Integrálszámítás. következőképpen történhet: ( x) (e) az integrálás mint lineáris operátor: ( f g) dx

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Integrálszámítás. következőképpen történhet: ( x) (e) az integrálás mint lineáris operátor: ( f g) dx"

Átírás

1 IV Integrálszámítás H ismert z egyváltozós f() függvény, differenciálhtju, hogy megpju pontonénti változásán sebességét, df/ mennyiséget Enne folymtn fordítottj (inverze) z integrálás, mior derivált ismeretéből ívánun függvényre öveteztetni Az integrálot átlgoláshoz, átlgértée és özépértée számításához hsználju Foglm () vlmely függvény htároztln integrálj minden olyn függvény, melyne deriváltj z dott függvény (b) z F() függvényt z f() függvény primitív függvényéne (htároztln integrálján) nevezzü z (,b) véges vgy végtelen intervllumon, mennyiben differenciálhánydos (deriváltj) ezen intervllum minden pontjábn f() (c) z integrálndó függvény neve integrndus (d) Newton Leibniz formul értelmében htározott integrálo számítás övetezőéppen történhet: ( ) = [ F( ) ] b b f = F( b) F( ) + +, Af A (e) z integrálás mint lineáris operátor: ( f g) = f g ( Af + Bg) = A f B g + d = f és (f) z integrálszámítást felhsználhtju területszámításhoz, átlgérté számoláshoz b ( t = fdt /( b ) ), négyzetes özépérté számoláshoz, ívhossz számoláshoz, térfogt és felszín számításához, súlypontszámításhoz (g) lpvető függvénye integrálfüggvényei függvény, y() f ( ) függvény, y() A, onstns A + c sin(+b) n + n cos(+b) + c, n n + / ln + c tg(+b) e e + c e e + c f ( ) + sin cos + c sh ch + c cos sin + c cos( + b) + c sin( + b) + c ln sec( + b) + c sin + c tg + c 6

2 Mintfeldto A fenti táblázt segítségével htározzu meg övetező ifejezés htároztln integrálját: cos() sin( ) Megoldás: A tábláztbn cos( ) = + c szerepel Jelen esetben =, így sin cos = + c A fenti táblázt segítségével htározzu meg övetező ifejezés htároztln integrálját: sin( + ) cos( + b) Megoldás: A tábláztbn zt tlálju, hogy sin( + b) = + c Jelen cos( + ) esetben = és b =, így sin( + ) = + c 7

3 Gyorló feldto d Számíts i övetező htároztln integrálot: () d ; (c) d ; ; (b) (d) cos ; (e) e ; (f) ; (g) + ; Számíts i övetező htározott integrálo értéét: () ; (b) 4 d b ; (c) ; π (d) sinθ dθ ; (e) e ; (f) Adj meg övetező htározott integrál értéét: I = e Htározz meg, hogy mivel egyenlő tg Egy m tömegű rugó esetében legyen itérítéssel () rányos visszhúzó erő, f, itérítéssel lineárisn rányos (Hooe-törvén, zz f =, hol z ún rugóállndó Adj meg rugór vontozó V() potenciálfüggvény lját, mennyiben tudju, hogy potenciál első deriváltján -szerese (visszhúzó) erő A grvitáció htás ltt szbdon hulló m tömegű test F = mg, lefelé muttó irányú erő ht Integrálszámítás segítségével htározz meg, meor munát végez grvitáció ezen testen, mennyiben h mgsságból hulli le test és Δ W f ( ) Δ Különbözi-e ettől munától test h mgsságú, grvitáció ellenében végzett megemeléséhez szüséges mun? Két, egymástól távolságbn lévő, q, illetve q töltésű részecse özött Coulombtörvény értelmében váumbn F( ) = erő ht, hol ε qq váum 4πε permittivitás Htározz meg zt munát, mely ezdetben egymástól végtelen távolságbn lévő, zonos töltésű részecsé egymástól távolságr történő összehozásához szüséges Két, egymástól távolságbn lévő, q, illetve q töltésű részecse özött Coulombtörvény értelmében váumbn F( ) = erő ht, hol ε qq váum 4πε permittivitás Milyen ölcsönhtást jellemző eletroszttius potenciál lj? Adj meg z y = függvény átlgos értéét intervllumon 8

4 A pv m = RTZ állpotegyenlettel (Vm moláris térfogt és Z egy ompressziós tényező) jellemezhető gáz fugcitási együtthtój megdhtó, mint p Z ln γ = dp A p ( V m b) = RT állpotegyenlet esetére mutss meg, hogy p bp Z = + és ezután dj meg γ ( p, T ) függvényt RT Egy egyenes vonlú mozgát végző részecse t időpillntbeli sebessége v = t Adj meg t = és t = időpillnto özött részecse áltl megtett utt Egy enyhén nemideális gáz esetében vn der Wls állpotegyenlet lj n p + ( V nb) = nrt V Adj meg zot ifejezéseet, melye leírjá gáz áltl végzett munát, mennyiben z V -ről V térfogtr tágul () állndó nyomás és (b) állndó hőmérsélet mellett Jvsolt irodlom Bárczy Brnbás: Integrálszámítás, Műszi Könyvidó, 97 9

5 IV Prciális integrálás Prciális integrálás esetében egy szorzt lú függvény integrálását övetező módon végezzü el: dv du u d = uv v A lényeg, hogy mennyiben szorztfüggvény egyi tgj deriváltfüggvény, úgy ezen derivált helyett áttérhetün mási függvény deriváltjár z integrálszámítás során, mennyiben zt formulát hsznosbbn ítéljü A differenciálszámítás ismert szbályi segítségével prciális integrálás szbály önnyen levezethető illetve megjegyezhető: d du dv dv d du ( uv) = v + u u = ( uv) v Mintfeldto Htározzu meg övetező integrált: I = e sin Megoldás: Allmzzu prciális integrálást z u = e és v = sin válsztásol Eor u = e és v = cos / lpján e cos e cos e sin = + = e cos + e cos Ismét prciálisn integrálun, most z u = e és v = cos válsztásol Eor u = e és v = sin / lpján e sin = e sin e sin, zz I = 9 e cos + e sin e sin Az egyenlőséget rendezve ( eresett 4 4 integrál mind bl, mind jobb oldlon előfordul) megpju eresett végeredményt: e I = ( sin cos ) + C Gyorló feldto Htározz meg övetező integrál értéét: I = e

6 IV Helyettesítéses integrálás A helyettesítéses integrálás differenciálszámításnál megismert láncszbály integrálási megfelelője Ngyon fontos megjegyezni, hogy htározott integrál esetén helyettesítés öveteztében z integrálási htáro vátozhtn A techni hsználtát legegyszerűbb példáon eresztül szemléltetni Mintfeldto,7 + dz Megoldás: Végezzü fel z = + helyettesítést Eor =, zz = dz /,7,7,7 z + Tehát, z + ( ) d = c = + c,7, 7 Adju meg övetező ifejezés htároztln integrálját: ( ) t + t Számítsu i övetező htározott integrált: dt t + t + f ( ) Megoldás: Tudju, hogy = ln f + c Enne segítségével már önnyen f ( ) 4 4 megoldhtó feldt: d [ ln ] ln8 ln, 8 t + t t + t + t = t + t 4 + =

7 IV Integrálás prciális törtere bontássl Mintfeldto Adju meg övetező ifejezés htároztln integrálját: + Megoldás: Végezzü el nevező felbontásávl z integrálndó függvény ét tgr A B + C bontását: = = + = A( + ) + ( B + C), zz A =, + ( + ) + B = és C = Tehát, = = ln ln + + c + +

8 IV4 Integrálás sorfejtéssel Foglm úgy H z integrálndó függvény f f ( ) = c ( ) = c, zz f ( ) = c + műödi, h sor onvergens lbn írhtó fel (például özelítően), + Ez z integrálási techni or

9 IV5 Ívhossz és ívhosszintegrál Foglm Amennyiben z y = f() függvény z [,b] intervllumon folytonos és differenciálhtó, továbbá differenciálhánydos orlátos, úgy z és b bszcisszá áltl htárolt b vonldrb ívhosszát z s = + y htározott integrál dj Ez tuljdonéppen megfelel egy slárfüggvény integrálján egy megdott görbe mentén A éplet helyessége önnyen beláthtó, mint felidézzü, hogy ds = + dy = + ( y ) () Amennyiben görbe prméteres egyenletrendszerrel ( = (t) és y = y(t)) dott, t úgy s = & + y& dt t (b) H görbe (síbeli) polároordinátál dott, úgy s = r + r& dφ A leírtn mindenben megfelelően lehet iszámítni egy térgörbe ívhosszintegrálját, mely egy slárfüggvény (pl ϕ ( r ) = ϕ(, ) integrálás egy C görbe mentén Az ívhossz integrál: B A I = ϕ(, ds Sí görbére ds ismerete lpján zt írhtju, hogy C I = ϕ (, y( )) + y Amennyiben r(t) dj g görbe prméteres egyenletét t B dy ( = (t) és y = y(t) ), úgy I = ϕ ( ( t), y( t)) + dt dt dt Mintfeldto t A Htározzu meg z + y = 5 ör ívéne hosszát z = és = 5 bszcissz ponto áltl htárolt szsz felett Megoldás: Az egyenlet lpján zz 5 5 y / = 5 és y = ( 5 ) ( ) = φ φ s = + = 5 = 5 5 Integráltáblázt segítsé- ( ) 5π gével s = 5rcsin = 5rcsin = 5 Ez vlóbn egy negyed örív hossz (hiszen z r sugrú ör erülete K = rπ), mennyiben sugár 5 5 5, 4

10 Számítsu i z = és = 4 bszcissz ponto özött z yds -t zon C görbe mentén, melyne egyenlete y = Megoldás: Tudju, hogy ds = + dy = + ( y ), zz C 4 y ds = + = hnem iszámítottun egy ívhosszintegrált Gyorló feldto 4 + = 56 Itt persze nem z ívhosszt ptu meg, Htározz meg z y = cosh függvénygörbe = és = bszcisszájú ponto áltl htárolt ívéne hosszát Htározz meg z y = függvény görbéjéne z = és = 4 bszcissz pontji áltl htárolt ívéne hosszúságát ( megoldás icsit nehézes, enne során hsználj fel z lábbi helyettesítést: = sinh u ) 5

11 IV6 Vonlintegrál A vonlintegrál, (, b ) [ P + Q dy] számítás egy vetorfüggvény integrálásán felel (, b ) meg egy görbe mentén A vonlintegrál áltlábn függ z úttól De vnn olyn speciális és természettudománybn rendívül fontos esete (ezere ésőbb még vissztérün), mior vonlintegrál értée nem függ z úttól A vonlintegrálo tuljdonsági mindenben megfelelne hgyományos integrálo (mint lineáris operátoro) tuljdonságin Kétdimenziós (síbeli) esetben legyen dott F(, = P(,i + Q(,j, hol i és j megszoott Descrtes egységvetoro, eor F(, ds = ( P(, i + Q(, j ) ( i + dyj ) = P(, + Q(, dy Ezt formulát C C lehet mgsbb rendere is értelemszerűen áltlánosítni Különítsün el néhány lesetet ét-dimenziós esetben: () H C görbe egyenlete z y = f() formábn dott, or y = f() és dy = dy = f ( ) lpján vonlintegrál [ P{, f ( )} + Q{, f ( )} f ( ) ] ifejezés szerint hgyományos módon számíthtó (b) Amennyiben C görbe z = g( lbn dott, or vonlintegrál t b C = g ( dy lpján [ P { g(, y} g ( dy + Q{ g(, y} dy] ifejezés segítségével számolhtó b (c) Amennyiben C görbe prméteres formábn, = φ (t) és y = ψ (t), dott, úgy [ P{ φ ( t), ψ ( t)} ] φ ( t) dt + Q{ φ( t), ψ ( t)} ψ ( t) dt t t és t t értéei z A(, b ) és B(, b ) pontobn vonlintegrál iszámításán módj, hol A fenti módszere ombinációi is gyort sieresen llmzhtó Megjegyzendő, hogy mennyiben F z erő és r z út, z Fdr ifejezés zon teljes C munát jelenti, melyre z objetum C menti mozgtásához szüség volt 6

12 Mintfeldto (,) Számítsu i z [( + ( y + ) dy] integrált z () [,]-ből [,]-be menő (,) egyenes mentén; és (b) [,]-ből [,]-be, mjd z [,]-ből [,]-be menő egyenese mentén Megoldás: () [,] és [,] pontot összeötő egyenes egyenlete y = +, zz dy =, és így ( + ) [( ) + ( + ) + ) ] = ( + ) = = (b) [,] és [,] pontot összeötő egyenes egyenlete y =, zz dy =, vlmint z [,] és [,] pontot összeötő egyenes egyenlete =, zz =, tehát [( ) + ] = ( ) = = [ () + ( y + )dy ] = ( y + ) és ( y= dy = zz vonlintegrál értée ezen út mentén = 8 Megállpíthtju tehát, hogy vonlintegrál áltlábn függ z úttól A fiziábn és fizii émiábn mjd ülönös jelentőségűe leszne zo z esete, mior z integrál értée útfüggetlen, cs ezdeti és végállpottól függ 5, 7

13 IV7 Többszörös integrál Természetesen z integrál és z itegrálás foglm többváltozós függvényere is iterjeszthető, émi gyorltábn többnyire ilyen eseteel tlálozun Foglm Kettős integrál Legyen F(, egy zárt része z y sín Osszu fel ezt területrészt n db is részre, eze területe legyen Δ A, =,,, n Képezzü z lábbi n összeget: F( ξ, η ) ΔA Teintsü lim F( ξ, η ) ΔA htárértéet H ez = n = htárérté létezi (be lehet bizonyítni, hogy ez htárérté or létezi, h F(, leglább drbonént folytonos), úgy enne jelölése F (, da és z F(, étváltozós függvény ettős integrálján nevezzü z R térrész felett Áltlábn z integrálás sorrendje felcserélhető, de htárol mjdnem mindig vigyázni ell Mintfeldto Számítsu i z ellipszis területét övetező ettős integrál segítségével: d dy y Megoldás: Az ellipszis orábbról ismert egyenlete + = ( és b is és ngy b tengel, így y = b és T = dy = 4b = 4b n b / R t dt, hol helyettesítéses integrálássl ( t = / ) próbálozun fellépő htározott integrál iszámításához A fellépő integrál iszámításához integráltábláztr (vgy számítógépes lgebr szoftverre, pl Mthemtic) vn szüségün, mely szerint T = 4b [ t t + rcsin t], zz T = bπ Ez éplet természetesen jól ismert orábbi tnulmányoból Gyorló feldto A lsszius sttisztius mechni szerint hőmérséleti egyensúlybn lévő rendszere átlgos ε energiáj z lábbi éplettel számolhtó (z energi bármely értéet felvehet): ε = ε e e ε / BT ε / BT dp, hol B z ún Boltzmnn-állndó, p és dp pedig z impulzus (lendület) illetve oordinát Egyszerű hrmonius oszcillátorr p ε = +, hol m reduált tömeg és vdrtius erőállndó Az integrál m iszámításávl htározz meg z átlgos energiát Mennyivel járulne hozzá z egyes vdrtius tgo z átlgos energiához? 8

Integrálszámítás. b a. (f) az integrálszámítást felhasználhatjuk területszámításhoz, átlagérték számoláshoz

Integrálszámítás. b a. (f) az integrálszámítást felhasználhatjuk területszámításhoz, átlagérték számoláshoz IV Integrálszámítás H ismert z egyváltozós f() függvény, differenciálhtju, hogy megpju pontonénti változásán sebességét, df/d mennyiséget Enne folymtn fordítottj (inverze) z integrálás, mior derivált ismeretéből

Részletesebben

Integrálszámítás. b a. (f) az integrálszámítást felhasználhatjuk területszámításhoz, átlagérték számoláshoz (

Integrálszámítás. b a. (f) az integrálszámítást felhasználhatjuk területszámításhoz, átlagérték számoláshoz ( IV Integrálszámítás H ismert z egyváltozós f() függvény, differenciálhtju, hogy megpju pontonénti változásán sebességét, df/ mennyiséget Enne folymtn fordítottj (inverze) z integrálás, mior derivált ismeretéből

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Az integrálszámítás néhány alkalmazása

Az integrálszámítás néhány alkalmazása Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

Többváltozós analízis gyakorlat

Többváltozós analízis gyakorlat Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete

Részletesebben

1. Házi feladatsor Varga Bonbien, VABPACT.ELTE

1. Házi feladatsor Varga Bonbien, VABPACT.ELTE . Házi feldtsor Vrg Bonbien, VBPCT.LT. Feldt: feldt szerint z ellipszis istengelye ngytengelye b. Prméterezzü z ellipszist z lábbi módon: x = b cos t zz: y = sin t r(t) = b cos t sin t z ismert éplet szerint

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás 7. feruár.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény folytonos z, intervllumon, vlmint létezik f()d htárérték

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben.

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben. Htározott integrál, terület és térogt számítás XI. ejezet Htározott integrál, terület és térogt számítás Elméleti áttekintés A htározott integrál deinícióját ld. jegzeten. Newton-Leiniz tétel: ( ) d [

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

5.1. A határozatlan integrál fogalma

5.1. A határozatlan integrál fogalma 9 5. Egyváltozós vlós függvények integrálszámítás 5.. A htároztln integrál foglm Az eddigiekben megismertük differenciálás műveletét, melynek lpfeldt: dott f függvényhez megkeresni z f derivált függvényt.

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

Speciális függvénysorok: Taylor-sorok

Speciális függvénysorok: Taylor-sorok Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény

Részletesebben

Gazdasági matematika I. tanmenet

Gazdasági matematika I. tanmenet Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó

Részletesebben

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2 Mtemtik 4 gykorlt Földtudomány és Környezettn BSc II/2 1. gykorlt Integrálszámítás R n -ben: vonlintegrál, primitív függvény, Newton Leibniz-szbály. Legyen Ω R n egy trtomány, f : Ω R n folytonos függvény

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,

Részletesebben

A határozott integrál fogalma és tulajdonságai

A határozott integrál fogalma és tulajdonságai . fejezet Htározott integrál A htározott integrál foglm és tuljdonsági D. Legyen f z [, b] intervllumon legfeljebb véges számú pont kivételével mindenütt értelmezett korlátos vlós függvény, továbbá legyen

Részletesebben

Tehetetlenségi nyomatékok

Tehetetlenségi nyomatékok Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

2. NUMERIKUS INTEGRÁLÁS

2. NUMERIKUS INTEGRÁLÁS numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Prof. Dr. POKORÁDI LÁSZLÓ

Prof. Dr. POKORÁDI LÁSZLÓ Szolnoi Tudományos Közleménye XII. Szolno, 28. Prof. Dr. POKORÁDI LÁSZLÓ RENDSZEREK ÉS FOLYAMATOK GRÁF-MODELLEZÉSE Egy technii rendszer vgy műszi folymt vizsgáltán első fontos állomás z eleme, illetve

Részletesebben

A térbeli szabad vektorok V halmaza a vektorok összeadására, és a skalárral való szorzásra vonatkozóan egy háromdimenziós vektorteret alkot.

A térbeli szabad vektorok V halmaza a vektorok összeadására, és a skalárral való szorzásra vonatkozóan egy háromdimenziós vektorteret alkot. 1. fejezet Vetoro 1.1. Vetorlulus i j jobbsodrású ortoormált bázist, mely egy O ez- A térbeli szbd vetoro V hlmz vetoro összedásár, és slárrl vló szorzásr votozó egy háromdimeziós vetorteret lot. Gyr hszálju

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

4. előadás: A vetületek általános elmélete

4. előadás: A vetületek általános elmélete 4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

9. HATÁROZATLAN INTEGRÁL

9. HATÁROZATLAN INTEGRÁL 9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és

Részletesebben

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL

OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

1. Hibaszámítás Hibaforrások A gépi számok

1. Hibaszámítás Hibaforrások A gépi számok Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

Az előadás anyagának törzsrésze

Az előadás anyagának törzsrésze Az elődás nygánk törzsrésze 2. félév 1. Az egyváltozós differenciálszámítás lklmzási 1. Szélsőértékek. Foglmk. Def. Egy R pont környezete olyn J nyílt intervllum, melyre J. Def. Egy f : R R függvénynek

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok 7. HATÁROZATLAN INTEGRÁL 7. efiníió és lpintegrálok efiníió. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differeniálhtó I-n,

Részletesebben

A határozott integrál

A határozott integrál A htározott integrál Bevezető problém: Egyenes úton egy utó időben változó v(t) = ds/dt sebességgel hld. A mindenkori sebesség ismeretében szeretnénk kiszámolni, hogy mekkor utt tesz meg vlmely t b időintervllumbn.

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

x + 3 sorozat első hat tagját, ha

x + 3 sorozat első hat tagját, ha Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Gazdasági matematika 1. tantárgyi kalauz

Gazdasági matematika 1. tantárgyi kalauz Dr Mdrs Lászlóné Gzdsági mtemtik tntárgyi kluz Szolnoki Főiskol Szolnok 005 Gzdsági mtemtik tntárgyi kluz A kluz következő három kidványhoz készült: Dr Csernyák László: Anlízis, Mtemtik közgzdászoknk sorozt,

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizi özépszint 08 ÉRETTSÉGI VIZSGA 04. május 9. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgoztot z útmuttó utsítási szerint, jól övethetően

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben