + P 3 S) = P 1 T b + P 2 T b + P 3 T b. S (S α)

21 Vízesés Finsler-Poincaré modell Hogyan mozgassuk az M S anyahajót a vízen, hogy a mentőcsónakok minimális idő alatt elérjék a sétahajókat?

22 Köszönöm a figyelmet/türelmet!

Segítség és útmutatás az eligazodáshoz

Segítség és útmutatás az eligazodáshoz Segítség és útmutatás az eligazodáshoz (Apróságok IV.) Mivel nem könnyű eligazodni az euklideszi geometria és a hiperbolikus geometria tulajdonságai és állításai között, ezért az [1]-ben, [2]-ben és [3]-ban

Részletesebben

Előzmények: matematika Előzmények: fizika Az általános relativitáselmélet Furcsa következmények Tanulságok. SZE, Fizika és Kémia Tsz. v 1.

Előzmények: matematika Előzmények: fizika Az általános relativitáselmélet Furcsa következmények Tanulságok. SZE, Fizika és Kémia Tsz. v 1. Fizikatörténet Az általános relativitáselmélet története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 AFKT 5.2.6 AFKT 5.2.7 A párhuzamossági axióma Euklidesz geometriája 2000 évig megingathatatlannak

Részletesebben

A GEOMETRIAI PARADIGMAVÁLTÁS HATÁSA

A GEOMETRIAI PARADIGMAVÁLTÁS HATÁSA A GEOMETRIA FORRADALMA 1831-ben jelent meg Bolyai Farkas Tentamen c. munkája 1. köt. függelékeként Bolyai János(1802-1860) 26 oldalas munkája Appendix címmel. Létrehozta a Bolyai-féle abszolút és a Bolyai-

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

Miért érdekes a görög matematika?

Miért érdekes a görög matematika? 2016. március Tartalom 1 Bevezetés 2 Geometria 3 Számelmélet 4 Analízis 5 Matematikai csillagászat 6 Következtetések Bevezetés Miért éppen a görög matematika? A középiskolások sok olyan matematikai témát

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

BEVEZETÉS. Dr. Madaras Lászlóné 1

BEVEZETÉS. Dr. Madaras Lászlóné 1 Szolnoki Tudományos Közlemények XIV. Szolnok, 2010. Dr. Madaras Lászlóné 1 A 19. SZÁZADI GEOMETRIAI FORRADALOM MAI SZEMMEL Százötven évvel ezelőtt halt meg Bolyai János, a 19. századi geometriai forradalom

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Kártyázzunk véges geometriával

Kártyázzunk véges geometriával Kártyázzunk véges geometriával Bogya Norbert Bolyai Intézet Egyetemi tavasz, 2016 Tartalom Dobble Véges geometria Dobble újratöltve SET Kérdések Hogy tudunk ilyen kártyákat konstruálni? 8 helyett más

Részletesebben

Kettő és fél dimenzió

Kettő és fél dimenzió Pécsi Tudományegyetem Művészeti Kar Doktori Iskola Fodor Pál Kettő és fél dimenzió A térábrázolás paradox jelenségei a képzőművészetben DLA értekezés Témavezető: Keserü Ilona, festőművész, professor emerita

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

Geometriai axiómarendszerek és modellek

Geometriai axiómarendszerek és modellek Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

Gondolatok a téridő alapvető geometriai jellegéről

Gondolatok a téridő alapvető geometriai jellegéről Gondolatok a téridő alapvető geometriai jellegéről Dobóval folytatott közös kutatásaink során megalkottuk a Dobó-Topa transzformációt, továbbá a vele harmonizáló 4-dimenziós fizikai téridőnek ( kiigazított

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

MTB1005 Geometria I előadásvázlat

MTB1005 Geometria I előadásvázlat MTB1005 Geometria I előadásvázlat Az abszolút geometria axiómarendszere 0. A geometria axiomatikus felépítéséről Egy axiómarendszer nem definiált alapfogalmakból és bizonyítás nélkül elfogadott állításokból

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Az Yff pontok vizsgálata különböző geometriákban

Az Yff pontok vizsgálata különböző geometriákban Az Yff pontok vizsgálata különböző geometriákban Szakdolgozat Paulik Rita Matematika BSc, Matematika tanári szakirány Témavezető: Dr. Rózsahegyiné Vásárhelyi Éva egyetemi docens Konzulens: Lénárt István

Részletesebben

Az általános relativitáselmélet logikai alapjai

Az általános relativitáselmélet logikai alapjai Intro SpecRel AccRel GenRel Az általános relativitáselmélet logikai alapjai MTA Rényi Intézet/NKE GR100 konferencia, 2016.11.09. Intro SpecRel AccRel GenRel S.R. G.R. Intro SpecRel AccRel GenRel S.R. G.R.

