BODE-diagram. A frekvencia-átviteli függvény ábrázolására különféle módszerek terjedtek el:

Hasonló dokumentumok
BODE-diagram szerkesztés

3. Gyakorlat. A soros RLC áramkör tanulmányozása

Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V)

Intraspecifikus verseny

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.

5. Differenciálegyenlet rendszerek

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI.

Rendszervizsgálat frekvencia tartományban

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)

3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel

Síkalapok vizsgálata - az EC-7 bevezetése

Fourier-sorok konvergenciájáról

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II.

Anyag- és gyártásismeret II - LBt /

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Számítógépes gyakorlat MATLAB, Control System Toolbox

Σ imsc

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

8. előadás Ultrarövid impulzusok mérése - autokorreláció

Digitális technika felvételi feladatok szeptember a. Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat! (2p) X. órajel X X X X /LD

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek

Tiszta és kevert stratégiák

REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja

Tömegpontok mozgása egyenes mentén, hajítások

Szilárdsági vizsgálatok eredményei közötti összefüggések a Bátaapáti térségében mélyített fúrások kızetanyagán

Mechanikai munka, energia, teljesítmény (Vázlat)

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

RC tag mérési jegyz könyv

17. előadás: Vektorok a térben

Gépészeti rendszertechnika (NGB_KV002_1)

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

Hullámtan. Hullám Valamilyen közeg kis tartományában keltett, a közegben tovaterjedő zavar.

Matematika A3 HÁZI FELADAT megoldások Vektoranalízis

Fizika A2E, 11. feladatsor

Ancon feszítõrúd rendszer

Elektronika 2. TFBE1302

Túlgerjesztés elleni védelmi funkció

7. 17 éves 2 pont Összesen: 2 pont

Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával.

Előszó. 1. Rendszertechnikai alapfogalmak.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

F1301 Bevezetés az elektronikába Műveleti erősítők

7.1 ábra Stabilizált tápegység elvi felépítése

Abszolútértékes egyenlôtlenségek

Alaptagok Nyquist- és Bode-diagramjai

Irányítástechnika 3. előadás

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

Hangfrekvenciás mechanikai rezgések vizsgálata

RENDSZERTECHNIKA 8. GYAKORLAT

Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása

Elektromágneses indukció (Vázlat)

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

REZONANCIÁRA HANGOLVA

SPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik.

Dinamikus optimalizálás és a Leontief-modell

L-transzformáltja: G(s) = L{g(t)}.

RC tag Amplitúdó és Fáziskarakterisztikájának felvétele

ELEKTRONIKAI ALAPISMERETEK

! Védelmek és automatikák!

A Lorentz transzformáció néhány következménye

ELEKTRONIKAI ALAPISMERETEK

Ezt már csak azért is érdemes megtenni, mert így egy olyan egyenletet kapunk, ami bármilyen harmonikus rezgés esetén használható, csak az 0

DIPLOMADOLGOZAT Varga Zoltán 2012

Irányítástechnika. II. rész. Dr. Turóczi Antal

Függvények Megoldások

Távközlı hálózatok és szolgáltatások

Hangfrekvenciás mechanikai rezgések vizsgálata

KOVÁCS BÉLA, MATEMATIKA I.

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer

ELEKTRONIKAI ALAPISMERETEK

2. gyakorlat: Z épület ferdeségmérésének mérése

Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon

KIS MATEMATIKA. 1. Bevezető

ELEKTRONIKAI ALAPISMERETEK

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Villamosságtan II. főiskolai jegyzet. Írta: Isza Sándor. Debreceni Egyetem Kísérleti Fizika Tanszék Debrecen, 2002.

Dr. Walter Bitterlich

A kúpszeletekről - V.

RC tag Amplitúdó és Fáziskarakterisztikájának felvétele

Statisztika gyakorló feladatok

A MAGYAR KÖZTÁRSASÁG NEVÉBEN!

Mechanika I-II. Példatár

ELEKTRONIKAI ALAPISMERETEK

FIZIKA FELVÉTELI MINTA

Kisérettségi feladatsorok matematikából

Számítógépes gyakorlat Irányítási rendszerek szintézise

Átírás:

BODE-diagram Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmő kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli függvénnyel egyérelmően jellemezheı. Még jelenleg is széles körben alkalmazzák a szabályozók ervezése során a frekvencia-arománybeli módszereke. Bár a jellemzı diagramoka manapság már szine kizárólag számíógéppel rajzolaják meg, mégis elengedheelen a diagramok szerkeszési lépéseinek ismeree. frekvencia-ávieli függvény ábrázolására különféle módszerek erjedek el: a) BODE-diagramok Egy komplex számo ampliúdójával és fázisszögével jellemezheünk. Ezér kézenfekvı a jϕ( ) komplex G(j ) = G(j) e frekvencia-ávieli függvény ampliúdójá és fázisszögé külön diagramokban, a körfrekvencia függvényében ábrázolni: ( ) = G(j) G( j) ϕ( ) Ennek megfelelıen ké diagram szolgál a G(j) frekvencia ávieli függvény eljes információaralmának ábrázolására: 1. Logarimikus lépékő ampliúdó nagyíás vs. körfrekvencia diagram: log G( j) = f (log) z ampliúdó-nagyíási függvény (a kimenı jel és a gerjeszı jel ampliúdójának arányá) logarimikus lépékben (decibelben) ábrázoljuk a gerjeszı jel logarimikus lépékben mér körfrekvenciájának függvényében. Megjegyzés: az ampliúdó-arány decibelben () mérve megállapodás szerin = az ampliúdó-arány logarimusának hússzorosával: = log. Szigorúan véve csak ké azonos dimenziójú mennyiség arányának kifejezésére alkalmas. Például ha a kimenıjel ampliúdója 7V, a gerjeszı jel ampliúdója pedig 1V, akkor az ampliúdónagyíás 7 = log = 3 1. Fázisolás-körfrekvencia diagram: ϕ = g(log) fokokban mér fázisolás ábrázoljuk a gerjeszı jel logarimikus lépékben mér körfrekvenciájának függvényében. Megjegyzés: a vízszines engelyen mér ké körfrekvencia (vagy bármely más fizikai mennyiség) ízszeres arányá dekádnak nevezzük, vagyis Körfrekvencia arány dekád = log. 1 Például 1 1/s és 1 1/s aránya = dekád, mivel = log =. 1 1

z ampliúdó nagyíás logarimikus ábrázolása azér elınyös, mivel α) egy összee (öbb ényezıbıl álló) ávieli függvény eredı BODE-diagramja az egyes ényezık BODE-diagramjainak egyszerő összeadásával nyerheı. ( szorzás mővelee a logarimus arományban összeadássá módosul - Lásd középiskolai maemaika) β ) logarimikus lépék nagy, öbb nagyságrende áfogó arományok ábrázolásá eszi leheıvé mind a vízszines, mind a függıleges engelyen. Jellegzees ényezık és azok függvényei G(j) frekvencia-ávieli függvény álalában öbb ényezı szorzaakén állíhaó elı, melyek közül a leggyakoribb három a kövekezı alakú: 1) ) 3) K (j, n=, ±1,±, sb. n (j ) (j + 1) ) + Dj + 1 Nézzük az egyes ípusok ulajdonságai és jellemzı diagramjai. 1. ípusú ényezı G(j)= K n (j) Mivel n csak egész szám lehe, ezér a kifejezés vagy iszán valós (n= páros), vagy iszán képzees (n=páralan). Ennek megfelelıen ( ) = K n n (j) = K ( ) Mindké oldal logarimusá véve és -szal szorozva log = log K + n log Ez a kifejezés egy egyenes egyenlee az -log koordináarendszerben: = nlog + log K y m x b z egyenes meredeksége (n) /dekád, vagyis lehe /dekád (vízszines), ± /dekád, ±4 /dekád, sb. z egyenes ábrázolásához célszerő elıször az egyenes egy kiünee ponjá ábrázolni, célszerően az =1 rad/s abszcisszájú pono, mivel ennek oordináája az = log K összefüggéssel egyszerően számíhaó. fázisolás illeıen a kövekezı megállapíás ehejük: Ha n=, akkor G(j)=K, valós szám fázisolása φ= Ha n=1, akkor G(j)=jK, iszán képzees szám, aminek fázisolása φ=9 Ha n=, akkor G(j)=-K, negaív valós szám (ellenfázis), fázisolása φ=18

Ha n=3, akkor G(j)=-jK 3, negaív képzees szám, fázisolása ϕ=7..sb. Álalánosíva: eszıleges n kievıre a fázisolás φ=n9 Példa Legyen G(j ) = 1( j). Rajzoljuk meg az ampliúdó nagyíási függvény, valamin a fázisolás! z egyenes egy ponja P(1 rad/s, 6 ), ugyanis =1 rad/s körfrekvencián az erısíés =log1=6. kifejezés kievıje n=+, ennek megfelelıen az egyenes meredeksége + =+4 /dekád. fázisolás φ=n*9 =*9 =18. z ampliúdó nagyíási függvény a felsı ábrán láhaó, alaa a fázisolás ábrázoluk a gerjeszés körfrekvenciájának függvényében. 1 1 8 6 4 ϕ 18 m= 4 / dekád P(1;6) 4 dekád,1 1 1 1 9,1 1 1 1. ípusú ényezı G(j ) = (j + 1), árolós, elsırendő ag. z ampliúdó-nagyíás ( ) = ( ) + 1 BODE-diagramok szerkeszése fáradságos munkával jár, ezér szokás azoka érinıikkel közelíeni, nem csökkenve jelenısen a diagramok információaralmá.

a) Kis ( << ) gerjeszı frekvenciákra a gyök alai mennyiség elsı agja az 1 melle elhanyagolhaó, így ( ) 1 Logarimálás uán a bal oldali (kisfrekvenciás) aszimpoa egyenlee: log = log1= (Vízszines koordináaengely egyenlee) b) Nagy ( >> ) gerjeszı frekvenciákra az 1 elhanyagolhaó a másik ag melle, így ( ) Logarimálás és -szal való szorzás uán a jobboldali aszimpoa egyenlee: log = ± log log (± /dekád meredekségő ferde egyenes egyenlee) m x b Érinık meszésponja z aszimpoák megrajzolásá megkönnyíi azok meszésponjának ismeree. ké aszimpoa meszésponja a kövekezı egyenlerendszerbıl kaphaó: = =± log log Innen = adódik. Mos már fonos jelenés ulajdoníhaunk a kifejezésben -vel jelöl mennyiségnek. z jelenése: örésponi körfrekvencia. Ennél a körfrekvenciánál válozik az érinık meredeksége. mennyiben a kievı n=1, a jobboldali aszimpoa meredeksége + /dekád érékkel válozik a baloldali aszimpoa meredekségéhez képes (felüláereszı jelleg). mennyiben a kievı n= -1, a jobboldali aszimpoa meredeksége - /dekád érékkel válozik a baloldali aszimpoa meredekségéhez képes (aluláereszı jelleg). Közelíés hibája Mos nézzük meg, hogy mekkora maximális hibá köveünk el, ha az ampliúdó nagyíási függvény az érinıivel helyeesíjük! z ampliúdó nagyíás ponos éréke a örésponi körfrekvencián ( = ± ( ) 1 ) = ( ) + 1 = Decibelben mérve ( = ) = log ±,5 = log =± 3 kisfrekvenciás erısíéshez képes ( ) a örésponban énylegesen ± 3 erısíés van (az elıjel a kievı elıjelével egyezik meg), ezér az érinıkkel való közelíés hibája a örésponban ± 3. fázisolás kis frekvencián (<< ) φ=, mivel G(j) 1, valós szám.

nagyfrekvenciás fázisolás (>> ) φ= ± 9, mivel G(j) (j/ ) ±1, képzees szám. Példa 1 Haározzuk meg a G( j ) = frekvencia-ávieli függvény (aluláereszı j+ 1 jellegő ag) aszimpoái! Elıször hozzuk ismer alakra a kifejezés: m= / dekád j) = 1 j = 1( j+ 1) + 1 j = 1[1( + 1)] 1 = (j + 1) 5 z áalakío formulából kiolvashajuk a örésponi körfrekvencia éréké: =5 1/s. kifejezés kievıje n= -1, ezér a jobboldali érinı meredeksége (-1)* /dekád, az egyenes lefelé lej. z ábrán jól lászik a ényleges (kék) görbe és az érinıkkel helyeesíe (piros) görbe maximális elérése a örésponban (3 ). z érinık a örésponól ávol nagyon jól közelíik a görbé. fázisgörbé érinıivel helyeesíve 9 fokos fázisugrás a örésponi frekvencián kövekezik be. valóságban a fázisválozás nem élesen, hanem folyamaosan örénik (kék görbe). örésponól ávol a közelíés jó. 4 - -4-6 -8-1 ϕ = 5,1 1 1 1 1 m= / dekád dekád - 3 m= - /dekád -,1 1 1 1 1-9 3. ípusú ényezı G(j)= (j ) + Dj + 1, másodrendő ag. a) Kis frekvencián (<< )az ampliúdó nagyíási függvény () 1, vagyis ().

b) Nagy frekvencián (>> és >>D ) az ampliúdó nagyíási függvény ( ), vagyis ( ) ± 4 log 4 log. z érinık meszésponja mos is =. legnagyobb elérés a örésponi frekvencián van, éréke a kövekezı: ( = ) = (1 ) + (D ) = D. fázisolás nagy frekvencián, mivel G(j ) ( ) nagy negaív valós szám, a kövekezı összefüggéssel számíhaó: ϕ = arcg = n18 ± Példa Rajzoljuk meg a (j) = ( j) BODE-diagramjai! G 5 frekvencia-ávieli függvény érinıkkel közelíe + 3( j) + 5 lakísuk á a kifejezés a kövekezı módon: D n G(j) = ( j) 5 5 j 3 j = = 1 + + + 3(j) + 5 j 5 5 3 j + 5 5 z áalakío kifejezésbıl az alábbi információkaz olvashajuk ki: örésponi körfrekvencia =5 rad/s. csillapíás D=,3 örésponi erısíés-elérés (D) -1 =1,66, decibelben +4,4. kievı n=-1, a jobboldali érinı n= -4 /dekád meredekségő. fázisolás a örésponi körfrekvenciánál n9=-18 fokkal válozik. + 1 5 5 5

4 - -4-6 -8-1 4,4,1 1 1 1 1 m= / dekád = 5 m= - 4 /dekád ϕ,1 1 1 1 1-9 -18 MTLB programmal a NEW, m-file menü válaszása uán írjuk be a kövekezı uasíásoka: num=[5]; den=[1 3 5]; bode(num,den)

Bode Diagram Magniude () - -4-6 -45 Phase (deg) -9-135 -18 1-1 1 1 1 1 Frequency (rad/sec) Példa összee frekvencia-ávieli függvény ábrázolására Ábrázoljuk érinıivel a 1 (j+,1) (j) = frekvencia-ávieli függvény! j (j) + 5j+ 4 G Áalakíva a kifejezés ismer ípusú ényezık szorzaára: j,1( + 1) 1 (j+,1) 1,1 G(j) = = j (j) + 5j+ 4 j j j 4 +,5 + 1 j + 1 j j = 5( j) ( + 1),5 1 + + 1.ípus,1.ípus 3.ípus = z ábrázolás során a kövekezı sorrende célszerő köveni: 1) Ha van K (j) n ípusú ényezı, akkor annak ábrázolásával kezdjük a szerkeszés, mivel az ilyen ényezıbıl származik a görbe bal oldali érinıje. z érinınek célszerően az a P ponjá haározzuk meg, melynek abszcisszája =1 rad/s. I az erısíés = 5(j =5 ami decibelben ( = 1) = log 5 8 P ) = 1 P =

-6 4 8 - P,1 1 1 1 1-4 z egyenes meredeksége annyiszor /dekád, amennyi (j) kievıje. Jelen eseben n= -1, ehá az egyenes meredeksége - /dekád. m= - / dekád -6 4 8 P -,1 1 1 1-4 1 ) zzal a ényezıvel folyajuk a szerkeszés, melynek örésponi körfrekvenciája a j + 1 legkisebb. Jelen eseben ez a ( + 1) ényezı, melynek örésponi körfrekvenciája,1 1 =,1 rad / s. Mivel ez a ényezı elsırendő és kievıje n=+1, ezér a öréspon uán az érinı meredeksége n= + /dekád érékkel válozik a öréspon elıi érékhez képes. öréspon elı a meredekség - /dekád vol, így a öréspon uán - /dekád+ db/dekád= /dekád lesz. m= - / dekád -6 m= / dekád 4 - -4,1 1 1 1 1 3) kövekezı ényezı az, melynek örésponi körfrekvenciája soron kövekezik. j j +,5 + 1 másodrendő ényezı örésponi körfrekvenciája = rad / s, kievıje n=-1. Ebben a örésponban az érinı meredeksége a öréspon elıi /dekád érékhez képes n /dekád érékkel, ehá -4 /dekád érékkel válozik.

m= - / dekád -6 m= / dekád 4 - -4,1 1 1 1 m= -4 / dekád 1 Végezeül a közelíı görbé is berajzoljuk az ábrába. z erısíés elérés az elsı 1 =,1 rad/s örésponi körfrekvencián 3 (elsırendő ad!), míg a második = rad/s örésponban (D) n =,5-1 =4, ami decibelben log4=1. 3 1 4 - -4 ϕ,1 1 1 1 1 =,1 =,1 1 1 1-9 -18 Ellenırzésül Malab programmal is megrajzolajuk a BODE-diagramoka. frekvenciaávieli függvény számlálójának (numeraor=számláló) és nevezıjének (denominaor=nevezı) megadása uán a bode(számláló,nevezı) uasíással megkapjuk a BODE-diagramoka. program az alábbi m-file begépelésébıl áll:

num=[1 1]; % számláló j csökkenı haványai szerin rendeze együhaói den=[1 5 4 ]; % nevezı j csökkenı haványai szerin rendeze együhaói bode(num,den) ile( Bode Diagram ) % a diagram címe 1 Bode Diagram 8 Magniude () 6 4 - -45 Phase (deg) -9-135 -18 1-3 1-1 -1 1 1 1 1 1 3 Frequency (rad/sec) kézzel szerkesze, valamin a számíógéppel rajzolao BODE-diagramok ökélees egyezés muanak. BODE-diagramok ovábbi ulajdonságai Erısíés válozaása Vizsgáljuk meg, hogy mikén módosulnak egy G (j) alakú frekvencia-ávieli függvény BODE-diagramjai, ha a függvény λ skalár együhaóval megszorozzuk a) Elıször vizsgáljuk az ( ) =λ ( ) ampliúdó nagyíás. Vegyük mindké oldal logarimusának hússzorosá: log ( ) = logλ+ log ( ) ( ) ( ) Megállapíhajuk, hogy az új ampliúdó nagyíási függvény csupán egy logλ konsansban ér el az eredei ( ) ampliúdó nagyíási függvényıl. Egy λ konsanssal való szorzás az eredei BODE-diagramo függıleges irányban olja el logλ érékkel.

Ha λ>1, akkor az eredei BODE-diagram felfelé, ha λ<1, akkor lefelé olódik el. b) Mos vizsgáljuk meg, hogy a λ konsanssal való szorzásnak van-e haása a fázisolásra? fázisolás a komplex G (j) függvény komplex N (j) számlálójának és komplex D (j) nevezıjének fázisolásával kifejezve ϕ ) =ϕ ( ) ϕ ( ) ( N D λn (j Tudjuk, hogy a ) mővele az N (j) komplex számnak mind a valós, mind a képzees részé ugyanolyan arányban nyújja meg, hiszen λ N ( j) =λ(re N ( j) + Im N (j)) Kövekezésképpen a valós számo ábrázoló vekornak csak a hossza válozik, a szöge nem. z elmondoakból kövekezik, hogy Egy λ konsanssal való szorzásnak a fázisviszonyokra nincs haása. Távoli örésponokra érinıkkel való közelíés jó m1=f([1 1],[1 5 4 ]); m=f(1*[1 1],[1 5 4 ]); m3=f(1*[1 1],[1 5 4 ]); bode(m1,m,m3) 15 Bode Diagram Magniude () 1 5-5 -45 Phase (deg) -9-135 -18 1-3 1-1 -1 1 1 1 1 1 3 Frequency (rad/sec)