Dobó Andor. Az elliptikus geometriának a Riemann-féle (gömbi) modellje lényegesen különbözik a Dobóféle

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dobó Andor. Az elliptikus geometriának a Riemann-féle (gömbi) modellje lényegesen különbözik a Dobóféle"

Átírás

1 Dobó Andor Az elliptikus liptikus geometria két modelljér elljéről A Dobó-Topa-féle elliptikus (görbült) téridő-elmélet az elliptikus geometria alkalmazásán alapszik. Éppen ezért fontos e geometriának két alapvető (standard) modelljét közelebbről és precízebben megismerni. Ebben a dolgozatban ezzel a problémával foglalkozunk, és az esetleges félreértések elkerülése végett tisztázzuk értelmezésüket 1, mivel szerves részét kell, hogy képezzék a jövő fizikájának. * Az elliptikus geometriának a Riemann-féle (gömbi) modellje lényegesen különbözik a Dobóféle modelltől. A Riemann-féle elliptikus modell a gömbfelületen értelmezi az elliptikus geometriát. Lényeges tulajdonsága, hogy a Hilbert-féle axiómarendszerben két helyen eltérést mutat. Nevezetesen a párhuzamossági és a rendezési axiómában. (Lásd: [1], [2].) Az előbbi esetben azt föltételezzük, hogy a sík bármely két egyenese mindig metszi egymást; az utóbbi esetben a rendezés axiómáit a ciklikus rendezés axiómáival cseréljük föl, pótoljuk. E szerint minden egyenesen megadható a pontoknak egy ciklikus elrendezése úgy, hogy a négy különböző A, B, C, D pontra az (ABCD), (ACBD), (ABDC) elrendezések egyike álljon fenn. Az (ABCD) ciklikus elrendezés szemléletesen azt fejezi ki, hogy az egyenesen az A, C pontpár elválasztja egymástól a B, D pontpárt. (Lásd még [2], 340., illetve 355. o.) A Riemann-féle gömbi modellben az elliptikus sík (közönséges) félgömbfelületre van leképezve olyan módon, hogy a gömb átellenes pontjait egyetlen pontnak tekintjük. Ezáltal kapjuk az egyszeres Riemann-féle elliptikus geometriát. (Lásd: [1], [2] és [3] 3. lábjegyzet.) 1 A tárgyalás során a [3]-ban közöltekre támaszkodunk, ugyanis az ebben foglaltakra alapozta Dobó és Topa az elméleti fizikai vonatkozású vizsgálatait, amelyek végül is Einstein speciális relativitáselméletének teljes cáfolásához vezettek. Ez a nemeuklideszi geometriára alapozott építkezés olyan új szemléletet von magával, amelynek eredményeit nem könnyű megérteni. Elsajátítása a fizika törvényeinek mélyebb megismeréséhez nélkülözhetetlennek bizonyul. Erre szükség van már csak azért is, mert az Einstein elméletét népszerűsítő irodalom számos helyen igen pontatlan a túlhaladottságáról nem is beszélve! (Ezzel szemben az az általánosan elfogadott vélemény, hogy Einstein elméletének komponensei ma már a fizika szilárd, jól megerősített pilléreiként funkcionálnak. Ezért is duzzadt hatalmasra a mindhalálig hűséges-szervilis einsteiniánusok tábora!) 1

2 Az elliptikus sík geodetikus szakaszainak és szögeinek projektív metrikában mért mérőszámai a megfelelő gömbi szakaszok és szögek gömbi metrikában (gömbháromszögtanban, más néven szférikus trigonometriában) mért mérőszámaival egyenlők. 2 (Lásd még [2], 355. o.) A félgömbfelületet úgy kell elképzelnünk, hogy az egyenlítő (határoló főkör) kerületének pontosan az egyik felét (például elölről nézve a bal oldalra esőt) a modell részének tekintjük; a másik fele (a jobb oldalra eső) már nem tartozik a modellhez. (Itt minden, ami szemben van, elölről nézést jelent, és fordítva!) Ezáltal érjük el, hogy a megadott félgömbi modellben a teljes egyenes hossza mindig félkörívnyi legyen. Ha P a modellhez tartozó egyenlítő kerülete felének egy tetszésszerinti pontja, akkor P-nek az átellenes P párja nem tartozik a félgömb felületéhez. Ezek szerint a félegyenlítő egyik végpontja (A) a modellhez tartozik, a másik végpontja (az átellenes A ) már nem. Ha a gömbi idom a határoló körön (egyenlítőn) túlnyúlik, akkor a kívülre eső pontokat az átellenesekkel pótoljuk. Ezek már a tekintetbe vett félgömbre esnek. Ebből adódóan a szakaszok felmérését, vagy két pont geodetikus összekötését a félgömbi modellben határvonal nem zavarja meg. (Lásd még [1], o.) A gömbnek síkra való leképezését sztereografikus projekciónak nevezzük. (Lásd: [2], 395. o.) A projektív síkgeometria axiómái teljesülnek a gömbmodellben! (Behatóbban lásd még [15], o.) A Dobó-féle elliptikus modell a hiperbolikus sík Cayley-Klein-féle modelljéből van származtatva 3 amit az euklideszi sík kör alakú tartományaként állítunk elő azáltal, hogy az abban szereplő k görbületi paramétert k=r/i-nek választjuk, ahol i 2 =-1. (Lásd még a [3]-ban 2 Főkör a gömb metszete a középponton átmenő síkkal. Az elliptikus sík egyenesei a félgömb főköreibe, a síkbeli szögek a félgömb főköríveinek szögébe mennek át. Szakasz a gömbfelület két pontját összekötő főkörív kisebbik íve! A szögek értelmezése és mérése egyformán (azonosan) történik a két Riemann-féle elliptikus geometriában, azaz: két egyenes (főkör) szögén a rajtuk átfektetett síkok hajlásszögét értjük. Bár Riemann már 1854-ben fölfedezte az elliptikus geometriát, az erről (is) szóló dolgozata azonban csak halála után, 1867-ben jelent meg. Cayley 1859-ben ismerte fel a (róla elnevezett) kettősviszony logaritmusán alapuló távolságdefiníciót, aminek fölhasználásával Klein 1869-ben megalkotta a hiperbolikus geometria kúpszeletre épített modelljét, amely ma kettejük nevét viseli. 3 A szakirodalomban sem a k görbületi paraméterű hiperbolikus, sem az R görbületi paraméterű elliptikus Cayley-Klein-féle modell nem található abban a formában, ahogyan azt [3] tárgyalja. (Ezért nincs értelme azt a szakirodalomban keresni! Lásd még: [11].) A C-K modell általánosítható, ha a kör helyett a projektív sík egy tetszőleges kúpszeletének a belsejét választjuk alaphalmaz gyanánt. Ezáltal az elliptikus modell is általánosabbá válik, amiből kifolyólag számos érdekes és hasznos felismerésre juthatunk ami bővíti a felhasználás lehetséges körét, növeli az alkalmazás sikerének esélyét. Különösen akkor, ha hiperbolikus térben élünk, és annak egy síkjában fekvő geometriai alakzatokat (idomokat) vizsgálunk. (Részletesebben lásd: [6].) 2

3 közölt és alkalmazott technikát!) Ekkor a hiperbolikus síkon értelmezett trigonometrikus összefüggések elliptikus síkon értelmezett trigonometrikus összefüggésekbe mennek át. Példaként tekintsük a hiperbolikus koszinusztételt, amely szerint: (1) ch =ch ch sh sh cosγ. A k=r/i választás esetén, figyelembe véve, hogy (2) chx i=cosx; shx i=i sinx a (3) cos =cos cos +sin sin cosγ összefüggéshez, vagyis az elliptikus koszinusztételhez jutunk. Ez a származtatási mód is bizonyítja és alátámasztja, hogy Dobó és Topa elméleti fizika területére eső matematikai vizsgálatai jól megalapozottnak tekinthető. A továbbiakban közöltek ezt majd még inkább megerősítik. A párhuzamossági szög alakulása a Dobó-féle modellben A [3]-ban tárgyalt kör alapú Cayley-Klein modellben a ρ(0, P)=d hiperbolikus mértékben mért párhuzamossági távolsághoz tartozó β párhuzamossági (elpattanási) szögre nézve: (4) cosβ= δ =th. (Ebből adódóan β valós szám!) Ez a C-K modellben teljesülő hiperbolikus párhuzamossági axióma következményeként adódik. (Lásd még: [4] 375, 379, 387. o.) Az r=k választással (5) cosβ= δ Ha k=r i (i 2 =-1), akkor 3

4 (6) cosβ= δ = δ i=z, ahol z=0 δ i. Mivel (főágbeli arcusfüggvénnyel számolva) (7) arccosz=i ln+! 1#=i ln$i % δ + &1+ δ! '(, ezért (8) β=arccos δ i=i ln% δ + &1+ δ! '+ π! ; vagyis β értéke ( hagyományos /elliptikus) komplex szám. (Valós értéket csak akkor vesz fel, ha R ; ekkor β π/2 és így a modell euklideszivé simul!) Ez azt a nyilvánvaló tényt fejezi ki, hogy a Dobó-féle (R-et is tartalmazó) modellben (sem a két Riemann-féle elliptikus modellben) nem létezik valós párhuzamossági (elpattanási) szög, ugyanakkor párhuzamos egyenesek sem léteznek. Ebben az esetben is a tiszta képzetes sugarú kör határa nem tartozik a síkhoz! (Lásd még alább d) pont.) Azért kellett az átellenes (gömbi) pontpárokat egyetlen pontnak tekinteni, hogy az egyszeres elliptikus geometria síkjában is két egyenesnek miként az euklideszi síkban mindössze egyetlen metszéspontja legyen. Az euklideszi síkon két pontnak csak egy összekötő egyenese van. A gömb két átellenes pontján át (folytonosan) végtelen sok főkör (geodetikus vonal) halad át. Míg a kétszeres elliptikus geometria síkjában két egyenes mindig két (átellenes) pontban metszi egymást, az euklideszi síkon két egyenesnek legfeljebb egy közös pontja van. Ide vonatkozóan további eligazítások és hasznos tudnivalók találhatók [1]-, [2]-, [5]- és [7]- ben. A gömbi leképezést, a Gauss-féle görbület fogalmát behatóan tárgyalja [1], s ennek kapcsán bemutatja a gömb tizenegy alapvető tulajdonságát, aminek az általános felületelmélet szempontjából is jelentősége van. 4

5 Az egyszeres és kétszeres 4 elliptikus geometria alapján a geometria fizikai alkalmazása esetenként bonyolultabbnak bizonyul, és számos vonatkozásban ez az út nehezebben járható; ezért ha lehet jobb elkerülni a sikertelen próbálkozásokat. (Ez vonatkozik a Poincaré-féle hiperbolikus modellre is, ahol a geodetikus vonalak az alapkörre merőleges körívek!) Sebességösszeadás a Dobó-féle elliptikus geometriában Legyen γ=π-α, ahol α a v és u sebességek által bezárt szög. A [3] szerint (9), - =tg, / - =tg, 0 - =tg, ahol d, a, b elliptikus távolságban mért háromszög oldalait jelöli, c a fénysebesség. Felhasználva a (10) cosx = (11) sinx= azonosságokat, valamint a sebességek (9) alatti kifejezéseit az elliptikus koszinusztétel (3) alatti alakja alapján a sebességek összeadására nézve a (12) w= & 0 6 3/ 6 33!0 / -9:α3; < = >? 1B < = =w α >? 6-9:α összefüggéshez jutunk, ahol (13) 0 <1, / 0 / <1, amiből kifolyólag cosα<1. Ha most R=1, akkor (13) folytán u<c, v<c; vagyis ebben az esetben c határsebesség. Ha pedig (12)-ben α=0, akkor (14) w 0= 03/ 1B < = >? 6. 4 Jelző az elnevezéseknél arra utal, hogy a modellben két különböző egyenesnek hány közös (metszés)pontja van! (Lásd még: [10].) Napjainkra a geometria fölépítésére már számos egymástól erősen eltérő módszer ismeretes. Ilyenek az elemi, a projektív, a csoportelméleti, a differenciálgeometriai stb. módszerek. 5

6 Ha ρ(o, P) = d, akkor mivel tg <1, ezért < π, vagyis d korlátos. Ennélfogva a modell D egyenesei és így a mozgás pályái véges hosszúságúak. Ha R=k i, akkor (14) a (15) w 0= 03/ 13 < = E? 6 alakba megy át. Nyilván w 0>w 0, továbbá (16) 03/ 1B < = 0B/ >? 6 13 < =, >? 6 ami u=c választással szintén tehát nemcsak hiperbolikus esetben nem egyezik Einstein II. posztulátumával! (A [8]-ban, Székely László előszavában közöltek szerint:» Einstein tévedett, Einsteinnek nem volt igaza bombasztikus formulával fölbukkanó, szenzációhajhászó művek mind fizikailag, mind pedig filozófiailag dilettáns alkotások.«) Ez azt jelenti, hogy Einstein matematikája nem vált be; jól, kifogástalanul nem használható hiábavalónak bizonyult a sztárolás, amit hívei érthetően nem ismernek el! A (14) alatti összefüggés az alábbiak szerint is származtatható. Miután cos(γ)= -cos(α), és ha α=0, akkor cos(0)=1, ezért az elliptikus koszinusztétel szerint: (17) cos =cos cos sin sin = cos +. Ebből következik, hogy (18) = +, és így (19) tg =tg + = 45G > 345H > 1B45 G > 45H >, ahol (20) tg tg <1. 6

7 A (19)-ből már (9)-re való tekintettel a (14) alatti összefüggés következik. Ez a származtatási mód tg( ) helyett th( ) függvénnyel számol hiperbolikus geometria esetére, és így (15)-re nézve is alkalmazható! Ezek szerint (18) azt fejezi ki, hogy ha A, C, B egy (elliptikus vagy hiperbolikus) egyenes egymás után következő pontjai, és az egyenes A és B pontjának távolsága d AB, akkor értelemszerűen: (21) d JK =d JL +d LK. Míg a C-K elliptikus modellben az egyenesek véges hosszúak, a hiperbolikus modellben végtelen hosszúak. * Vegyük észre, hogy a projektív geometriai alapokon tárgyalt hiperbolikus és elliptikus geometria metrikája azonos tőről fakad (a kettősviszony logaritmusán alapszik) mégis a végső formájuk egymástól eltérő. Hiperbolikus modell esetében a metrikát area tangens hiperbolikus, elliptikus modellnél arcus tangens formula fejezi ki. A tárgyalás során ezekre fontos szerep hárul. Bolyai János hiperbolikus geometriai modellje nem épült kifejezetten és szigorúan metrikára. Az APPENDIX-ben két pont távolságfüggvénye nem lelhető fel. Az egyenes, a párhuzamos egyenes, az ultraparalel egyenes egyenlete, két pont távolságának formulája stb. Dávid Lajos ( ) APPENDIX-et magyarázó [14] könyvében található. Ez a könyv 1944 augusztusában Kolozsváron, a Minerva kiadásában készült el, de a háború miatt már nem került forgalomba. (A nyomda raktárából kiszállításra váró könyvek pedig egyenesen a zúzdába kerültek!) Dávid Lajos a debreceni ( ), majd a kolozsvári ( ) egyetemen volt egyetemi tanár után hangadó körök nyomására kirekesztették a tudományos életből! A Bolyai geometria területén végzett munkásságát leminősítették! A tudományok doktora fokozat elnyerésére irányuló kérelmét elutasították! Az újjászervezett Akadémia hamar megmutatta, hogyan kell a hatalmat érdekfüggően gyakorolni.. Egyébként Dávid Lajos volt a Debreceni Tudományegyetem első matematika professzora! 7

8 MEGJEGYZÉSEK: a) Jaglom [5] könyvének függelékében kilenc C-K-féle síkgeometriát tárgyal. Ezek között van a Bolyai-féle hiperbolikus és a Riemann-féle elliptikus geometria is. A hiperbolikus geometriát kapcsolatba hozza Einstein speciális relativitáselméletével. Jaglom a k=1, c=1 választással él, és így nála (22) v=thd (a / - =th helyett, ahol / <1.) - Azért, hogy igazolja Einsteinnek azt a posztulátumát, miszerint a fénysebesség minden inerciarendszerben ugyanakkora, a d hiperbolikus távolságot a 0 d intervallumon értelmezi. Ebből kifolyólag (lásd [5] 350. o.) th(d) 1 ugyanis ha d=, akkor th( )=1, és így v 1; ami valóban Einstein (második) posztulátumának fönnállását bizonyítja; hiszen ekkor (ha v=c=1) (23) w 1 0= 1±0 1±0 =1. Mivel a C-K hiperbolikus modellben a sík a h kör belső pontjaiból áll (lásd [3]), a sík egyenesei pedig ennek a körnek a nyílt húrjai, ezért 0< δ <1 folytán (következés- képpen) d< ; és v=1=c esetén kell, hogy k>1 legyen így a Dobó-féle tárgyalás szerint: (24) w 0= 1±0 1± < E 6 1, ami arra utal, hogy az inerciarendszerek nem egyenrangúak, az éter pedig létezik! (Einstein szerint: az általános relativitáselmélet értelmében a tér éter nélkül elképzelhetetlen ; lásd [8], 158. o. Erről azonban a fizikusok nem vesznek tudomást!) b) Jaglom könyvében a Riemann-féle elliptikus geometriához azáltal jutunk, hogy rögzítünk egy előre fölvett (adott) egyenesen kívüli O pontot, majd az egyenes A és B pontjának elliptikus távolságát (a közönséges) AOB szöggel mérjük. (Lásd [5], 331. o.) Jól látható és kivehető, hogy ez a tárgyalási mód már alapjában eltérést mutat a Dobó-féle tárgyalástól. (És ez így van jól!) 8

9 c) Fontos és jellemző tulajdonsága a C-K-féle kör-modellnek, hogy benne a geodetikus vonalak egyenesek. A [3]-ban tárgyalt hiperbolikus modell esetében a kúpszelet egyenlete: (25) x! +y! k! =0, vagyis az abszolút alakzat k sugarú kör; ezen helyezkednek el a húrok végpontjai. Elliptikus kör-modell esetében az abszolút alakzat (25) alapján az (26) x! +y! +R! =0 képzetes sugarú kör, mikor is k=r i. (Az egyenesek itt is az (x; y) sík egyenesei!) A matematikai szakirodalomban a nemeuklideszi geometriák modelljének bemutatása és tárgyalása a k=1 és R=1 választás mellett történik, ezáltal és így váltak ismeretessé. Ez is oka annak, hogy a C-K-féle kör-modell alkalmazása nem vált be a fizikában. (Hozzáteszem, hogy az elliptikus változat korábbi fizikai alkalmazásáról én nem tudok!) Hogy adott esetben melyik geometriát kell (lehet) alkalmazni, azt a mozgás ( eredő sebességek ) jellege (és így k vagy R érvényre jutása, dominálása) határozza meg, dönti el 5 ; végső fokon a tapasztalat. (Lásd még: [9].) d) A kanonikus egyenletek alapján a kúpszeletek mindegyike másodrendű görbe. (A kör is a kúpszeletek közé tartozik!) A (26) alatti másodrendű görbe valójában nem kúpszelet. Ezt az egyenletet egyetlen valós pont koordinátái sem elégítik ki; ami akkor is áll, ha a homogén koordinátás x 2 1 +x 2 2 +x 2 3 =0 egyenletre térünk át. Szemlélet szempontjából (26) üres alakzat, amelyhez (valós) ideális pont ( végtelen távoli pont ) sem tartozik. A C-K-féle modellben, vagy a Poincaré-féle modellben ideális pontot alkotnak a határgörbére illeszkedő, vagy az azon kívül eső pontok. Párhuzamos egyenesekhez azonos ideális pont tartozik. Az ideális térelemeknek (ilyen még a végtelen távoli egyenes, végtelen távoli sík ) fontos szerepük van a geometriában. Általuk az illeszkedési és metszési tételek egyöntetűbben fogalmazhatók meg! Ennek révén például a két egyenes vagy metszi egymást, vagy párhuzamos kijelentést az alábbi helyettesíti (váltja fel): Két egyenes 5 Ebben a kérdésben alapvetően eltérő véleményen vagyunk Topával. 9

10 mindig metszi egymást; párhuzamosság esetén a közös ideális pontjukban. (Lásd: [2], o.) Az ideális térelemekkel bővített síkot projektív síknak nevezzük. Ennek az euklideszi síkkal szembeni jellegzetes sajátossága, hogy bármely két egyenesének van közös pontja. A projektív geometriában a közönséges és ideális pontokat egyenértékűeknek tekintjük! Itt azonban a közönséges távolságfogalom nem vihető át az ideális pontokra. A [2]-ben homogén koordinátákkal van kifejezve az elliptikus és hiperbolikus geometria metrikája! Komplex számok halmazához (számsíkhoz) egyetlen ideális pontot nevezetesen a szimbólummal jelölt pontot csatoljuk. (Ez a végtelennek nevezett, -nel jelölt szám a gömbfelület északi pólusához van rendelve!) Ezáltal a komplex számokat a Riemann-féle számgömbön ábrázolhatjuk; aminek számos előnye van. (Így pl. az, hogy a számsík a gömbbel topologikusan ekvivalenssé válik. Lásd: [2], 186, 379. o.) Számos ideális térelemek bevezetésére alapozott tétel található [12]-ben. (Lásd: o.) A projektív geometria is fölépíthető az euklideszi geometriától függetlenül, a projektív sík és tér [13]-ban található axiómarendszere alapján. (Lásd: o. Önálló felépítésben lásd még [4], o.) E helyt nem volt célunk részletesebben tárgyalni a projektív geometriára alapozott nemeuklideszi geometriákat. Inkább csak a figyelmet akartuk fölhívni, e kiegészítéssel is láttatni szerettük volna, hogy a geometriának mennyire hasznos fizikai alkalmazásai lehetnek. Ezt a lehetőséget is meg kell ragadni akkor, amikor a gondolatvilágunkban messzebbre akarunk látni. Ez a foghíjas irodalom miatt nem lesz könnyű feladat. e) Vizsgálataink során csupán síkra szorítkoztunk, de már ebből is látható, hogy a projektív geometria a matematikának nem könnyű fejezete. Az eredményeket nem rutinszerűen, nem módszeresen alkalmazott analitikus eljárásokkal, hanem sok ihletre, leleményességre, ötletre támaszkodva, építkezve kapjuk. A projektív geometria az ötletek tárháza, aminek révén tételeit elegáns és frappáns módon bizonyíthatjuk. 10

11 (Mivel nagyon sikamlós, ezért könnyen elcsúszhatunk rajta.) Megalkotója Jean-Victor Poncelet ( ) francia matematikus, hadmérnök-tábornok volt. 6 A 36 akadémia tagjává választott (Einstein szerint szikrázó elméjű és mély gondolkodású ) francia matematikus, Henri Poincaré véleménye, fölfogása volt, hogy: A geometria semmit sem mond a valóságos dolgokról, csak az a geometria, amelybe a fizikai törvényeket is beleértjük. Én is megpróbáltam, igyekeztem a geometriát a fizika számára hasznossá, használhatóvá tenni. Ma már talán elmondhatom, hogy egy kicsit ez sikerült is! Az meg, hogy mások hogyan vélekednek erről, egyáltalán nem érdekel! Immunissá tett a sok áltudományos okoskodó, a fizikát laikusan népszerűsítő, dilettánsan művelő szaktekintély, a magyarázó filozófusokkal együtt Láttam, megtapasztaltam, hogy úgy matematikai, mint fizikai szempontból valóban sok ad hoc szerű gondolatot igényel alkalmazáskor a geometriai modell megválasztása (konstruálása), és a fizikai törvényeknek ebbe való beágyazása. Azért, hogy a természet viselkedését, a világ szüntelen alakulását jobban megértsük és reálisabban megismerjük, ezt az utat ha tetszik, ha nem kénytelenek vagyunk választani, bejárni, föltárni. Hogy ez a kutatói tevékenységünk minél sikeresebb legyen, nagyon célratörően és tudatosan az egyetemi tanterveket is az eddigieknél sokkal jobban ehhez kellene igazítani! Ez azonban, sajnos, nem látszik egyhamar megvalósíthatónak, így a természet világára vonatkozó ismereteink szakszerű bővítése az elvárhatónál hosszabban fog végbemenni, bekövetkezni ideértve a filozófiai fölfogásunkat is. Ma még ott tartunk, hogy túlzás nélkül ki lehet tenni a táblát: A REFORMÁLÁS IDEJE ALATT AZ OKTATÁS TUDOMÁNYTALANÍTÁSA ZAVARTALANUL FOLYIK! Budapest, január 2. 6 A projektív geometria szigorú felépítését Poncelet a napóleoni hadsereg tisztjeként szaratovi orosz fogsága idején 1822-ben fejezte be. Fő műve (Értekezés az alakzatok projektív tulajdonságairól) életében teljes elutasításra talált, s csak halála után 15 évvel jelent meg könyv formájában. 11

12 HIVATKOZÁSOK [1] D. Hilbert - S. Cohn-Vossen: Szemléletes geometria (Gondolat, Budapest, 1982.) [2] Matematikai kislexikon: Főszerkesztő: Dr. Farkas Miklós (Műszaki Könyvkiadó, Budapest, 1979.) [3] Dobó Andor: Projektív metrikáról (Kézirat, Budapest, június 20.) [4] Reiman István: A geometria és határterületei (Gondolat, Budapest, 1986.) [5] I. M. Jaglom: Galilei relativitási elve és egy nemeuklideszi geometria (Gondolat, Budapest, 1985.) [6] Moussong Gábor: A hiperbolikus geometria modellje (Bolyai-Emlékkönyv, Vince Kiadó.) [7] G. Vrănceanu: A Riemann-féle geometria, Bolyai János élete és műve (Állami Tudományos Könyvkiadó, Bukarest, 1953.) [8] A. Einstein: Éter és relativitáselmélet, Albert Einstein válogatott írásai (Typotex, Budapest, 2010.) [9] Dobó Andor - Topa Zsolt: Ki mondja meg, mi dönti el, mi az igazság? (Kézirat, Budapest, december 15.) [10] Kálmán Attila: Nemeuklideszi geometriák elemei (Nemzeti Tankönyvkiadó, Budapest.) [11] Dobó Andor: Mi a jelentősége a k=r választásnak? (Kézirat, Budapest, december 15.) [12] Hajós György: Bevezetés a geometriába (Tankönyvkiadó, Budapest, 1984.) [13] Pelle Béla: Geometria (Tankönyvkiadó, Budapest, 1979.) [14] Dávid Lajos: Bolyai-geometria az APPENDIX alapján (Minerva, Kolozsvár, 1944.) [15] Neumann Mária: A tér szerkezete és a lehetséges geometriák (Megjelent Modell és valóság c. könyvben, Facla Könyvkiadó, Temesvár, 1982.) 12

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20.

Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20. A görbületek világa 1 Kristály Sándor Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest 2015. június 20. 1 Az MTA Bolyai János Kutatói Ösztöndíj által támogatott kutatás. Eukleidészi világnézet

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Még egyszer a Cayley-Klein modellről

Még egyszer a Cayley-Klein modellről Még egyszer a Cayley-Klein modellről (Apróságok II.) Az [1]-ben, a 3. pontban részletesen ismertettem a hiperbolikus sík Cayley-Klein-féle modelljét. Az ott leírtakat most több vonatkozásban is helyesbítem,

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

választással azaz ha c 0 -t választjuk sebesség-egységnek: c 0 :=1, akkor a Topa-féle sebességkör teljes hossza 4 (sebesség-)egységnyi.

választással azaz ha c 0 -t választjuk sebesség-egységnek: c 0 :=1, akkor a Topa-féle sebességkör teljes hossza 4 (sebesség-)egységnyi. Egy kis számmisztika Az elmúlt másfél-két évben elért kutatási eredményeim szerint a fizikai téridő geometriai jellege szerint háromosztatú egységet alkot: egymáshoz (a lokális éterhez mért v sebesség

Részletesebben

Az Yff pontok vizsgálata különböző geometriákban

Az Yff pontok vizsgálata különböző geometriákban Az Yff pontok vizsgálata különböző geometriákban Szakdolgozat Paulik Rita Matematika BSc, Matematika tanári szakirány Témavezető: Dr. Rózsahegyiné Vásárhelyi Éva egyetemi docens Konzulens: Lénárt István

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

Geometriai axiómarendszerek és modellek

Geometriai axiómarendszerek és modellek Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

A projektív geometria alapjai. Kovács Zoltán

A projektív geometria alapjai. Kovács Zoltán A projektív geometria alapjai Kovács Zoltán előadásvázlat, 2003 Tartalomjegyzék 1. Bevezetés, homogén koordináták az euklidészi síkon 2 2. A projektív sík 5 3. Projektív transzformációk 8 4. Centrális

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

A Michelson-Morley kísérlet gyökeres átértékelése

A Michelson-Morley kísérlet gyökeres átértékelése A Michelson-Morley kísérlet gyökeres átértékelése Az [1]-ben több évnyi irányvesztett bolyongás után végre sikerült rálelni a Dobó-féle dimenziótlan k D (vagy a vele lényegileg egyenértékő, modellünkben

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Moussong Gábor. A Poincaré-sejtés

Moussong Gábor. A Poincaré-sejtés Moussong Gábor Poincaré-sejtés címmel 2006. szeptember 19-én elhangzott előadása alapján az összefoglalót készítette Balambér Dávid, Bohus Péter, Hraskó ndrás és Moussong Gábor 1. Poincaré-sejtés aktualitása

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

A húrnégyszögek meghódítása

A húrnégyszögek meghódítása A húrnégyszögek meghódítása A MINDENTUDÁS ISKOLÁJA Gerőcs lászló A HÚRNÉGYSZÖGEK MEGHÓDÍTÁSA Akadémiai Kiadó, Budapest ISBN 978 963 05 8969 7 Kiadja az Akadémiai Kiadó, az 1795-ben alapított Magyar Könyvkiadók

Részletesebben

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

A csúszóvágásról, ill. - forgácsolásról

A csúszóvágásról, ill. - forgácsolásról A csúszóvágásról, ill. - forgácsolásról A vágás, ill. a forgácsolás célja: anyagi részek egymástól való elválasztása. A vágás, ill. a forgácsolás hagyományos eszköze: a kés. A kés a v haladási irányhoz

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Matematika C 10. osztály 10. modul Bolyai-geometria (Hiperbolikus geometria)

Matematika C 10. osztály 10. modul Bolyai-geometria (Hiperbolikus geometria) Matematika C 10. osztály 10. modul Bolyai-geometria (Hiperbolikus geometria) Készítette: Lénárt István Matematika C 10. évfolyam 10. modul: Bolyai-geometria Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló

Részletesebben

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes

Részletesebben

A manzárdtetőről. 1. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_ of_gambrel-roofed_building.

A manzárdtetőről. 1. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_ of_gambrel-roofed_building. A manzárdtetőről Az építőipari tanulók ácsok, magasépítő technikusok részére kötelező gyakorlat a manzárdtetőkkel való foglalkozás. Egy manzárd nyeregtetőt mutat az. ábra.. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_

Részletesebben

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást

Részletesebben

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK

HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK 1 MATEMATIKA (4+4+4+4) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. október 15. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2013. október 15. KÖZÉPSZINT I. 1) Az A halmaz elemei a MATEMATIKA ÉRETTSÉGI 01. október 15. KÖZÉPSZINT I. 5 -nél nagyobb, de -nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az halmazt! A\

Részletesebben