Részletesebben

Matematika C 10. osztály 10. modul Bolyai-geometria (Hiperbolikus geometria)

Matematika C 10. osztály 10. modul Bolyai-geometria (Hiperbolikus geometria) Matematika C 10. osztály 10. modul Bolyai-geometria (Hiperbolikus geometria) Készítette: Lénárt István Matematika C 10. évfolyam 10. modul: Bolyai-geometria Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

Dobó Andor. Az elliptikus geometriának a Riemann-féle (gömbi) modellje lényegesen különbözik a Dobóféle

Dobó Andor. Az elliptikus geometriának a Riemann-féle (gömbi) modellje lényegesen különbözik a Dobóféle Dobó Andor Az elliptikus liptikus geometria két modelljér elljéről A Dobó-Topa-féle elliptikus (görbült) téridő-elmélet az elliptikus geometria alkalmazásán alapszik. Éppen ezért fontos e geometriának

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Szemle Iskolakultúra 2002/12. Nem euklideszi geometriák az iskolában

Szemle Iskolakultúra 2002/12. Nem euklideszi geometriák az iskolában Iskolakultúra 2002/12 Schweitzer, P. (1994): Many Happy Retirements. In: Schutzman, M. Cohen-Cruz, J. (eds.): Playing Boal. Routledge, London. 64 80. Thompson, J. (1999): Drama Workshops for Anger Management

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Játékok matematikája

Játékok matematikája Játékok matematikája Kártyázzunk véges geometriával Bogya Norbert Bolyai Intézet Eötvös esték & Mat. Műhely, 2016 Bogya Norbert (Bolyai Intézet) Kártyázzunk véges geometriával Eötvös esték, 2016 1 / 1

Részletesebben

ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS

ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS Nagyné Kondor Rita ÖSSZEHASONLÍTÓ GEOMETRIA BEVEZETÉS Az élő, korszerű matematikaoktatás legfontosabb feladata, hogy önálló gondolkozásra, a döntéshelyzetek megismerésére és megoldására nevelje a fiatalokat.

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

Összehasonlító vizsgálatok a gömb és a sík geometriájában

Összehasonlító vizsgálatok a gömb és a sík geometriájában Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikatanítási és Módszertani Központ Összehasonlító vizsgálatok a gömb és a sík geometriájában Körzőrózsák és hozzáírt körsorozatok Szakdolgozat

Részletesebben

A dobó-topa-transzformáció egy újabb tulajdonságáról

A dobó-topa-transzformáció egy újabb tulajdonságáról Dobó Andor A dobó-topa-transzformáció egy újabb tulajdonságáról Az [1]-ben említést tettünk az affin transzformációk néhány fontosabb alcsoportjáról. Az alábbiakban ezekhez tartozóan bevezetünk egy újabb

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

Fejezetek a Matematika

Fejezetek a Matematika Fejezetek a Matematika Kultúrtörténetéből Dormán Miklós Szegedi Tudományegyetem TTIK Bolyai Intézet 2013 október 25 Az ókori Görögország matematikája 2 rész Éliszi Hippiász (kb 420 körül): az egyik szögharmadoló

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V. Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

OTKA szakmai beszámoló T48878

OTKA szakmai beszámoló T48878 OTKA szakmai beszámoló 2005-2008 T48878 1. Adatok Részvevők: Dr. Bácsó Sándor, tszv. egyetemi docens Dr. Kozma László. tszv. egyetemi docens Kutatóhely: Debreceni Egyetem Informatikai Kar Komputergeometriai

Részletesebben

Geometria és topológia

Geometria és topológia Matematika tagozatok. Hétfő 16:00 Ortvay-terem 1. Ambrus Gergely (SZTE TTK) 2. Iclănzan David - Róth Ágoston (BBTE) 3. Juhász András (ELTE TTK) 4. Kalmár Boldizsár (ELTE TTK) 5. Kalmár Boldizsár (ELTE

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

Önéletrajz SZILÁGYI BRIGITTA SZEMÉLYES ADATOK:

Önéletrajz SZILÁGYI BRIGITTA SZEMÉLYES ADATOK: Önéletrajz SZILÁGYI BRIGITTA SZEMÉLYES ADATOK: KÉPZETTSÉG: Születési hely és idő: Debrecen, 1973. 11. 03. Állampolgárság: magyar Email: szilagyi@math.bme.hu Honlap: www.math.bme.hu/~szilagyi 1992 1997:

Részletesebben

Az Einstein egyenletek alapvet megoldásai

Az Einstein egyenletek alapvet megoldásai Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann

Részletesebben

A relativitáselmélet világképe

A relativitáselmélet világképe v 0.9 Oktatási célra szabadon terjeszthető A fizika frontvonala a 19. szd-ban 1 Bevezető A fizika frontvonala a 19. szd-ban 2 néhány gondolata 3 Előzmények: a gravitáció okának keresése Előzmények: a nemeuklideszi

Részletesebben

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus

Részletesebben

Csod alatos geometria

Csod alatos geometria Csodálatos geometria G. Horváth Ákos CSODÁLATOS GEOMETRIA avagy a kapcsolatteremtés tudománya A könyv megjelenését a Nemzeti Kulturális Alap és a Magyar Tudományos Akadémia támogatta. c G. Horváth Ákos,

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA Tankönyv nyolcadikosoknak címû tankönyveihez 8. OSZTÁLY Óraszám 1. 1 2. Halmazok ismétlés Tk. 6/1 5. Gyk. 3 6/1 10. 2. 3 4. A logikai szita Tk. 9 10/6 20.

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

This article shows a new approximation cosinus theorem of geometry of Bolyai, Euclides and Riemann. From this pont of view these are special cases.

This article shows a new approximation cosinus theorem of geometry of Bolyai, Euclides and Riemann. From this pont of view these are special cases. EXPANDED BOLYAI GEOMETRY HORVÁTH ISTVÁN SZELLŐ LÁSZLÓ EXPANDED BOLYAI GEOMETRY CIKKSOROZAT A KITERJESZTETT BOLYAI GEOMETRIÁRÓL: I. BOLYAI JÁNOS ÚJ, MÁS VILÁGA Cikkünken egy új megközelítésen tárgyljuk

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés)

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) Kötelez tárgyak, szakdolgozat (mindegyik tárgy teljesítend ) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris

Részletesebben

Erd os-szekeres-t ıpus u t etelek konvex lemezekre

Erd os-szekeres-t ıpus u t etelek konvex lemezekre Erdős-Szekeres-típusú tételek konvex lemezekre Fejes Tóth Gábor, Rényi Intézet f(n) a legkisebb természetes szám, amelyre teljesül, hogy bármely f(n) általános helyzetű pont között a síkon van n, amelyek

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

EUKLIDÉSZ ÉS BOLYAI PÁRHUZAMOSAI: A GÖRÖG ÉS A MODERN TRAGIKUM SZIMBÓLUMAI

EUKLIDÉSZ ÉS BOLYAI PÁRHUZAMOSAI: A GÖRÖG ÉS A MODERN TRAGIKUM SZIMBÓLUMAI EUKLIDÉSZ ÉS BOLYAI PÁRHUZAMOSAI: A GÖRÖG ÉS A MODERN TRAGIKUM SZIMBÓLUMAI 37 I. Az egyéniség forradalma a pythagoreus hagyományon belül 1. Euklidész és Bolyaiék közös alapfeltevése: a végtelenített egyenes,

Részletesebben

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve! (9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Int 1.4 Szakterület

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Moussong Gábor. A Poincaré-sejtés

Moussong Gábor. A Poincaré-sejtés Moussong Gábor Poincaré-sejtés címmel 2006. szeptember 19-én elhangzott előadása alapján az összefoglalót készítette Balambér Dávid, Bohus Péter, Hraskó ndrás és Moussong Gábor 1. Poincaré-sejtés aktualitása

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Készítsünk fekete lyukat otthon!

Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! Készítsünk fekete lyukat otthon! BH@HOME Barnaföldi Gergely Gábor, Bencédi Gyula MTA Wigner FK Részecske és Magfizikai Kutatóintézete AtomCsill 2012, ELTE TTK Budapest

Részletesebben

A matematikai logika alapjai

A matematikai logika alapjai A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya

Részletesebben

Még egyszer a Cayley-Klein modellről

Még egyszer a Cayley-Klein modellről Még egyszer a Cayley-Klein modellről (Apróságok II.) Az [1]-ben, a 3. pontban részletesen ismertettem a hiperbolikus sík Cayley-Klein-féle modelljét. Az ott leírtakat most több vonatkozásban is helyesbítem,

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Lektorálták: Dr. Kincses János (JATE) Dr. Nagy Péter (KLTE)

Lektorálták: Dr. Kincses János (JATE) Dr. Nagy Péter (KLTE) Lektorálták: Dr. Kincses János (JATE) Dr. Nagy Péter (KLTE) Tipográfia: L A TEX 2ε (KZ) c Kovács Zoltán 1999, 2002 Tartalomjegyzék Előszó Forrásmunkák................................. Fontosabb jelölések

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Költségvetési egyenes Költségvetési egyenes = költségvetési korlát: azon X és Y jószágkombinációk

Részletesebben

Autonóm egyenletek, dinamikai rendszerek

Autonóm egyenletek, dinamikai rendszerek 238 8. Autonóm egyenletek, dinamikai rendszerek 8.8. tétel. (Andronov Witt) 5 6 Ha a Γ periodikus pálya karakterisztikus multiplikátorainak abszolút értéke 1-nél kisebb, akkor a Γ pálya stabilis határciklus.

Részletesebben

Az invariáns, melynek értéke mindkét vonathoztatási rendszerben ugyanaz

Az invariáns, melynek értéke mindkét vonathoztatási rendszerben ugyanaz AZ I. FEJEZET SUMMÁJA HÁROMDIMENZIÓS EUKLIDESZI GEOMETRIA AZ EUKLIDESZI ÉS A LORENTZ-TRANSZFORMÁCIÓ ÖSSZEHASONLÍTÁSA NÉGYDIMENZIÓS LORENTZ- GEOMETRIA Feladat: megtalálni az összefüggést egy pontnak egy

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Geometriai példatár 2 Metrikus feladatok Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 2: Metrikus feladatok

Részletesebben

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat 1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja

Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával. Ált. Rel. Szondy György ELFT tagja Az Általános Relativitáselmélet problémáinak leküzdése alternatív modellek használatával Szondy György ELFT tagja? GPS ELFT Fizikus Vándorgyűlés Szombathely, 2004. Augusztus 24.-27. Ált. Rel. GRAVITÁCIÓ

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Oktatási Hivatal A 016/017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Egy húrtrapéz pontosan

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

Praktikum II. Dr. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger. 2006/07 I. szemeszter

Praktikum II. Dr. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger. 2006/07 I. szemeszter Praktikum II. Dr. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006/07 I. szemeszter Dr. Szilágyi Ibolya (EKF) Praktikum 2006/007 1 / 125 Outline Alapfogalmak, ponthalmazok.

Részletesebben

A projektív geometria alapjai. Kovács Zoltán

A projektív geometria alapjai. Kovács Zoltán A projektív geometria alapjai Kovács Zoltán előadásvázlat, 2003 Tartalomjegyzék 1. Bevezetés, homogén koordináták az euklidészi síkon 2 2. A projektív sík 5 3. Projektív transzformációk 8 4. Centrális

Részletesebben

Dierenciálgeometria feladatsor

Dierenciálgeometria feladatsor Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

KockaKobak Országos Matematikaverseny 9. osztály

KockaKobak Országos Matematikaverseny 9. osztály KockaKobak Országos Matematikaverseny 9. osztály 204. november 27. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA Anyanyelvi lektor: ASZÓDINÉ KOVÁCS MÁRIA www.kockakobak.hu A válaszlapról

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben