Ñ Ò ¹ÒÙ¹ÚØÓÖ ØÔ ÞØÐØ ÞÖÒØ ÖÑÑÐ Ø ÖØ ÚÞØ ÔÖÑÒÒ Ñ Ò ÖÒÝÞØÒ Ñ Ò ÑÞ ÐÒ Ñº ÑÞ ÒØÒÞØ Ø Þ ÐØÖÓÑÓ ØÖÖ ÚØÓÖÖÐ ÒÐ Ñ Ò ÒÙ ÚØÓÖÖÐ ÐÐÑÞØº ÄØÞ Ñ Ò ØÖÖ ÚØÓÖ Àµ Þ ÒÑ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ñ Ò ¹ÒÙ¹ÚØÓÖ ØÔ ÞØÐØ ÞÖÒØ ÖÑÑÐ Ø ÖØ ÚÞØ ÔÖÑÒÒ Ñ Ò ÖÒÝÞØÒ Ñ Ò ÑÞ ÐÒ Ñº ÑÞ ÒØÒÞØ Ø Þ ÐØÖÓÑÓ ØÖÖ ÚØÓÖÖÐ ÒÐ Ñ Ò ÒÙ ÚØÓÖÖÐ ÐÐÑÞØº ÄØÞ Ñ Ò ØÖÖ ÚØÓÖ Àµ Þ ÒÑ"

Átírás

1 ÐØÖÓÑ Ò ØÖ ÎÁº ÆÝØÖÝ ÖÐÝ ÈÌ ÈÅÅÁà ÎÐÐÑÓ À ÐÞØÓ ÌÒ Þ ¾¼½º ÒÓÚÑÖ º

2 Ñ Ò ¹ÒÙ¹ÚØÓÖ ØÔ ÞØÐØ ÞÖÒØ ÖÑÑÐ Ø ÖØ ÚÞØ ÔÖÑÒÒ Ñ Ò ÖÒÝÞØÒ Ñ Ò ÑÞ ÐÒ Ñº ÑÞ ÒØÒÞØ Ø Þ ÐØÖÓÑÓ ØÖÖ ÚØÓÖÖÐ ÒÐ Ñ Ò ÒÙ ÚØÓÖÖÐ ÐÐÑÞØº ÄØÞ Ñ Ò ØÖÖ ÚØÓÖ Àµ Þ ÒÑ ¹ÚÐ ÒÑ ¹ÚÐ Òк Å Ò ÑÓÒÓÔÐÙ ÓÖ = (Ö) É Ñ ÐÒÒ ÐØÞÒÒ Ñ Ò ÑÓÒÓÔÐÙ Óº ÅÖÓ ÞÓÔÙ ÞÒØÒ Ñ Ò ÑÓÒÓÔÐÙ Ó ÒÑ ÐØÞÒ ÞÖØ ÒÑ Þ ÖØ ÒÑ Ñ Ò ÔÐÙ Ö Ø ÓÖØÒÝÓÑØ ÐÔ Ò ÖØÐÑÞÞ ÑÞ ÒØÒÞØ غ

3 Ñ Ò ¹ÒÙ¹ÚØÓÖ Á Ñ ÑÒØÓÑØÖ Ñ Ò Å Ñ = Ñ = ÁÆÒ

4 Ñ Ò ¹ÒÙ¹ÚØÓÖ ËØØÙ Ñ Ò ÑÞ ÐÝÞØØ ÑÒØÓÑØÖÖ ÓÖØÒÝÓÑØ غ ØØÙ Ñ Ò ÑÞ ÐÝÞØØ ÑÒØÓÑØÖ ÑÒÒ ØÒ ØÐ ÝÒ ÐÝ ÐÝÞØØ Ú Þ Ðº ØÐ ÝÒ ÐÝ ÐÝÞØ ÖÐØ ÑÒØÓÑØÖ ÐÐØ ÒÓÖÑ ÐÚØÓÖ ÐÐ ÚØÓÖ Ö ÒÝ Øº ÚØÓÖ ÒÝ Ø Ý ÖØÐÑÞÞ ÓÝ Þ ÝÒ ÐÝ ÐÝÞØ ÐÐØ ÑÒØÓÑØÖØ ¼ ¹Ð ÐÓÖØÙ ÝÒ ÐÝ ÐÝÞØÐ ÑÑÖ ÑÓÖ ÓÖØÒÝÓÑØ Ø Ö º = Å ÑÜ ÁÆ À = µ Ñ Ò ØÖÖ ÚØÓÖ ÒÑ ¼ ¹ÚÐ ÒÑ ¹ÚÐ Òк µ ¼ = π ½¼ À»Ñ Ú ÙÙÑ Ñ Ò ÔÖÑÐØ ε ¼ ¹ÐÐ Òк

5 ËÞÓÐÒÓ Ð ÑÞ Ñ Ò ÑÞ ÖÚÓÒÐ Ö ÒÞ Ö Ñ ØÙÐÓÒ ÑÒØ ØØÙ ÐØÖÓÑÓ ÑÞº Ñ Ò ÑÞ ÖÚÓÒÐ ÒÑÙ Þ Ö ÞÓÐÒÓ Ð Öº ÞÞÐ ÞÑÒ ØØÙ ÐØÖÓÑÓ ÑÞ ÖÚÓÒÐ Òº ÒÝÐØ ÖÚÓÒк + + +

6 ØÙ Ñ Ò ÑÞ ÓÖÖ Ö ØØÙ Ñ Ò ÑÞ ÓÖÖ ÑÒØ = ¼. Þ ÒÒ ÚØÞÑÒÝ ÓÝ Ñ Ò ÑÓÒÓÔÐÙ Ó ÒÒ Òº Þ ÐØÐ ÅÜÛÐйÝÒÐØ ÞÑÑØÖ Öк ÆÑ ÐØØÐÒ ÓÝ ÑÖÓÞ Ð Ò ÐØÞÒ Ñ Ò ÑÓÒÓÔÐÙ Ó ÝÖØÐÑò ÖÐØ ÞÓÒÝØÓ ÒÒ ÒÒº ÐÑÐØ ØÖÒ Ú ÞÓÒØ ÐØÞ Ñ Ò ÑÓÒÓÔÐÙ Ö ÚÓÒØÓÞ ÐÑÐØ ֹРÑÓÒÓÔÐÙ º

7 ÓØ¹ËÚÖØ¹ØÖÚÒÝ P Á Ð ϕ ˆÖ Ö P ØÔ ÞØÐØ ÞÖÒØ Ý ÐÑ ÚÞØ Þ Þ Á Ð ÖÑÐѵ ÐØÐ ÐØÖÓÞÓØØ ÐÑ Ø Ö ÒÝÓ ÚÞØÒ ØÓÐÝ Á ÖÑÑÐ Ò(ϕ)¹ÚÐ ÓÖØÓØØÒ Ö ÒÝÓ ÚÞØØÐ ÚÐ Ø ÚÓÐ ÒÝÞØÚк ÎØÓÖ Ð Ò = µ ¼ Á Ð Ò(ϕ) π Ö ¾ = µ ¼ Á Ð ˆÖ π Ö ¾

8 ÓØ¹ËÚÖØ¹ØÖÚÒÝ P Á Ð ϕ ˆÖ Ö P Ý Þ ÖØ ÖÑÙÖÓ ÐØÐ ÐØÖÓÞÓØØ Ñ Ò ÒÙ Þ ÐÑ Ø Ó ÒØÖ Ð Ð Þ = µ ¼Á π Ð ˆÖ Ö ¾. ÞØ ØÖÚÒÝØ ÒÚÞÞ ÓØ¹ËÚÖØ¹ØÖÚÒÝÒº

9 ÎØÐÒ Ó Þ Á ÖÑÑÐ Ø ÖØ ÚÞØ ÖÐ ÑÞ Ò(½¼ φ) = Öα Ð ½¼ ϕ Ó (α) = Ê Ö Á Ð ϕ ½¼ ϕ Öα ˆÖ Ö Ê α α P = µ ¼Á π = µ ¼Á π = µ ¼Á πê π ¾ π ¾ π ¾ Ð Ò(ϕ) Öα Ö ¾ Ö ¾ = µ ¼Á π Ó (α)α π ¾ π ¾ α Ê/ Ó (α) π ¾

10 ÎØÐÒ Ó Þ Á ÖÑÑÐ Ø ÖØ ÚÞØ ÖÐ ÑÞ ½¼ ϕ Á Ð Öα ϕ ˆÖ ½¼ ϕ Ö Ê α α P = µ ¼Á πê π ¾ π ¾ Ó (α)α = µ ¼Á πê [ Ò(ϕ)]π ¾ π ¾ = µ [ ( ¼Á π ( ( Ò Ò πê ¾) π ))] ¾ = µ ¼Á πê [½ ( ½)] = µ ¼Á ¾πÊ

11 Î Ó Þ Á ÖÑÑÐ Ø ÖØ ÚÞØ ÖÐ ÑÞ Ð ¾ Ð ¾ Ê α ¼ α ¼ È = µ ¼Á πê [ Ò(ϕ)]α α = µ ¼Á πê [ Ò(α ¼) ( Ò( α ¼ ))] = µ ¼Á ¾πÊ Ò(α ¼) Ê β ¼ γ ¼ È = µ ¼Á πê ( Ò(β ¼)+ Ò(γ ¼ ))

12 Å Ò ÑÞ Ý Á ÖÑ ÖÚÞØ ÞÑÑØÖØÒÐÝ ÑÒØÒ Ê Á Ð ˆÖ ϕ Ö Á Ê Ö Þ α Ý È Þ

13 Å Ò ÑÞ Ý Á ÖÑ ÖÚÞØ ÞÑÑØÖØÒÐÝ ÑÒØÒ Á Ð ˆÖ ϕ Ö Á Ê Ö Þ α Ý È Þ Þ Þ Þ = µ ¼Á Ð Ò(ϕ) π Ö ¾ = µ ¼Á Ð Ò( π) ¾ π Ö ¾ = µ ¼ÁÊ Ð π Ö Ò(α) Ê Ö

14 Å Ò ÑÞ Ý Á ÖÑ ÖÚÞØ ÞÑÑØÖØÒÐÝ ÑÒØÒ Þ = µ ¼ÁÊ π Ð Ö = µ ¼ÁÊ π Ð ( Ê ¾ + Þ ¾ ) Þ = µ ¼ ÁÊ ) π ( Ê ¾ + Þ ¾ Ð = µ ¼ ÁÊ ) ¾πÊ π ( Ê ¾ + Þ ¾ Þ = µ ¼ ÁÊ ¾ ) ( Ê ¾ + Þ ¾ ¾

15 Å Ò ÑÞ Ý Á ÖÑ ÖÚÞØ ÞÑÑØÖØÒÐÝ ÑÒØÒ ( ½+Ü ¾ ) Ü ËÔ Ð Ò ÖÚÞØ Ò Þ (¼) = ¾ µ ¼ ÁÊ ¾ ) = ( Ê ¾ + ¼ ¾ µ ¼ ÁÊ ¾ ¾Ê = µ ¼Á ¾Ê

16 Á ÖÑÑÐ Ø ÖØ ÞÓÐÒÓ ÑÞ Ý ÑÒØ Þ Þ ÑÒØ ÑÞ Ü

17 Á ÖÑÑÐ Ø ÖØ ÞÓÐÒÓ ÑÞ Á Ê Ð ¾ α ½ ζ α ¾ α È ζ Þ Þ ζ α Ê ¾ +( ζ) ¾ ζ Ò(α) α α

18 Á ÖÑÑÐ Ø ÖØ ÞÓÐÒÓ ÑÞ ζ α α Ê ¾ +( ζ) ¾ ζ Ò(α) α ØÒ(α) = ζ Ò(α) Ê ¾ +( ζ) ¾ ØÒ(α) α α ζ = Ò(α) Ê ¾ +( ζ) ¾ Ò(α) ¾ = Ê ¾ Ê ¾ +( ζ) ¾

19 Á ÖÑÑÐ Ø ÖØ ÞÓÐÒÓ ÑÞ À = À(Þ) = = µ ¼Á ¾ Ê ¾ (Ê ¾ + ¾ ) ¾ ÒζÁÊ ¾ ¾[Ê ¾ +( ζ) ¾ ] ¾ Ð ¾ Ð ¾ À(Þ) = ÒÁ ¾ ÒÁÊ ¾ ζ ¾[Ê ¾ +( ζ) ¾ ] ¾ α ¾ α ½ α Ò(α) Ò(α) ¾

20 Á ÖÑÑÐ Ø ÖØ ÞÓÐÒÓ ÑÞ ÆÝÓÒ Ó Þ ÝÒ ØÖ ØÒ α ½ ¼ α ¾ π Ý Ó (¼) ½ Ó (π) ½º ÞÖØ À(Þ) = ÒÁ ¾ α ¾ ÒÁ Ò(α)α = ¾ [Ó (α ¾) Ó (α ½ )] α ½ α ¾ À(Þ) = ÆÁ ÒÁ Ò(α)α = ¾Ä ¾ α ½ [½ ( ½)] = ÆÁ Ä ÆÝÓÒ Ó Þ ØÖ ØÒ Þ ÔÐØ Ð Ð ÐÐÑÞØ ÒÑ ÞÑÑØÖØÒÐÝÖ ÒÑ ØÖ Ò ÐÐ ØÐ ØÖÖº

21 Ö ÞØ ØÖÚÒÝ ÑÔÖ¹ØÖÚÒݵ ÓØ¹ËÚÖØ ØÖÚÒÝ Ú ÙÙÑÒ ÐÚÒµ ÖÚÒÝ ÞÖØ ÒÑ ÞÒ ÐÙ Ñ Ò ÒÝ ÐÒÐØÒº ËÓÐ ÐØÐ ÒÓ Þ Þ ÙØÙÒ ÑÞ ÖÚÒÝÖ Ø ÚÞ ÐÙ Ç = Ð ËÞ ÑØ Ù ÞØ ÚÓÒÐÒØÖ ÐØ Ý Á ÖÑÓØ Þ ÐÐØ ÚÞØØ ÓÒÒØÖÙ Ò ÖÐÚÚ ÖÖ Ð = ¾Öπ = µ ¼Á ¾πÖ ¾Öπ Ð = µ ¼ Á

22 Ö ÞØ ØÖÚÒÝ ÑÔÖ¹ØÖÚÒݵ Ð ÞÒ ÐØÙ ÓÝ Þ ÒÙÚÓÒÐ ÑÒØÒ ÒÝ ÐÐÒ Ð ÚØÓÖÓ ÐØÐ Þ ÖØ Þ ÒÙÐк Þ Þ ÖÑÒÝ ØØ ÞÐ Þ ÖØ ÖÖ ÖÑÐÓ ÞÐ Ö Þ ÆÚ Ö ÞØ ØÖÚÒÝ ÚÝ ÑÔÖ¹ØÖÚÒݺ Ð = µ ¼ Á À Ð =  Á Þ ÖØ ÖÖ ÐÐ Þ ÐÐØÒ ØÐ ÖÑÓ ÐÖ ÞÖ ÚÓÒØÓÞº

23 Á ÖÑÑÐ Ø ÖØ ÞÓÐÒÓ Ñ Ò ÑÞ Á Ê Æ Ä Þ Ð = Ð+ Ð+ Ð+ Ð Ð = Ð = Ð ¼

24 Á ÖÑÑÐ Ø ÖØ ÞÓÐÒÓ ØÓÖÓ Ñ Ò ÑÞ Ð = µ ¼ ÆÁ ÀÄ À = ÆÁ = ÆÁ Ä À Ý ØÖ Ø ÒÑ Ú ÞÐØÙÒ Ý ØÖÙ Þ ÐÐØØ ÔÙÒº ØÓÖÓ Ð ØÖ Ð ÖÑÒÝ ÖØÖ Ñ ÒÚÒ ØÓÖÓº Ö ½ Ö Á Ö ¾

25 Á ÖÑÑÐ Ø ÖØ ØÓÖÓ Ñ Ò ÑÞ Ö ½ Ö Ö ¾ Á Ð = µ ¼ ÆÁ À¾Ö π = ÆÁ À = ÆÁ ¾Ö π

26 Á ÖÑÓØ Þ ÐØ ÓÜ Ð ÚÞØ Ñ Ò ÑÞ ÌÝ Ð ÓÝ Â ÖÑ òöò ¹ÚØÓÖ ÒÝ Þ ÐØÖ ÐÐØÒ ÞÓÒÓ º Ú ÐØÓÞ Ø ÐØÖ ÞØØ (Ö) ½¾ = µ ¼Á ¾πÖ. Á Á Ö Ö ¾ Ö ½ Ð ÐØÖ Ò (Ö) Ð = µ ¼ Á (Ö)¾ Ö π = µ ¼ ÂÖ ¾ π (Ö) = µ ¼Â ¾ Ö (Ö) ¼½ = µ ¼ ¾ Á ¾Ö ½¾ π Ö

27 Á ÖÑÓØ Þ ÐØ ÓÜ Ð ÚÞØ Ñ Ò ÑÞ ÌÝ Ð ÓÝ Â ÖÑ òöò ¹ÚØÓÖ ÒÝ Þ ÐØÖ ÐÐØÒ ÞÓÒÓ º Ð ÐØÖ Ò Ö ( Á Ö ¾ (Ö)¾Öπ = µ ¼ Á Á ( Ö ¾ Ö ) ) ¾ ¾ π Ö ½ (Ö ¾ Ö ¾¾ )π Á µ ¼ Á { Ö } (Ö) ¾ = ¾π(Ö ¾ Ö ¾¾ ) Ö Ö

28 Å Ò ÒÙ Á ÖÑÓØ Þ ÐØ ÓÜ Ð ÚÞØ Ñ Ò ÑÞ Ø ÚÓÐ

29 Þ ÒÝÓ ÐÓ ÞØ Þ ÒÝÓØ ÖÓÑ ÓÔÓÖØ ÓÖÓÐÙ Ñ Ò ØÙÐÓÒ ÐÔ Ò ½º Öµº ÔÖÑ Ò ÒÝÓ Ð Ñ Ò ØÖ ÐÝÞÚ ÒÝÒ Ö Ø Ð ØÖغ ÁÐÝÒ ÒÝ Ôк Ð Ö Ã Å ÅÒ Æº ÞÒ ÒÝÓ χ Ñ Ñ Ò ÞÙ ÞÔØÐØ Ò ÒÝ º ½¼ º ÖÐØÚ ÔÖÑØØÚØ Þ ÐÔ Ò ÒÝÓ ÑÒØ Ý µ Ö = (½+χ Ñ ) ½, ¼¼¼¼½º paramágneses diamágneses ferromágneses

30 Ñ Ò Ñ Ò ÒÝÓ Ð Ñ Ò ØÖ ÐÝÞÚ ÒÝÒ ÝÒØ Ð Ñ Ò ØÖغ ÁÐÝÒ ÒÝÓ Ôк Ù Ù È Ò Àº ÞÒ ÒÝÓ Ñ Ò ÞÙ ÞÔØÐØ Ò ÒØÚ Þ Ñ ½¼ º ÖÐØÚ ÔÖÑØØÚØ Þ ÐÔ Ò ÝÒÐ ÔÚÐ º µ Ö = (½+χ Ñ ) ¼, º paramágneses diamágneses ferromágneses

31 ÖÖÓÑ Ò ÖÖÓÑ Ò ÒÝÓ Ñ ÑÖ ÐØÒ ÔÖÑ Ò Ñ Ý ÖØÙ ÑÖ ÐØ Ð òøú Ñ ÓÖÒò Þ ØÐÙÐ ÓÒ ÑÒÒ Ö ÞØÐº ÖØÙ ÑÖ ÐØØ ÙÖ¹ÑÖ ÐØÒ ÒÚÞÞº ÖÖÓÑ Ò ÒÝÓ ÙÖ¹ÑÖ ÐØ ÐØØ ÑÖ ÐØØÖØÓÑ ÒÝÒ Ð Ñ Ò ØÖØ Ò ÒÝ ÑÖØÒ Ö Øº ÁÐÝÒ ÒÝÓ Ú ÓÐØ ÒÐ ÓÐÒÙÑ ÐÒÞ ØÚÞØº ÞÒ ÒÝÓ χ Ñ Ñ Ò ÞÙ ÞÔØÐØ Ò ÒÝ ½¼ ½¼ º ÖÐØÚ ÔÖÑØØÚØ Þ ÐÔ Ò ÞÒØÒ ÒÝÓÒ ÒÝ µ Ö = (½+χ Ñ ) ½¼¼½ ½¼¼¼¼½º paramágneses diamágneses ferromágneses

32 ÖÖÓÑ Ò ÖÖÓÑ Ò ÒÝÓÒ ÑÖØò ÔÓÒØ Ò Ñ Ò ÞØØ ò ØÖØÓÑ ÒÝÓ Òº ÓÑÒ¹ ÚÒÒº Ð ØÖ ØÖØÓÑ ÒÝÓ ÐÒ ÐØÓÐ ÚÐ Ñ Ò ÞØØ Ö ÒÝ Ò ÐÓÖØ ÚÐ Ô ÒÚÐÒ Ð ØÖغ ÅÖÓ ÞÓÔÙ ÞÒØÒ Ñ Ò ÖÓÑÐ Ø Ö ÚÞØØ Ú Þ Ñ ÖÐ ÑÓÞ Ö ÖÑÒØ ÐÓØ ÐØÖÓÒÓ Ô ÐÝÑ Ò ÑÓÑÒØÙÑ Ö Þ ÐØÖÓÒÓ ÔÒÚÐ Ô ÓÐØÓ Ø Ñ Ò ÑÓÑÒØÙÑÖ Þ ØÓÑÑÓØ ÐÓØ Ö Þ Ø Ñ Ò ÑÓÑÒØÙÑÖº

33 ÈÖÑ Ò ÔÖÑ Ò ÒÝÓÖÐ ØÙÙ ÓÝ Ö Þ ÐÐÒ Ñ Ò ÔÐÑÓÑÒØÙÑÑÐ ÖÒÐÞÒ ÖÒÞØÐÒ ÑØØ Ð ØÖ ÒÝ Ò ÑÖÓ ÞÓÔÙ Ñ Ò Ø ÒÑ ÑÙØØÒº ÌÝ Ð ÓÝ Þ ÒÝ ØÖÓØÝ ÒÒØ Ò Ñ Ñ Ò ÑÓÑÒØÙÑ ÐÑ Ñ Ò Ø ØÖØÐÑÞº ÐÙÒ χ Ö ÑØ ÖÓÞ º Ý Ñ Ò ÔÐÙ Î(ϑ) Ñ Ò ÒÖ ÚØÞ Î(ϑ) = Ñ = Ñ Ó (ϑ) Þ Ò ¼ ÒÙÐÐ ÒÖ ÔÐÙ Ó Þ Ñ Ò ÑÖØÒ ÓÐØÞÑÒÒ¹ÐÓ ÞÐ ÐÔ Ò ÑØ ÖÓÞØ ÓÝ ØÐÓ Ò ÒÝ ÔÐÙ Þ Ö Ý ÞÓÒÝÓ ϑ ÞØ Ð ØÖ Ö ÒÝ ÚÐ { Ò(ϑ) = Ò ¼ ÜÔ Î (ϑ) }. Ì

34 ÈÖÑ Ò Ñ Ò ÑÓÑÒØÙÑÓ ÐÝÒ ÐÖÒÞ Ð ØÖ ÒÝ Ò ÞÖÙ Ö Ñ Ò ÑÓÑÒØÙÑÓØ ÖÑÒÝÞº ÌÝ Ð ÓÝ Ð À Ñ Ò ØÖ Þ Ü¹ØÒÐÐÝÐ Ô ÖÙÞÑÓ º ÃÐ Ñ Ò ØÖ Ø Ö Þ Ü¹ØÒÐÝ ÑÒØÒ ÐÒÞ ÐÐ Ñ Ò ÔÐÙ Ó ÝÒ ÐÝ ÑÓÑк Z Y m X

35 ÈÖÑ Ò Þ Å Ö Ñ Ò Ø ØÖÖÐ Ô ÖÙÞÑÓ Ò Ò ½ µ ÐÐÒØØ Ò Ò ¾ µ ÐÐ Ñ Ò ÑÓÑÒØÙÑÓ ÐÒ ÒØ Þ ÑÓÐØÙ Å = (Ò ½ Ò ¾ ) Ñ. Ð ØÖÖÐ Ô ÖÙÞÑÓ Ò ÐÐ ÔÐÙ Ó ÒÖ Ó (¼) = ½ ÑØØ Ï(¼) = Ѻ ØÖÖÐ ÐÐÒØØ Ò ÐÐ ÔÐÙ Ó (π) = ½ ÑØØ Ï(π) = Ѻ ÒÙÐÐ ÒÖ ÔÐÙ Ó Þ Ñ Ò ¼ = Ò/º Ò ½ = Ò { } Ñ ÜÔ Ì Ò ¾ = Ò { ÜÔ Ñ } Ì

36 ÈÖÑ Ò À ÞÒ ÐÙ ÑØ Þ Ü ½+Ü ÞÐØ Ø Ò ½ = Ò { } Ñ ÜÔ Ò Ì Ò ¾ = Ò { ÜÔ Ñ } Ò Ì ( ½+ Ñ Ì ) ( ½ Ñ Ì Þ Ö Ñ Ò ÑÓÑÒØÙÑ ÞÓÐØ ÖØ { ( Ò Å = ½+ Ñ ) Ò ( ½ Ñ )} Ñ = Ò Ñ ¾ Ì Ì Ì. ÎØÓÖ Ð Ò Ô ) Å = Ò Ñ¾ Ì = Ò Ñ¾ µ ¼ Ì À.

37 ÈÖÑ Ò ÞØ Þ ÓÒÐØÚ Å = χ Ñ À Þ Ð ÔÙ ÓÝ χ Ñ = Ò Ñ¾ µ ¼ Ì. Þ Þ ÖÑÒÝ Ð ÝÞ ØÔ ÞØÐØÓÐ ÑÒ Ñ Þ ÞÓÐØ ÞÖÙ ÔÓÒØÓÞ ÒÑ ÞÐÒº Æ ÒÝ ÐÚÒ ÑÖ ÐØÒ ÞÓÒÒ ÖÚÒÝØ Ú ÞØº

38 Ñ Ò ÐÙÑ Ø ÔÖÓØÓÒÐ Ø ÒÙØÖÓÒÐ Ø ÐØÖÓÒÐ Ðк Ý ØÒØ ÓÝ Þ ÐØÖÓÒÓ ÖÔ ÐÝ ÓÒ ÖÒÒ Þ ØÓÑÑ Öк Þ ÐØÖÓÒÓ ÑÒØ Ö ÖÑÓ Ñ Ò ÑÓÑÒØÙÑÓØ ÓÞÒ ÐØÖº Ñ Ò ÑÓÑÒØÙÑ ÒÝ Ñ = Á Ò ÓÐ Þ ÐØÖÓÒ ÖÒ ÓÖ Ò ÖÓÐØ ØÖÐØØ Ò Ô ÐÐØ ÒÓÖÑ ÐÚØÓÖº Þ ÐØÖÓÒ ÐØÐ ÐØÖÓÞÓØØ Ö ÖÑ ÒÝ Ø Ú Þ Ö ¼ Ô ÐÝ Ù Ö Ø ÖÓÞÞ Ñº Á = É Ø = ( ) ( /Ú) = Ú ¾π Ö ¼ ½µ Þ ÐØÖÓÒ ÐØÐ ÐØØØ Ñ Ò ÑÓÑÒØÙÑ ÒÝ Ñ = Ú ( Ö ¾ ¼ π) = Ú Ö ¼ ¾π Ö ¼ ¾ ¾µ

39 Ñ Ò m 2 m 2 B r 0 r 0 v 2 v 1 r 0 r 0 v 2 v 1 m 1 m 1 ½º Öº ÐÙÑ Ñ Ò Ò Ð ÞÙ ÑÓÐÐ

40 Ñ Ò ÌÝ Ð ÓÝ Þ ÐØÖÓÒÓ ÝÑ Ð Ô ÖÙÞÑÓ Ò ÐÐÒØØ Ö ÒÝÒ ÖÒÒº Þ ÐØÖÓÒÓ ÞØØ Ø ÞØ Ø ÐÒÝÓÐÙº ÃÐ ØÖ ÒÐÐ ÐÐÔÓØÒ Ø ÐØÖÓÒ ÞÓÒÓ ÒÝ ÐÐÒØØ Ö ÒÝ Ñ Ò ÑÓÑÒØÙÑÓØ ÓÞ ÐØÖ ÑÐÝ Ð ØÖ ÒÝ Ò ÓÐØ ÝÑ Øº ÐØØÐÞÞ ÓÝ Ð Ñ Ò ØÖ ÑÖÐ ÖÒ ÐØÖÓÒÓ Öº ÐÙÒ ÐÙÑ Ñ Ò ÞÙ ÞÔØÐØ Ò ÑØ ÖÓÞ º Ð ÐÔ Ò ÑØ ÖÓÞÞÙ ÖÒ ÐØÖÓÒÖ Ø ÖØ Ñ Þ ÐÔ Ò ÐÖÙ Þ ÐØÖÓÒÓ ÑÓÞ ÝÒÐØØº ÅÒØ ÐØÖÓÒÖ ÞÓÒÓ ÒÝ ÐØÖÓ ÞØØÙ ÚÓÒÞÖ Øº Î ÞÓÒØ Ð ØÖ ÑØØ Ñ Ò Ö ÒÝ ÐÒÞ Ð Þ Ø ÐØÖÓÒÖº

41 Ñ Ò ÓÙÐÓÑ¹Ö ÚØÞ = ½ É ½ É ¾ ˆÖ πε ¼ Ö ¾ ÓÙÐÓÑ Ö ÔÓÒØØÐØ Ø ÞØ ÝÒ ÑÒØÒ Øº É ½ = ¾ ØÐØ ò Ñ É ¾ = ØÐØ ò ÐØÖÓÒÖ ØÙÐÞ ÐÚ ÓÙÐÓÑ Ö ÒÝ = ½ πε ¼ ¾ ¾ Ö ¾ ¼ ÅÚÐ Ñ Ò ÖÖ ÚÓÒØÓÞ Þ Ñ = É[Ú ] ØÒÒ Ñ Ò ÒÙ Ö ÞØ Þ Ö Ý Ñ Ò Ö ÒÝ ÑÒØ ÐØÖÓÒ ØÒ Ñ = Ú º

42 Ñ Ò Þ Ö Ö ÒÝ Ø Ú ÞÓÒØ ÑÒØ ÐØÖÓÒÖ Ø ÞØ ÞÒ Ðк v 2 e B e B F m F c 2e F m F c 2e v 1 ¾º Öº Þ ÐØÖÓÒÖ Ø Ö Ð Ñ Ò ØÖ ÐÒÐØÒ

43 Ñ Ò Þ ÐØÖÓÒÓ ÑÓÞ ÝÒÐØ ½ ¾ ¾ + Ú πε ¼ Ö ¾ ½ = Ñ ¾ Ú ½ Ö ¼ ¼ ½ ¾ ¾ Ú πε ¼ Ö ¾ ¾ = Ñ ¾ Ú ¾ Ö ¼ ¼ Ð ØÖ ÑØØ ÐÐÔ Ö Ñ Ò ÑÓÑÒØÙÑ Ñ = Ñ ¾ Ñ ½ = Ö ¼ ¾ (Ú ¾ Ú ½ ). ÞØ Òº ÒÙ ÐØ Ñ Ò ÑÓÑÒØÙÑÒ ÒÚÞº ÐÒ Ø ÑÓÞ ÝÒÐØÐ ÒÒÝÒ Ñ ÐØ Ø ÖÓÞÒº Ú ¾ Ú ½ = Ö ¼ Ñ

44 Ñ Ò ÞØ ÐÝØØ ØÚ Þ ÔÙ ÓÝ Ñ = ¾ Ö ¼ ¾ ¾ Ñ µ ¼À Þ ØÓÑ Ñ Ò ÑÓÑÒØÙÑ ÑÖØÒ Ý ÞÖòÒ ÑØ ÖÓÞØÙ Ñ Ò ÞØØ Ø ÞÒ Å ØÖÓØÝ Ö ÙØ Ñ Ò ÔÐÙ ÑÓÑÒØÙѺ À ØÖÓØÝ ÒÒØ Ò ÐÙÑØÓÑ ØÐ ÐØ ØÖÒ ÓÖ Ý ÞÙ ÞÔØÐØ Å = ¾ Ö ¼ ¾ Òµ ¼ ¾ Ñ À, χ = ¾ Ö ¼ ¾ Òµ ¼ ¾ Ñ, ÑÐÝ ÖÐØ ØÔ ÞØÐØÒ ÑÐÐÒ ÚÐÒ ØÐÒ Ñ Ò ØÖØÐ ÑÖ ÐØØÐ º

45 Ñ Ò Þ ÐÞ ÑÓÐÐÐ Ö ¼ = ¼, ½¼ ½¼ Ñ Ô ÐÝ Ù Ö ÒÓÖÑ Ð ÖÐÑÒÝ ØÒ Ò = ¾, ½¼ ¾ Ñ ÖØ Ð ÞÒ Ð ÚÐ À ÞÙ ÞÔØÐØ ½, ¾ ½¼ º ÑÖØ ÖØ ¾, ¾ ½¼ º Þ ÑÓÐÐ Ý ÞÖò Þ Ô Ø ÝÐÑÖÑÐØ ÝÞ º

Ð ØÖÓÑ Ò Ø Ö ÎÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º Ð Ù º

Ð ØÖÓÑ Ò Ø Ö ÎÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º Ð Ù º Ð ØÖÓÑ Ò Ø Ö ÎÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º Ð Ù º ÓÒØ ØÔÓØ Ò Ð ÓÒØ عÔÓØ Ò Ð Ð Ò Ú Ø Þ ÔÔ Ò Ø ÖÓÞ Ø Ñ Í ½ ¾ = Ï ¾ Ï ½ Å Ú Ð Þ Þ ÐØ Ñ Ð Ð Ø Þ Ð Ò Ð Ú Ð ØÖÓÒÓ Ö ÚÓÒ Ø ÓÞ ÞØ ÎÓÐØ ¹

Részletesebben

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ ÆÝ ØÖ Ý Ö ÐÝ È µ ÈÌ ÈÅÅÁÃ ¾¼½ º ÒÙ Ö º Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ Ø Ö Ý ÐÓ ÞØ Ð Þ Ù Þ Å Ò Ì ÖÑÓ Ò Ñ Ð ØÖÓ Ò Ñ ÇÔØ

Részletesebben

(rot. j n df. Hd s = F. H) n df = F. j n df = n j n df, Hd s = ni.

(rot. j n df. Hd s = F. H) n df = F. j n df = n j n df, Hd s = ni. Ä ÃÌÊÇ ÁÆ ÅÁà ½¼º Ð µ Ø Ö Ñ Ò Ø Ö Î Ý Ò Ý Ó Þ Ö ÞØÑ Ø Þ Øò Ø Ö Øº I Ñ Ò Ø Ö Ø ÒØ Ö ÑÙØ Ø º Ñ Ò Ø Ö Ø Ö Ò Ú Ð Ý Ò Ø Ö Ð Ò Ô Þ Ð Ø Ð ÐÐ Ò ÓÑÓ ÒÒ Ø ÒØ¹ Ø º À Ø ÖÓÞÞÙ Ñ Ø Ö Ö Ø Ø Ö Ð Òº ÁÒØ Ö Ð Ù rot H = j,

Részletesebben

f ij = f i. f.j Ö f 11 = 49 f 12 = 64 f 13 = 84 f 1. = 197

f ij = f i. f.j Ö f 11 = 49 f 12 = 64 f 13 = 84 f 1. = 197 Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾ ¾º ÞÓ ¾ º Ê Ò ÓÖÖ Ð º Î Ý Ô ÓÐ Ø º ÃÓÖÖ Ð Þ Ñ Ø º Ê Ö Þ Þ Ñ Ø º½º ÝÚ ÐØÓÞ Ö Ö Þ º º º º º º º º º º º º º º º º º º º º º º º º º½º½º Ð Ò ÝÞ Ø Ñ Þ Ö º º º º º º º º º º º º º º º½º¾º

Részletesebben

ÍÅÄ Ð ØÓ

ÍÅÄ Ð ØÓ ÍÅÄ Ð ØÓ ÄÌ Áà ÈÓÖ Ö ÑÓÞ ÐÑ Ð Ø ÞÓ ØÚ ÖØ ÒÓÐ Ì Ò Þ Ç Ø Ø ÒÝ ½º Ú Þ Ø ½º½º Ð Ø ý Ö ÞÓÐ Ù Ý Ö Ñ Ò Þ Ð ÓÖÓ Ú Ö Ø ÙØ Ò Ð ØÖ Ú Ó ¹ ØÙÑÓ Ø ØØ Ð Ý ØØ Ø ÒØ Ð Þ Ó ØÙÑÓ Þ ØØ Ô¹ ÓÐ ØÓ Ø ØÓÐÓ Ö Ø Ö Ø ½¼¼ µ ØÓÐÓ Ú

Részletesebben

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º

Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ ÆÝ ØÖ Ý Ö ÐÝ È µ ÈÌ ÈÅÅÁÃ ¾¼½ º ÒÙ Ö ½ º Ð Þ Ù Þ Ø Ö Ý ÐÓ ÞØ Þ Ø Ö Ý Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý Ð Ô Ö ÀÓ Ý Ò Ñò Þ ÙÒ Ú ÖÞÙÑ Ð ÔÚ Ø Ó ÐÑ Ø Ö ÒÝ Ñ Þ Ò Ö Ö Ú Ø º Þ Ø Ö Ý ÐÓ ÞØ Ð Þ Ù Þ Å Ò Ì ÖÑÓ Ò Ñ Ð ØÖÓ Ò Ñ ÇÔØ

Részletesebben

ØÔ ÐÙ ØÔ ÐÙ Ø Ú Þ Ø Ð Ö Ò Ð Þ Ð Þ ØÖ Þ ¾¹¾½º Ö µº Ä Ø Ý ØÐ Ò Ð Ñ Ôк ÐÐ Ò ÐÐ Ú Ý Ø Ð Ô Ø ºµ Ð Ø Ó Ð Ñ Ð Ð Ô Ð Ô ÓÐ º Þ Ð Ø Ð Ñ Þ ÙØ Ø Þ Ø ØØ ØÔ ÐÙ Ò Ò

ØÔ ÐÙ ØÔ ÐÙ Ø Ú Þ Ø Ð Ö Ò Ð Þ Ð Þ ØÖ Þ ¾¹¾½º Ö µº Ä Ø Ý ØÐ Ò Ð Ñ Ôк ÐÐ Ò ÐÐ Ú Ý Ø Ð Ô Ø ºµ Ð Ø Ó Ð Ñ Ð Ð Ô Ð Ô ÓÐ º Þ Ð Ø Ð Ñ Þ ÙØ Ø Þ Ø ØØ ØÔ ÐÙ Ò Ò Ä ÃÌÊÇ ÁÆ ÅÁÃ Ý Ò Ö Ñ Ð Þ ØÓ º ØÔ ÐÙ ØÔ ÐÙ Ø Ú Þ Ø Ð Ö Ò Ð Þ Ð Þ ØÖ Þ ¾¹¾½º Ö µº Ä Ø Ý ØÐ Ò Ð Ñ Ôк ÐÐ Ò ÐÐ Ú Ý Ø Ð Ô Ø ºµ Ð Ø Ó Ð Ñ Ð Ð Ô Ð Ô ÓÐ º Þ Ð Ø Ð Ñ Þ ÙØ Ø Þ Ø ØØ ØÔ ÐÙ Ò Ò Ú ÞÞ º Ø Ú ØÔ ÐÙ Ú

Részletesebben

rot H = j, 1. div D = ρ, 2. rot E = 0, 3. div B = 0. 4.

rot H = j, 1. div D = ρ, 2. rot E = 0, 3. div B = 0. 4. Ä ÃÌÊÇ ÁÆ ÅÁà º Ð µ ËØ ÓÒ Ö Ù Ö ÑÓ I = j df. F, Ò Ö Þ Ò Ú Þ Ø Ö ÑÑ Ð Ó Ð Ð ÓÞÙÒ ÓÒ Ù Ø Ú Ö Ñµº Å ÜÛ Ðй Ý ÒÐ Ø Þ Ð Ð Ò ÖÚ ÒÝ rot H = j, 1. div D = ρ, 2. rot E = 0, 3. div B = 0. 4. à РØÒ Ó Ù Ó Ý Þ ½º

Részletesebben

A relatív elektromos p ermittivitás Végezzük el a k övetk ez gondolatkísérletet: U U U 0 0 (+) ( ) (+) ( ) A A A PSfrag repla ements d d d

A relatív elektromos p ermittivitás Végezzük el a k övetk ez gondolatkísérletet: U U U 0 0 (+) ( ) (+) ( ) A A A PSfrag repla ements d d d ÐØÖÓÑ Ò ØÖ Áκ ÆÝØÖÝ ÖÐÝ ÈÌ ÈÅÅÁà ÎÐÐÑÓ À ÐÞØÓ ÌÒ Þ ¾¼½º ÞÔØÑÖ ¾º ÖÐØÚ ÐØÖÓÑÓ ÔÖÑØØÚØ ÎÞÞ Ð ÚØÞ ÓÒÓÐØ ÖÐØØ ¼ Í ¼ ¼ Í ¼ Í ¼ (+) ( ) (+) ( ) ÖÐØÚ ÐØÖÓÑÓ ÔÖÑØØÚØ ÌÔ ÞØÐØ ÞØÐÒÝ ÐØÖÙѵ ÐÝÞ ÒØ ÞÐØ Ø ÝÚÖÞØ ÞØØ

Részletesebben

Ð ØÖÓÑ Ò Ø Ö ÎÁÁÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¼½ º ÒÓÚ Ñ Ö º ÍÐØÖ Ö Ú ¹ ÒÝ ÑÔÙÐÞÙ Ó Ð ÐÐ Ø Þ Ð Ð Þ Ö ÑÓÒ ØÖ Å Ñ Ò ÖÙ ÒÐ Þ Ö ½ ¼ ÁÑÔÙÐÞÙ Ó Þ ÒØ ¹ Ô Ò ½¼¼ Ò ½ Ò ½¼ µ ¹ ɹ Ô ÓÐ ½ ½¹ µ ½¼

Részletesebben

ËÔ ÑÊ Ò À ÓÒÐ Ö ÆÝ ÐÚÑÓ ÐÐ Ã Ö ÐÑ ËÙÑÑ ÖÝ Ï Ô Ñ ÞòÖ Ñ Þ Ö ÐÓ ÒÝ Ã ÖÓÐÝ ÄÌ ÁÃ ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÅÌ Ë Ì ÃÁ ÁÒ ÓÖÑ Ø ÃÙØ Ø Ð ÓÖ Ø Ö ÙÑ Ì Ñ Ú Þ Ø º ÒÞ Ö

ËÔ ÑÊ Ò À ÓÒÐ Ö ÆÝ ÐÚÑÓ ÐÐ Ã Ö ÐÑ ËÙÑÑ ÖÝ Ï Ô Ñ ÞòÖ Ñ Þ Ö ÐÓ ÒÝ Ã ÖÓÐÝ ÄÌ Áà ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÅÌ Ë Ì ÃÁ ÁÒ ÓÖÑ Ø ÃÙØ Ø Ð ÓÖ Ø Ö ÙÑ Ì Ñ Ú Þ Ø º ÒÞ Ö ÐÓ ÒÝ Ã ÖÓÐÝ ÄÌ Áà ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÅÌ Ë Ì ÃÁ ÁÒ ÓÖÑ Ø ÃÙØ Ø Ð ÓÖ Ø Ö ÙÑ Ì Ñ Ú Þ Ø º ÒÞ Ö Ò Ö ¾¼½¼º Ò Ù º Ì ÖØ ÐÓÑ ÝÞ Ú Þ Ø Ä Ò Ô Ñ Ð Ñ Ö ËÔ ÑÊ Ò Ð Ö Ð À Ú Ø ÓÞ Ð Ô ÓÒÐ Ö Ð Ô Ð Þ ØÓÖ¹ ÓÑ Ò ÆÝ ÐÚÑÓ ÐÐ

Részletesebben

e = ρ( r )dv. N = D n df.

e = ρ( r )dv. N = D n df. Ä ÃÌÊÇ ÁÆ ÅÁà ŠÜÛ Ðй Ý ÒÐ Ø ¾º Ð µ Å ÜÛ Ðй Ý ÒÐ Ø Þ Ð ØÖÓÑ Ò Ø Ö Ø Ò Ý Ú ØÓÖØ ÖÖ Ð ÐÐ Ñ ÞÞ E, D, H Bº ÐÝÒ Þ Ò Ú ÒÝ º Ø Ö Þ Ð Ú ÐØÓÞ Ù Ø Ñ Ø ÖÓÞÓØØ Þ Ø ÖÚ ÒÝ Þ ÐÝÓÞÞ º Þ Ø ÖÚ ÒÝ Ø Ñ Ø Ñ Ø Ý ÒÐ Ø Ð Ò

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ Áº Ú Þ Ø ÐØ Ð ÒÓ Þ ÐÝÓ ½º Þ ÐÝ ÒÝÚ Þ Ñ ÐÝ Ø ÐÝ ¾º Ö ¾º½º Ö Ø Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾º Ö Ó ÐØ Ð ÒÓ Ð

Ì ÖØ ÐÓÑ ÝÞ Áº Ú Þ Ø ÐØ Ð ÒÓ Þ ÐÝÓ ½º Þ ÐÝ ÒÝÚ Þ Ñ ÐÝ Ø ÐÝ ¾º Ö ¾º½º Ö Ø Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾º Ö Ó ÐØ Ð ÒÓ Ð Æ ÓÒ Ã ÑÔÓ Â Ø Ù Þ ÐÝ ÒÝÚ ¾¼½ º ÖÙ Ö ¾¾º Þ ÐÐ ØÓØØ Å ØÞ Ö ÒØ Ð È ÖÓ Ð ËÞ Ö ÞØ ØØ Ì Ñ Ö ÓÖ ÒÝ Ô ÞØ ÃÖ Ø Ò Ö Ä ØÓÖ ÐØ Ï Þ Ò ÖÙ Ö Â ÒÓ ËÞ Ý Ê ÖØ ½ Ì ÖØ ÐÓÑ ÝÞ Áº Ú Þ Ø ÐØ Ð ÒÓ Þ ÐÝÓ ½º Þ ÐÝ ÒÝÚ Þ Ñ ÐÝ Ø ÐÝ

Részletesebben

½»½¼ ËÞ Þ Þ Ö ÓÐÐ ÖÓ ÔÖ Ñ Þ ÑÓ ¾¼½ º ÒÙ Ö ¾ º Ö Ù Ê ÖØ

½»½¼ ËÞ Þ Þ Ö ÓÐÐ ÖÓ ÔÖ Ñ Þ ÑÓ ¾¼½ º ÒÙ Ö ¾ º Ö Ù Ê ÖØ ½»½¼ ËÞ ÞÞÖ ÓÐÐ ÖÓ ÔÖÑ Þ ÑÓ ¾¼½º ÒÙ Ö ¾º ÖÙ ÊÖØ ¾»½¼ ÓØÖ ¾¾ ýøø Þ ÐØÖÓÒ ÖÓÒØÖ ÓÙÒØÓÒ ¾¼¼º ÓÐÐ ÖÓ Ø Ý ½¼¼¼¼¼ ¾»½¼ ÓØÖ ¾¾ ýøø Þ ÐØÖÓÒ ÖÓÒØÖ ÓÙÒØÓÒ ¾¼¼º ÓÐÐ ÖÓ Ø Ý ½¼¼¼¼¼ ÔÖÑ Þ ÑÖØ ¾»½¼ ÓØÖ ¾¾ ýøø Þ ÐØÖÓÒ

Részletesebben

< 0 > 0 > 0 > 0 > 0 < 0

< 0 > 0 > 0 > 0 > 0 < 0 ÐØÖÓÑ Ò ØÖ ÆÝØÖÝ ÖÐÝ ÈÌ ÈÅÅÁà ÎÐÐÑÓ À ÐÞØÓ ÌÒ Þ ¾¼½º ÞÔØÑÖ º ÒÐÓØØ ÖÓÐÓÑ ÄØÞ ÂÞ ÐØÖÓÑÓ ØÒ Ñ Ò ØÒ ËÑÓÒÝ Ã ÖÓÐÝ ÎÐÐÑÓ ØÒ ÓÓÖ ÝÖÝ ÐØÖÓÑ Ò ØÖ ÀÚ ÁÑÖ ÐØÖÓÑÓ ØÒ ʺ Ⱥ ÝÒÑÒ Å Þ ¹ ØØµ º º ÖØ ÁÒØÖÓÙØÓÒ ØÓ ÐØÖÓÝÒÑ

Részletesebben

Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Ð ÓÒØÓ ÐÐ ÑÞ Ó Ý Ð Þ Ó Ú Ò¹ Ò Þ Ö Ñ Ö Òº Èк Ý ØÐ Ò Ø Ð ÔÖ Ø ÞÞ Ð ÑÔ Ø Ô ÓÐÙÒ ¾¹½½º Ö µ Ú Ý Ï Ø ØÓÒ ¹ ¾¹

Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Ð ÓÒØÓ ÐÐ ÑÞ Ó Ý Ð Þ Ó Ú Ò¹ Ò Þ Ö Ñ Ö Òº Èк Ý ØÐ Ò Ø Ð ÔÖ Ø ÞÞ Ð ÑÔ Ø Ô ÓÐÙÒ ¾¹½½º Ö µ Ú Ý Ï Ø ØÓÒ ¹ ¾¹ Ä ÃÌÊÇ ÁÆ ÅÁÃ Ý Ò Ö Ñ Ð Þ ØÓ ¾º Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Þ Þ Ø ØØ Ú ÐÐ ÑÓ Ð Þ Ø Ð ÓÒØÓ ÐÐ ÑÞ Ó Ý Ð Þ Ó Ú Ò¹ Ò Þ Ö Ñ Ö Òº Èк Ý ØÐ Ò Ø Ð ÔÖ Ø ÞÞ Ð ÑÔ Ø Ô ÓÐÙÒ ¾¹½½º Ö µ Ú Ý Ï Ø ØÓÒ ¹ ¾¹½¾º Ö µº Þ ÙØ Ø ÐÐ

Részletesebben

) ξi (t i t i j i

) ξi (t i t i j i Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ ÁÒ ÓÖÑ Ø Ã Ö Å Ø Ñ Ø ¹ ËÞ Ñ Ø ØÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ ËÞ Ñ Ø Ô Ð ÓÖ ØÑÙ Ó Å Ø Ö ÁÒØ ÐÐ Ò Ì Ò Þ ËÔ Ð ÙØÓÑ Ø Ó ÞØ ÐÝÓ ÐÐ ÑÞ Ó ØÓÖ ÖØ Þ Ø Þ ÝÙÖ Þ Ý Ö Ý Ì Ñ Ú Þ Ø Öº Ö Ò ËÞ ¾¼½¼

Részletesebben

Ð ØÖÓÑ Ò Ø Ö ÎÁÁÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º ÒÓÚ Ñ Ö º

Ð ØÖÓÑ Ò Ø Ö ÎÁÁÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¾¼½ º ÒÓÚ Ñ Ö º ÐØÖÓÑ Ò ØÖ ÎÁÁÁº ÆÝØÖÝ ÖÐÝ ÈÌ ÈÅÅÁà ÎÐÐÑÓ À ÐÞØÓ ÌÒ Þ ¾¼½º ÒÓÚÑÖ º ÑÓÞ ÒÙ Ñ Ú ÅÓÞÓÓÒ Ý ÑÐÑÞ Ú Ð ÓÑÓÒ Ñ Ò ÑÞÒº ÑÒ ÐÚ Þ ÐØÖÓÒÓÖ = (Ú ) ÒÝ Ñ Ò Ö Øº Ñ Ò Ö Ø Ö ÐØÖÓÒÓ ÙÐÒ Ð ÑÐÑÞ Ð Ö ÞÒ ÔÓÞØÚ ØÐØ ÑÖÒ Ú Þ Ð Ö

Részletesebben

t = c U, t0 = x 0 t = c (1+U/c), c (1 U/c) U x δt B = 1 2

t = c U, t0 = x 0 t = c (1+U/c), c (1 U/c) U x δt B = 1 2 Þ Ö Ô Ö ÓÜÓÒÖ Ð ÀÖ È Ø Ö ÈÌ ÐÑ Ð Ø Þ Ì Ò Þ Þ Ö Ô Ö ÓÜÓÒ Ú Ý Ñ Ò Ú Ò Þ ÖÔ Ö ÓÜÓÒµ Ó ÐÑ Þ ÑÔÓÒØ Ð Ö Ð Ø Ú Ø ÐÑ Ð Ø Ý Ð ÓÒØÓ Ú Ø ÞÑ ÒÝ º Ð Ò ÓÐ ÓÞ Ø Ô Ö ¹ ÓÜÓÒÒ Ý ØÙÐ ÓÒ ÔÔ Ò Ø Ò ÐÐ ò Ñ Þ Ú Ö Ø Ô ØÙ Ú Ð Ó

Részletesebben

ÓÑ Ã Ø Ð ÔÚØ Ó ÐÓÑ Þ Ð Ü Ò Ö ÔÓÐ ÒÓÑ ÐÓ Ö ÓÑÓÐ ÃÓÑ Ò ØÓÖ Ù Ñ Þ Ö Ð ÓÑ ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò ØÓÖ ËØ Ô Þ Ò Ö Ê ÒÝ Ð Ö Å Ø Ñ Ø ÃÙØ Ø ÒØ Þ Ø ¾¼¼

ÓÑ Ã Ø Ð ÔÚØ Ó ÐÓÑ Þ Ð Ü Ò Ö ÔÓÐ ÒÓÑ ÐÓ Ö ÓÑÓÐ ÃÓÑ Ò ØÓÖ Ù Ñ Þ Ö Ð ÓÑ ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò ØÓÖ ËØ Ô Þ Ò Ö Ê ÒÝ Ð Ö Å Ø Ñ Ø ÃÙØ Ø ÒØ Þ Ø ¾¼¼ ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò ØÓÖ Ê ÒÝ Ð Ö Å Ø Ñ Ø ÃÙØ Ø ÒØ Þ Ø ¾¼¼ º ÒÓÚ Ñ Ö ¾ º ÒÚ Ö Ò Ó Ð ÓÒÝ Ñ ÒÞ ØÓÔÓÐ ÓÑ Ò Ê Ñ Ø Ö ÑÓÞ Ó Þ Ë ½ ÖÚÓÒ Ð Ê Ú Ð Ö Ò Ð Ø Ý Þ Ø Ò Ú ÞÞ ÓÑ Ò º Ã ½ Ã ¾ ÓÑ ÞÓÒÓ ÝÑ ÑÓÞ Ø Ø

Részletesebben

Ú Þ Ø Þ Ô Ð Ò Þ Ú Ñ Ò ÞÔÓÒØ Þ ¹ Ö Ô Ø Ø ÞÓØØ Þ Ð Ö Ú Þ Ð ØÓ Òº ËÞ ÑÐ Ð Ø Ò Þ ÐÚ Þ Ú ÐØÓÞ Ð ÑòÚ Ð Ø Ð Ð Ð Ô Ø ØØ ÓÐÝ Ò Ð¹ ÓÖÓÞ ØÓ Ñ ÐÝ ÓØØ Ø ÔÙ Ð Ö Ø Ò

Ú Þ Ø Þ Ô Ð Ò Þ Ú Ñ Ò ÞÔÓÒØ Þ ¹ Ö Ô Ø Ø ÞÓØØ Þ Ð Ö Ú Þ Ð ØÓ Òº ËÞ ÑÐ Ð Ø Ò Þ ÐÚ Þ Ú ÐØÓÞ Ð ÑòÚ Ð Ø Ð Ð Ð Ô Ø ØØ ÓÐÝ Ò Ð¹ ÓÖÓÞ ØÓ Ñ ÐÝ ÓØØ Ø ÔÙ Ð Ö Ø Ò Ó ØÓÖ ÖØ Þ Ø Þ ÃÓÑ Ò ØÓÖ Ù Ø Ð Ò 0¹ Ý Þ Öò Ð ÓÔÓÖØÓ Þ Ô ØÖÙÑ Ã Ø ¹ÍÖ Ò Ã Ñ ÐÐ Ì Ñ Ú Þ Ø Öº Å Ý Ä ÞÐ Ý Ø Ñ Ó Ò Öº ËÞ Ý Ø Ñ Ó Ò Å Ø Ñ Ø ¹ ËÞ Ñ Ø ØÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÓÐÝ ÁÒØ Þ Ø ¾¼¼ Ú Þ

Részletesebben

½º Å rot H = 0, H t2 H t1 = 0 H t2 = H t1, ¾º Å div D = ρ D n2 D n1 = η. º Å rot E = 0 E t2 E t1 = 0, º Å div B = 0 B n2 B n1 = 0.

½º Å rot H = 0, H t2 H t1 = 0 H t2 = H t1, ¾º Å div D = ρ D n2 D n1 = η. º Å rot E = 0 E t2 E t1 = 0, º Å div B = 0 B n2 B n1 = 0. Ä ÃÌÊÇ ÁÆ ÅÁà º Ð µ Ð ØÖÓ ÞØ Ø ÆÝÙ Ú Ø ÐØ Ò ÐÐ Ò Ð ØÖÓÑÓ Ø Ö º ½º Å Ò Ò Þ Ñ ÒÒÝ ÐÐ Ò Þ Òº ¾º Ø ÐØ Ò Ñ ÑÓÞÓ Ò Ø Ø v = 0 ØÓÚ Ò Ò Ö Ñ J = 0º Å ÜÛ ÐÐ Þ ÒÝ Ý ÒÐ Ø Ú Ø Þ ÓÖÑ Ø ÐØ ½º Å rot H = 0, H t2 H t1 =

Részletesebben

À Ì ÒØ Ö ÖÓÑ ØÖ ÞÒ Ð Ø Ò Þ ÓÒ Þ Ò Ã Ö Å Ò Þ Ù ÅË ½º Ú ÓÐÝ Ñ ¾¼½½º Ó Ø Ö ½ º

À Ì ÒØ Ö ÖÓÑ ØÖ ÞÒ Ð Ø Ò Þ ÓÒ Þ Ò Ã Ö Å Ò Þ Ù ÅË ½º Ú ÓÐÝ Ñ ¾¼½½º Ó Ø Ö ½ º À Ì ÒØ Ö ÖÓÑ ØÖ ÞÒ Ð Ø Ò Þ ÓÒ Þ Ò Ã Ö Å Ò Þ Ù ÅË ½º Ú ÓÐÝ Ñ ¾¼½½º Ó Ø Ö ½ º ÞØÖÓ Þ Ö Ø ½ º ÊÓ ÖØ À Ò ÙÖÝ ÖÓÛÒ Ê Ö Éº ÌÛ Ø Ø Ó Ò Û ØÝÔ Ó Ø ÐÐ Ö ÒØ Ö ÖÓÑ Ø Ö ÓÒ Ë Ö Ù Ã Ø ÓØÓ Ð ØÖÓÒ¹ Ó ÞÓÖÓÞ Ø ØÓÖ ÝÑ Ø Ð

Részletesebben

t = 0 R i L i s i s + u v 3R + u v u u v = 3u 4 + 3R 4 i s R = 0 u Li L R u = 4R 3 i L +R i s = i L i L + u 2R + u u v dt = 7R 3L i L + R L i s

t = 0 R i L i s i s + u v 3R + u v u u v = 3u 4 + 3R 4 i s R = 0 u Li L R u = 4R 3 i L +R i s = i L i L + u 2R + u u v dt = 7R 3L i L + R L i s ÒÐÓØØ Ð ØÓ º Ø Ý ÓÖÐ Ø Ö ýðð ÔÓØÚ ÐØÓÞ Ð Ö Ñ ÓÐ Þ Ø Ú Ö ÓÒØ Ð ½º Þ Ö Ò Ð Ø Ø Ð Þ Ø Ò Ô ÓÐ Ø ¼ Ô ÐÐ Ò Ø ÒÝ ØÚ Ú Òº Ô ÓÐ Ø Ø ¼¹ Ò Þ Ö Ù º Ú Ð Þ Ð ÐØ Ù Þ ÐØ º º À Ø ÖÓÞÞÙ Ñ Ô ÓÐ Þ ÖØ ÐÐ Ò Ð Ð Þ Ø ÐÐ ÔÓØÚ

Részletesebben

dc_869_14 ÅÌ Ó ØÓÖ ÖØ Þ Ø Þ Æ Ñ¹ Ý Ò ÐÝ Ò Ñ Ð ÓÒÝ Ñ ÒÞ Ú ÒØÙÑ Ö Ò Þ Ö Ò Ö Ð Þ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ¾¼½

dc_869_14 ÅÌ Ó ØÓÖ ÖØ Þ Ø Þ Æ Ñ¹ Ý Ò ÐÝ Ò Ñ Ð ÓÒÝ Ñ ÒÞ Ú ÒØÙÑ Ö Ò Þ Ö Ò Ö Ð Þ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ¾¼½ ÅÌ Ó ØÓÖ ÖØ Þ Ø Þ Æ Ñ¹ Ý Ò ÐÝ Ò Ñ Ð ÓÒÝ Ñ ÒÞ Ú ÒØÙÑ Ö Ò Þ Ö Ò Ö Ð Þ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ¾¼½ ½ ½º Ú Þ Ø Þ Ð ÓÒÝ Ñ ÒÞ Ö Ò Þ Ö Ð ÒÐ Ú Ð ¹ Ö Ø Ó Ð Ð ÓÞØ Ø Þ Ù Ó Øº Ú ÒØÙÑ Ù ØÙ Ð Ò Ò Ð Ö Ò Ð ÒØ Ø Ö

Részletesebben

E0 sin ωt, D = ǫ. σ ν2πǫ, ǫ 1, σ ( ) 1 s.

E0 sin ωt, D = ǫ. σ ν2πǫ, ǫ 1, σ ( ) 1 s. Ä ÃÌÊÇ ÁÆ ÅÁà ½½º Ð µ E = E0 sin ωt, D = ǫ E, D t = ωǫ E 0 cosωt = ν2πǫ E 0 cosωt, j = σe = σe0 sin ωt, j D t max = max σ ν2πǫ, ǫ 1, σ (10 16 10 17 ) 1 s. Þ Ð ØÖÓØ Ò Ò Ð ÓÖ ÙÐ Þ Ö Ú Ò Ö ÒØ ÒÝ Ó σ 1 νπǫ

Részletesebben

D = ǫ0 ǫ r. ½º Å rot H = j + ρ v + D. rot H = j + ρ v + ǫ 0 ǫ r. Erot H = E j Eρ v Eǫ 0 ǫ r. ρ( v, E) = Erot H Hrot E ( j, E) ǫ 0 ǫ r

D = ǫ0 ǫ r. ½º Å rot H = j + ρ v + D. rot H = j + ρ v + ǫ 0 ǫ r. Erot H = E j Eρ v Eǫ 0 ǫ r. ρ( v, E) = Erot H Hrot E ( j, E) ǫ 0 ǫ r Ä ÃÌÊÇ ÁÆ ÅÁà º Ð µ Þ Ð ØÖÓÑ Ò Ø Ö Ò Ö Î Þ Ð Ù Þ Ð ØÖÓÑ Ò Ø Ö Ø ÓÑÓ Ò ÞÓØÖ Ô Þ Ø Ð Òº ǫ, µ, σ ÐÐ Ò º ÓÖ ½º Å rot H = j + ρ v + D t, ½³º Å rot H = j + ρ v + ǫ 0 ǫ r E t. º Å rot E = B t ³º Å rot E = µ 0

Részletesebben

ÌÖÐÐÑÞ ÓÖÖ ÑÒÒÝ Þ ÐØÖÓÑÓ Ñ Ò µ ÑÞØ ÑØ ÖÓÞ Þ ÑÒÒÝ Ø Ø ÓÔÓÖØ ÓÖÓÐØÙ ÓÖÖ ÑÒÒÝ ØÖÐÐÑÞ ÓÖÖ ÑÒÒÝ ÐØÖÓÑÓ ØÐØ É λ σ ρµ ÐØÖÓÑÓ ÙÜÙ Ψµ ÌÖÐÐÑÞ ÐØÖÓÑÓ ØÖÖ µ ÐØÖÓÑ

ÌÖÐÐÑÞ ÓÖÖ ÑÒÒÝ Þ ÐØÖÓÑÓ Ñ Ò µ ÑÞØ ÑØ ÖÓÞ Þ ÑÒÒÝ Ø Ø ÓÔÓÖØ ÓÖÓÐØÙ ÓÖÖ ÑÒÒÝ ØÖÐÐÑÞ ÓÖÖ ÑÒÒÝ ÐØÖÓÑÓ ØÐØ É λ σ ρµ ÐØÖÓÑÓ ÙÜÙ Ψµ ÌÖÐÐÑÞ ÐØÖÓÑÓ ØÖÖ µ ÐØÖÓÑ ÐØÖÓÑ Ò ØÖ ¾º ÆÝØÖÝ ÖÐÝ ÈÌ ÈÅÅÁà ÎÐÐÑÓ À ÐÞØÓ ÌÒ Þ ¾¼½º ÞÔØÑÖ ½¼º ÌÖÐÐÑÞ ÓÖÖ ÑÒÒÝ Þ ÐØÖÓÑÓ Ñ Ò µ ÑÞØ ÑØ ÖÓÞ Þ ÑÒÒÝ Ø Ø ÓÔÓÖØ ÓÖÓÐØÙ ÓÖÖ ÑÒÒÝ ØÖÐÐÑÞ ÓÖÖ ÑÒÒÝ ÐØÖÓÑÓ ØÐØ É λ σ ρµ ÐØÖÓÑÓ ÙÜÙ Ψµ ÌÖÐÐÑÞ ÐØÖÓÑÓ

Részletesebben

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Á Ñ Ö ØÐ Ò ÒÝ Ó Ò Ð Þ ½º Ð Ú Þ Ð ØÓ ¾º Þ ÒÝ Ó ÓÐ ÐØ Ö ÖÓÒ ÓÐ µ º Ý Þ Öò ÒÝ Ó ÞÓÒÓ Ø º Þ Ø ØØ Ò Ð Þ Ö ÞÐ ÐÚ Ð ÞØ Ó º Þ Ø ØØ Ò Ð Þ ÓÔÓÖØÖ Ø Ú Ð Ôº ¾ Ð Ú Þ Ð ØÓ

Részletesebben

Ë Ø ÙØÓÑ Ø ÞÓ Ó Ò Ñ Ð ÐÑ Þ Ó ØÓÖ È º ºµ ÖØ Þ ÃÓ Ö ÐÝ Ì Ñ Ú Þ Ø Öº ËÞØÖ Â ÒÓ Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á

Ë Ø ÙØÓÑ Ø ÞÓ Ó Ò Ñ Ð ÐÑ Þ Ó ØÓÖ È º ºµ ÖØ Þ ÃÓ Ö ÐÝ Ì Ñ Ú Þ Ø Öº ËÞØÖ Â ÒÓ Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á Ë Ø ÙØÓÑ Ø ÞÓ Ó Ò Ñ Ð ÐÑ Þ Ó ØÓÖ È º ºµ ÖØ Þ ÃÓ Ö ÐÝ Ì Ñ Ú Þ Ø Öº ËÞØÖ Â ÒÓ Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½¾ Þ Ò ÖØ Þ Ø Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ

Részletesebben

Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ ÒÝ Ú ÒÝ Þ Ù Þ ÈÖÓ Ö ÑÓ Þ Ó Ð Ð

Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ ÒÝ Ú ÒÝ Þ Ù Þ ÈÖÓ Ö ÑÓ Þ Ó Ð Ð ÃÓÑÔÐ Ü Ú ÒÝ Þ Ò Ö ÞÓÐ Ä Ä Ú ÒØ ÄÌ ÁÃ Å ÓÐ ¾¼¼ º ÔÖ Ð ¾ º ÇÌ Ã ÃÓÒ Ö Ò Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ ÒÝ Ú ÒÝ Þ Ù Þ ÈÖÓ Ö ÑÓ Þ Ó Ð Ð Ì ÖØ ÐÓÑ ½ Ú Þ Ø ¾ Ã Ð Ò Ð Ö ÞÓÐ Ñ Ó ËÞ Ò Ö ÞÓÐ Æ

Részletesebben

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Ò ÓÒÓ Ð Ñ Ð ØÖÓÒ ÓÒ ÙÖ ÇÜ Þ ÑÓ ÁÓÒÓ +3 ÀÈÇ 2 3 È 2 Ô 3 +1 ÈÀ 2 Ç 2 +5 ÈÇ 3 4 +5 È 2 Ç 4 7 +5 ÈÇ 3 µ n 2 Ô 3 +3 Ç 3 3 +5 Ç 3 4 Ôº ¾ Ò ÓÒÓ Ð ØÖÓÒ ÓÒ ÙÖ ÇÜ Þ ÑÓ

Részletesebben

2 Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ØÖ ÒÞ Ø Ú Þ ÑÑ ØÖ Ù ÐÐ ØÚ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ÒØ Þ ÑÑ ØÖ Ù ÐÐ ØÚ ØÖ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å

2 Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ØÖ ÒÞ Ø Ú Þ ÑÑ ØÖ Ù ÐÐ ØÚ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å Ø Ð ÒØ Þ Ó Ý Ý Ö Ð ÒØ Þ ÑÑ ØÖ Ù ÐÐ ØÚ ØÖ ÓØ Ñ Þ äþ Ð Ñ Þ Ñ Ö Ð Ò Ñ Ð Å ÎÁ Ë Æ Ã Ö ½¹½ ÔÓÒØµ Å Ð Ø ÔÖ ØÙÑÓ ÖØ ÀÓ Ý Ò ÐäÐ ÅÓÒ ÓÒ Ð Ð ÖÓÑ Ô Ð Ø ÔÖ ØÙÑÖ º ËÓÖÓÐ Ð ÐÓ Ð Øº Å ÐÝ Ò Ú ÒØÓÖÓ Ø Ñ Ö Å Ð ÀÓ Ý Ò Ô Ù ÐÓ ÓÖÑÙÐ Ø Å ÓÖ Ú Ò Ý Ú ÐØÓÞ Ý Ú ÒØÓÖ Ø äö Ò Å ÒÝ ØÓØØ Ñ Þ ÖØ ÓÖÑÙÐ ÅÓÒ

Részletesebben

¹ÐÓ Ó ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¾¼¼ º½¾º½½º ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø

¹ÐÓ Ó ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¾¼¼ º½¾º½½º ÓÖÓ È Ø Ö Ä ÑÔ ÖØ Å Ø Å Ò ÓÖ ¹ ÐÔ Ö ÓÐ Ô ÓÐ Ø ¾¼¼ º½¾º½½º Ì ÖØ ÐÓÑ Æ ÒÝ Ó ÐÓÑ Ð Ð Ô Ö ÓÐ Ñ Ú Ð Ø Ð¹ Ô Ö ÓÐ Ô ÓÐ Ø Þ Ö Ø Ù Ú Ð Þ Òò Þ ØØ Æ ÒÝ Ó ÐÓÑ Ð Ð º = (Î, ) Ö ÓÐ Î Ó Ñ Þ Ð ÐÑ Þ Ø Ð Ð º È Ð ÙÐ L = (Z,E ) Ü,Ý Z Ó = Ü,Ý E Þ Ü¹ Ø Ý ¹Ø Þ Ø Ðº ÐÔ Ö

Részletesebben

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0)

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0) Å Ò ÒÝ Ð Ú Ð Þ ÐÐ Ø Ò Þ Ñ ÒÒÝ Ñ ÖØ Ý Þ Þ Ð ÒØ Ø ÖÑ Þ ØØ Ò Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý º Þ Ø Ö Ý Ø Ô Þ Ø ÖÑ Þ Ø¹ Ò Ð ÓÖ ÙÐ Ñ Ö Ø Ö ÔÖÓ Ù Ð Ø Ð Ò Ý Ö Þ º ýðø Ð Ò Ò Ñ Ñ Ò Þ ÓÐÝ Ò Ð Ò Ð Ó Ð Ð ÓÞ Ñ ÐÝ ÓÖ Ò Ò Ñ Ú ÐØÓÞ

Részletesebben

U = I R U = RI. I = [V ]

U = I R U = RI. I = [V ] Ä ÃÌÊÇ ÁÆ ÅÁÃ Ý Ò Ö Ñ Ð Þ ØÓ ½º Þ Ý Þ Öò Ö ÒØ Ý Ô ÓÐ Ð Ô Ð ÐºÁÐÝ Ò Þ Ð Ö Ñ Ö ÝØ Ð Ô Ð Ý Ó Ý ÞØ Ð Ú Þ Ø Ð Ö Ò Þ ¹ ÑÔ Ö Ñ Ö ¾¹½ µº Ó Ý ÞØ ÐÝ ØØ ÞÓ ÖØ Ð ÐÐ Ò ÐРغ Þ ÐÚ Ö ÞÓ Ú Þ Ø Ý ÐÐ Ò ÐÐ Ø ÐØ ÒØ ØÒ Ñ ÐÝÑ

Részletesebben

Ψ = α 0 > +β 1 > ØÓÚ α 2 + β 2 = 1. Ψ = cos θ 2 0 > +eiϕ sin θ 2 1 >

Ψ = α 0 > +β 1 > ØÓÚ α 2 + β 2 = 1. Ψ = cos θ 2 0 > +eiϕ sin θ 2 1 > ÃÚ ÒØÙÑ Ò ÓÖÑ Ø Ð Ô Ó ÐÑ ØØÔ»» ØÔº ØÓÑ º Ù»ÀÇÅ ¹È»Ð ØÙÖ» Ú Ò ºÔ Ø Ù Ø ÙÐÐ Ñ Ú ÒÝ Þ ÓÑÐ ýðð ÔÓØÓ Þ ÓÒ ÃÚ ÒØÙÑÐÓ ÔÙ ÃÚ ÒØÙÑØ Ð ÔÓÖØ Ë Ö ÓÐ ÃÚ ÒØÙÑ Ö ÔØÓ Ö ÃÚ ÒØÙÑ Þ Ñ Ø Ô ½ Ø ÃÙ Ø Ø Ø ÐÐ ÔÓØ Ð Þ Ù Ö Ò Þ

Részletesebben

¾¼½ ¹½ Þ Ð Ú Ð ½º Ð ½¹ ¾ Þ ÔØ Ñ Ö ½ ºµ ¾º Ð ¹ Þ ÔØ Ñ Ö ¾ ºµ º Ð ¹½¼ Ó Ø Ö ºµ º Ð ½¼ ¹½¾ Ó Ø Ö ½½ºµ º Ð ½¾ ¹½ ½ Ó Ø Ö ½ ºµ º Ð ½ ¾¹½ Ó Ø Ö ¾ ºµ º Ð ½ ¹

¾¼½ ¹½ Þ Ð Ú Ð ½º Ð ½¹ ¾ Þ ÔØ Ñ Ö ½ ºµ ¾º Ð ¹ Þ ÔØ Ñ Ö ¾ ºµ º Ð ¹½¼ Ó Ø Ö ºµ º Ð ½¼ ¹½¾ Ó Ø Ö ½½ºµ º Ð ½¾ ¹½ ½ Ó Ø Ö ½ ºµ º Ð ½ ¾¹½ Ó Ø Ö ¾ ºµ º Ð ½ ¹ Þ Ö Ø Ñ Ø Ñ Ø ¾º Ð Ô ý Ò ÄÌ Áà ÃÓÑÔÙØ Ö Ð Ö Ì Ò Þ ¾¼½ º Ñ Ö º ¾¼½ ¹½ Þ Ð Ú Ð ½º Ð ½¹ ¾ Þ ÔØ Ñ Ö ½ ºµ ¾º Ð ¹ Þ ÔØ Ñ Ö ¾ ºµ º Ð ¹½¼ Ó Ø Ö ºµ º Ð ½¼ ¹½¾ Ó Ø Ö ½½ºµ º Ð ½¾ ¹½ ½ Ó Ø Ö ½ ºµ º Ð ½ ¾¹½ Ó Ø Ö ¾

Részletesebben

ÅÌ ÇÃÌÇÊÁ ÊÌ Ã Ë Þ ØÓÑÑ Ó Þ Ö Þ Ø Ò Ú ÐØÓÞ Ò ÙØÖÓÒ¹ Ò Ø Ð Ø ÚÓÒ Ð Þ Ð Ò ÁÒ¹ Ñ Ñ Ô ØÖÓ Þ Ô Ú Þ Ð ØÓ Þ Ô Ò Ö Ö Ó Ø Ú ÒÝ Ð Ó Ò ÓÑ Ö ÓÐØ ÌÇÅÃÁ Ö Ò ¾¼¼

ÅÌ ÇÃÌÇÊÁ ÊÌ Ã Ë Þ ØÓÑÑ Ó Þ Ö Þ Ø Ò Ú ÐØÓÞ Ò ÙØÖÓÒ¹ Ò Ø Ð Ø ÚÓÒ Ð Þ Ð Ò ÁÒ¹ Ñ Ñ Ô ØÖÓ Þ Ô Ú Þ Ð ØÓ Þ Ô Ò Ö Ö Ó Ø Ú ÒÝ Ð Ó Ò ÓÑ Ö ÓÐØ ÌÇÅÃÁ Ö Ò ¾¼¼ ÅÌ ÇÃÌÇÊÁ ÊÌ Ã Ë Þ ØÓÑÑ Ó Þ Ö Þ Ø Ò Ú ÐØÓÞ Ò ÙØÖÓÒ¹ Ò Ø Ð Ø ÚÓÒ Ð Þ Ð Ò ÁÒ¹ Ñ Ñ Ô ØÖÓ Þ Ô Ú Þ Ð ØÓ Þ Ô Ò Ö Ö Ó Ø Ú ÒÝ Ð Ó Ò ÓÑ Ö ÓÐØ ÌÇÅÃÁ Ö Ò ¾¼¼ º Ì ÖØ ÐÓÑ ÝÞ ½º Ì ÖØ Ò Ø ØØ ÒØ ¾ ¾º Þ Ö Ó Ñ ÞòÒ Ò ÔÖÓ

Részletesebben

Ö ÒÝ Ô Ö Ñ Ø Ö Ò Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ì Ø Ì Ñ Ö Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ

Ö ÒÝ Ô Ö Ñ Ø Ö Ò Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ì Ø Ì Ñ Ö Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ Ö ÒÝ Ô Ö Ñ Ø Ö Ò Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ì Ø Ì Ñ Ö Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ Ì Ò Þ ËÞ ¾¼¼ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ ØØ ÒØ

Részletesebben

x = 10±0.1 y = 5±0.02 z = 20±0.4

x = 10±0.1 y = 5±0.02 z = 20±0.4 ÆÙÑ Ö Ù Ñ Þ Ö ¹ ÆÙÑ Ö Ù Ò Ð Þ Ý ÓÖÐ Ð ØÓ Å Ã ½ ¹ Å Ã ½ ½ ĵ ¹ Å Ã ½ ĵ Æ ÑÓ Ö Ñ Ø ÓÖ ÙÒ ¹Ñ Óк Ù Å ÓÐ Ý Ø Ñ Ô ÞÑ ÖÒ ÁÒ ÓÖÑ Ø Ã Ö Ð ÐÑ ÞÓØØ Å Ø Ñ Ø ÁÒØ Þ Ø Ì Ò Þ ¾¼½ ¾ Ì ÖØ ÐÓÑ ÝÞ ½º ÃÐ Þ Ù Þ Ñ Ø ¾º Å ØÖ

Részletesebben

Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ ÁÒ ÓÖÑ Ø Ã Ö Ã Ô Ð ÓÐ ÓÞ ËÞ Ñ Ø Ô Ö Ì Ò Þ ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÌÓÔÓÐ ¹Ñ ÖÞ Ú ÓÒÝ Ø Ð ÓÖ ØÑÙ Ó Ø ÖÚ Þ Ú Þ Þ Ð Ø Ú ÒØ Ø Ø Ú Þ ÓÒÐ Ø Ó ØÓÖ ÖØ Þ Æ Ñ Ø ÓÖ Ì Ñ Ú Þ Ø Öº È Ð Ý

Részletesebben

Ð Ô Ø Ø Ù ÔÖÓ Ö Ñ Þ Ð Ø Ð Þ Ð Ø Â Þ ÂÙ Ø ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ËÞÓ ØÚ Ö Ð ÞØ Ì Ò Þ Ì Ñ Ú Þ Ø Öº Ý Ñ Ø Ý Ì ÓÖ ËÞ ¾¼¼ º Ñ Ù ÖØ Þ Ó ØÓÖ Ó ÓÞ Ø Ñ Þ ÖÞ Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ Ð Þ ÔÖÓ Ö Ñ Þ Ð Ø

Részletesebben

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0)

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0) Å Ò ÒÝ Ð Ú Ð Þ ÐÐ Ø Ò Þ Ñ ÒÒÝ Ñ ÖØ Ý Þ Þ Ð ÒØ Ø ÖÑ Þ ØØ Ò Ø ÖÑ Þ ØØÙ ÓÑ ÒÝÓ Ý º Þ Ø Ö Ý Ø Ô Þ Ø ÖÑ Þ Ø¹ Ò Ð ÓÖ ÙÐ Ñ Ö Ø Ö ÔÖÓ Ù Ð Ø Ð Ò Ý Ö Þ º ýðø Ð Ò Ò Ñ Ñ Ò Þ ÓÐÝ Ò Ð Ò Ð Ó Ð Ð ÓÞ Ñ ÐÝ ÓÖ Ò Ò Ñ Ú ÐØÓÞ

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ ØØ ÒØ º à ÖÐ Ø Ö Þ ½ º½º Ö Ø Ò Ð Ý Þ Ø Ø Ð º º º º º º º º º º º º º º º º º º º º º º º º º ½ º½º½º Ò ØÖ Ùѹ ÐÓÖ Ø Ø

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ ØØ ÒØ º à ÖÐ Ø Ö Þ ½ º½º Ö Ø Ò Ð Ý Þ Ø Ø Ð º º º º º º º º º º º º º º º º º º º º º º º º º ½ º½º½º Ò ØÖ Ùѹ ÐÓÖ Ø Ø ÈÓÐ Ñ ÖÓÐ ØÓ Ø Þ ÑÓÞ Ö ÙØÓ Ø Ð Ø Ù ÖÓÒØÓ Ò Ó ØÓÖ È µ ÖØ Þ Ê Ì Ñ Ì Ñ Ú Þ Ø Öº Ì Ø ý ÓØ Öº ÀÓÖÚ Ø Þ Ã ÖÒÝ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Á ÓÐ Ë Ì ÌÌÁÃ Þ Ã Ñ ÒÝ ØÙ ÓÑ ÒÝ Ì Ò Þ ËÞ ¾¼½½ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º ÁÖÓ ÐÑ

Részletesebben

¾

¾ º Þ Ø Þ Ð Ð ØÖÓ ÞØ Ø ÙÐÐ ÑØ Ò Ú ÒØÙÑÑ Ò ÓÐ Ù ÐÐ Ø Ò ËÞ Ð Ý Ò Ö Ù Ô Ø ¾¼¼ ¾ Ì ÖØ ÐÓÑ ÝÞ ½º Ð ØÖÓ ÞØ Ø ½º½º Ð Ô Ó ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º Þ Ð ØÖÓÑÓ

Részletesebben

Ë ÓÐÝ Ñ ØØ Ò Áº ÅÓ ÐÐ Þ Öº Ê Ú Ò Ö Ý Ø Ñ Ó Ò Å ¾¼½

Ë ÓÐÝ Ñ ØØ Ò Áº ÅÓ ÐÐ Þ Öº Ê Ú Ò Ö Ý Ø Ñ Ó Ò Å ¾¼½ Ë ÓÐÝ Ñ ØØ Ò Áº ÅÓ ÐÐ Þ Öº Ê Ú Ò Ö Ý Ø Ñ Ó Ò Å ¾¼½ ½ Å Î Åà ÃÃ Ì Þ Ö Ø Þ ÖÞ Þ Ø ØØ ÈÓ ØËÖ ÔØ Ê ÓÖÖ ÒÝ ÐÚ Òº Þ Ø Þ ÖÞ Ú ÞØ Ä Ì ÓÖÖ ÒÝ ÐÚ Òº Ì ÖØ ÐÓÑ ÝÞ ½º ÐÓÛ Ø Ò Þ Ø ØØ ÓÐÝ Ñ ØÓ Þ Ñ Ø ½º½º ÐÓÛ Ø Ò º º

Részletesebben

Ð Þ Þ ØÓÒ Þ Ö ØÒ Ñ Ñ Þ ÒÒ Ø Ñ Ú Þ Ø ÑÒ ÓÒ Â ÒÓ Ò Þ ÑÓÑÖ Þ Ò Ú Ø Ñ ÐÚ Ø Ø Ô Ø ÞÖ Ú Ø Ð Ø Þ ÑÙÒ Ò ÓÖ Òº À Ð Ú Ð Þ Ò ØØ Ð Ø ÖØÓÞÓÑ Ñ Ð ÓÑÒ ÓÐ ÓÞ Ø Ñ Ö ÓÞ

Ð Þ Þ ØÓÒ Þ Ö ØÒ Ñ Ñ Þ ÒÒ Ø Ñ Ú Þ Ø ÑÒ ÓÒ Â ÒÓ Ò Þ ÑÓÑÖ Þ Ò Ú Ø Ñ ÐÚ Ø Ø Ô Ø ÞÖ Ú Ø Ð Ø Þ ÑÙÒ Ò ÓÖ Òº À Ð Ú Ð Þ Ò ØØ Ð Ø ÖØÓÞÓÑ Ñ Ð ÓÑÒ ÓÐ ÓÞ Ø Ñ Ö ÓÞ Ã ÖØÝ Ø Ó Ö ÔØÓ Ö Ò Ú Þ Ð Ø Ý ÖØÝ Ø Ö ÔØÓ Ö Ñ Ú Ð Ø ÔÐÓÑ ÑÙÒ ÖØ Ì Ö Ë Ò ÓÖ Ð ÐÑ ÞÓØØ Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø ÓÒ Â ÒÓ Ý Ø Ñ Ó Ò ÃÓÑÔÙØ Ö Ð Ö Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ã Ö ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý

Részletesebben

) ) γ dense 2. γ = E(G) / 2. v i A, N (v i ) (1 ǫ) B,aholN (v i ) B µ

) ) γ dense 2. γ = E(G) / 2. v i A, N (v i ) (1 ǫ) B,aholN (v i ) B µ Ã Ñ ÐÝ Ð ò Ô Ù Þ ÐØ Ø Ö Ð Ø Ò Ú Ð ÞØ Ö Ð Ô Ð Ö Ð Ã ÞÐ Ö Ò Ø ËÞ Ö ÒÝ Ì Ñ ÅÌ Ë Ì ÃÁ ÞÐ Ö ÞØ º Ù Þ Ö ÒÝ ÞØ º Ù ÞØÖ Øº Ã Ô Ð ÒÝ Ö ÞÐ Ø Ò Ú Ð ÞØ Ô Ð ÑÞ Ý ÓÒØÓ Ö ÞØ Ö Ð Ø Ñ ÐÝ Ó Ð ÒÐ Ñ ÓÐ ØÐ Ò Ú Ý Ö Þ Ò Ñ ¹

Részletesebben

x 2 a b c d a b c d e x 1 O R O L O C ϕ(a d f) O R ϕ(b c) O L ϕ(b c e) O L ϕ(l R) (R 2 \ E) ϕ(l M R) (R 2 \ E)

x 2 a b c d a b c d e x 1 O R O L O C ϕ(a d f) O R ϕ(b c) O L ϕ(b c e) O L ϕ(l R) (R 2 \ E) ϕ(l M R) (R 2 \ E) Ò Ñ Ö Ò Þ Ö ÓØ Ù Ò Ø Ð Ø Ò Ú Þ Ð Ø Ñ Þ Ø Þ Ñ Ø Ô Ñ Þ Ö Ð Ó ØÓÖ ÖØ Þ Ø Þ Ò ÐÝ Ð Þ Ì Ñ Ú Þ Ø Öº Ò Ì ÓÖ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ËÞ ¾¼¼ ½º Ú Þ Ø Ò Ñ Ö Ò Þ Ö Ú Þ Ð Ø ÓÖ Ò Ó Ø Ò Ö Ö Ð Ø Ó Ý Ú Ð Ò Ö Ò Ð ÞÒ ¹ Ñ ÓÐ Ó

Részletesebben

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½

Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ Å Ò Ñ Ò Ð Þ ËÞ Ð Á ØÚ Ò ÄÌ Ã Ñ ÁÒØ Þ Ø Ôº ½ ÓÒÓ Ø ÔÙ È Ö ÓÒ Ð Ó ÞØ ÐÝÓÞ Ú Þ Ø Ö Ø ÔÙ Ó µ ÓÐ Ó ÓÐ Ø Ò Þ Ñ Ø ÔÀ ÊÓ ÞÙÐ Ø µ ÓÑÔÐ Ü ÔÞ Ì Ñ Ø Ë Ú¹ Þ ÓÑÔÐ Ü Ý Ò ÐÝÓ Þ Ñ Ø Ê ÓÜ ÔÓØ Ò Ð Ã Ø ÓÒÓ Ö ÐÚ Ð ÞØ Ù ÑÙØ

Részletesebben

σ m α η e m η m η N η ) α m η m η T cond

σ m α η e m η m η N η ) α m η m η T cond Þ η Ñ ÞÓÒÓ ÓÑÐ Ø ÖÑ Ò ÞÓÒÓ Ø ÙÐØÖ ¹Ö Ð Ø Ú ÞØ Ù Ø Þ Ò Ã Ö Å Ò Þ Ë º Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Ò Å Ø ÄÌ ÌÌà ØÓÑ Þ Ì Ò Þ ¾¼½¼º Ñ Ö ¾ º à ÚÓÒ Ø Á Ñ ÖØ Ó Ý Ø Ö ÐÑ Ð Ø Þ ÑÑ ØÖ Ò Ö Ð Ð Ð Ö Þ Ø Ñ ÖØº ÐØ Ø Ð Þ ¹ Þ Ö ÒØ

Részletesebben

Szupernóvák. van H. nincs H. I nincs Si. van Si. nincs He. van He IIL IIP. IIn

Szupernóvák. van H. nincs H. I nincs Si. van Si. nincs He. van He IIL IIP. IIn ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÌÌÁÃ ÇÔØ ÃÚ ÒØÙÑ Ð ØÖÓÒ Ì Ò Þ ÁÈÄÇÅ ÅÍÆÃ ËÞÙÔ ÖÒ Ú ÐØ ØØ Ð ÙÐÐ ÑÓ Ð Ò Ø òöò ÐÐ Ö Ð ÒÝ Ð Ã Þ Ø ØØ Æ Ý Ò Ö Þ Ù ÅË Þ Ó ÐÐ Ø Ì Ñ Ú Þ Ø Öº Î Ò Â Þ Ý Ø Ñ Ó Ò ËÞ ¾¼½¾ Ì ÖØ ÐÑ Þ Ó Ð Ð ÞÙÔ ÖÒ

Részletesebben

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò Å Þ ÔÖÓ Ö Ñ Ö Ø Ò Å Ý Ö ÌÙ ÓÑ ÒÝÓ Ñ ØÓÑÑ ÙØ Ø ÁÒØ Þ Ø Ò ÅÌ ¹ ØÓÑ µ

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò Å Þ ÔÖÓ Ö Ñ Ö Ø Ò Å Ý Ö ÌÙ ÓÑ ÒÝÓ Ñ ØÓÑÑ ÙØ Ø ÁÒØ Þ Ø Ò ÅÌ ¹ ØÓÑ µ Þ ØÓÑÑ Ó ÓÐÐ Ø Ú Ô ÐÙ ÐÐ ÔÓØ Ò ÖÐ Ø Ú Þ Ð Ø Ý Ø Ñ Ó ØÓÖ È µ ÖØ Þ ËØÙ Ð Ä ÞÐ Ì Ñ Ú Þ Ø Öº ÃÖ ÞÒ ÓÖ Ý ØØ Ð Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½ Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ Ã Þ Ò ØÒÝ ÐÚ Ò Ø Ú Þ Ø Ê Ú Ø ½¾ ½º Ê Ò Þ ØÐ Ò ÓÒ ÒÞ ÐØ Þ Ó Ò ½ ½º½º Ó ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Ì ÖØ ÐÓÑ ÝÞ Ã Þ Ò ØÒÝ ÐÚ Ò Ø Ú Þ Ø Ê Ú Ø ½¾ ½º Ê Ò Þ ØÐ Ò ÓÒ ÒÞ ÐØ Þ Ó Ò ½ ½º½º Ó ÐÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Î Þ Þ Ùѹ ÐÓ Ò ÓÐ ØÓ Þ Ö Þ ØÚ Þ Ð Ø Ó ØÓÖ ÖØ Þ µ Å Ð Î Ø Ö Ì Ñ Ú Þ Ø Öº ÈÙ ÞØ Ä ÞÐ Å Ý Ö ÌÙ ÓÑ ÒÝÓ Ñ ËÞ Ð Ö Ø Ø Þ ÇÔØ ÃÙØ Ø ÒØ Þ Ø ¾¼½¼ ÄÌ ÌÌÃ Ã Ñ Ó ØÓÖ Á ÓÐ Î Þ Ø Öº ÁÒÞ ÐØ Ý Ö Ý ÐÑ Ð Ø Þ Ñ ÒÝ Þ Ö Þ Ø

Részletesebben

ÄÓ Þ Ñ Ø ÐÑ Ð Ø Þ Ñ Ø ÐÑ Ð Ø Ö Þ Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º Ñ Ö ¼º

ÄÓ Þ Ñ Ø ÐÑ Ð Ø Þ Ñ Ø ÐÑ Ð Ø Ö Þ Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º Ñ Ö ¼º ÄÓ Þ Ñ Ø ÐÑ Ð Ø Þ Ñ Ø ÐÑ Ð Ø Ö Þ Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º Ñ Ö ¼º ¾ ½º Þ Ø Ð Þ Þ ÓÐÝ Ñ ØÓ Ò Ú Ð Ö ÝÞ Ø Þ ÄÌ ÁÒ ÓÖÑ Ø Ã Ö Ò ¾¼¼ ¹ ¾¼¼ ¹ Þ Þ Ñ ÞØ Ö Ò Ø ÖØÓØØ ÄÓ Þ Ñ Ø ÐÑ Ð Ø Ñò ÙÖÞÙ Þ ¹ Ñ Ø ÐÑ Ð

Részletesebben

Ø Ð ÐÐ Ó Ø Ö Ò Ò Ó ØÓÖ ÖØ Þ ËÞ ¹ Ð ÐÞ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö Þ Ó ØÓÖ ÓÐ Ê Þ Þ ÐÐ Þ Ø ÔÖÓ Ö Ñ Ó ØÓÖ ÓÐ Ú Þ Ø Öº È ÐÐ Ä ÞÐ Ó ØÓÖ Ô

Ø Ð ÐÐ Ó Ø Ö Ò Ò Ó ØÓÖ ÖØ Þ ËÞ ¹ Ð ÐÞ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö Þ Ó ØÓÖ ÓÐ Ê Þ Þ ÐÐ Þ Ø ÔÖÓ Ö Ñ Ó ØÓÖ ÓÐ Ú Þ Ø Öº È ÐÐ Ä ÞÐ Ó ØÓÖ Ô Ø Ð ÐÐ Ó Ø Ö Ò Ò Ó ØÓÖ ÖØ Þ ËÞ ¹ Ð ÐÞ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö Þ Ó ØÓÖ ÓÐ Ê Þ Þ ÐÐ Þ Ø ÔÖÓ Ö Ñ Ó ØÓÖ ÓÐ Ú Þ Ø Öº È ÐÐ Ä ÞÐ Ó ØÓÖ ÔÖÓ Ö Ñ Ú Þ Ø Öº ÓÖ Ö Ò Ì Ñ Ú Þ Ø Öº ÃÙÒ Å Ö ØÙ ÓÑ ÒÝÓ

Részletesebben

Ô ØÖ Ð Ø Ö Ð Ð Ñ ÒÞ Ô ÓÐ Ø Ò Ú Þ Ð Ø Ð ÞÒ Ð Ø Ð òö ÐÚ Ø Ð Ó ÞØ ÐÝÓÞ Ò Ó ØÓÖ Þ ÖØ Ä ÞÐ Á ØÚ Ò Ì Ñ Ú Þ Ø Öº Ø Á ØÚ Ò ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ö ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ÈÖÓ º ÒÞ Ö Ò Ö ºËº ÁÒ ÓÖÑ Ö Ò Þ

Részletesebben

¾ ÖØØÐÙ Ô Ö ½º ÈÖÓÐ Ô ÐÝ ØÒ µ Ô ¾ µ Ô µ Ô ¾ µ Ô ¾ ¾º ØØ Ø ÔÖÓÐÑ ÑÓÞ ÝÒÐØÒ ÖÒ Ð¹ÝÒÐØÖÒ ÞÖ µ ½¾¹ ÖÒòº µ ¹Ó ÖÒòº µ ¹ ÖÒòº µ ¹ ÖÒòº º ÄÔÐ ÚØÓÖ Ð µ µ µ µ Ö

¾ ÖØØÐÙ Ô Ö ½º ÈÖÓÐ Ô ÐÝ ØÒ µ Ô ¾ µ Ô µ Ô ¾ µ Ô ¾ ¾º ØØ Ø ÔÖÓÐÑ ÑÓÞ ÝÒÐØÒ ÖÒ Ð¹ÝÒÐØÖÒ ÞÖ µ ½¾¹ ÖÒòº µ ¹Ó ÖÒòº µ ¹ ÖÒòº µ ¹ ÖÒòº º ÄÔÐ ÚØÓÖ Ð µ µ µ µ Ö ÑÒ Ø ÞØÐØÓ ¾¼¼ ½ ¾ ÖØØÐÙ Ô Ö ½º ÈÖÓÐ Ô ÐÝ ØÒ µ Ô ¾ µ Ô µ Ô ¾ µ Ô ¾ ¾º ØØ Ø ÔÖÓÐÑ ÑÓÞ ÝÒÐØÒ ÖÒ Ð¹ÝÒÐØÖÒ ÞÖ µ ½¾¹ ÖÒòº µ ¹Ó ÖÒòº µ ¹ ÖÒòº µ ¹ ÖÒòº º ÄÔÐ ÚØÓÖ Ð µ µ µ µ Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö º Þ Ò Ò Ø µ ÃÔÐÖ¹ÝÒÐØÒ

Részletesebben

È Ö ÙÞ ÑÓ ØÓØØ Ú Ð Ñ¹Ñ Þ Ö ØÓÐØ Ð ØÖÓ Ò Ñ ÔÖÓ Ð Ñ Ñ ÓÐ Ò ÖØ Å Ö Ò Ð Ç Ð Ú Ð Ñ ØÖÓÒ Ñ ÖÒ ÃÓÒÞÙÐ Ò ÈÖÓ º Öº ÃÙÞÑ ÒÒ Å Ð ºËº Ý Ø Ñ Ø Ò Ö ËÞ ÒÝ Á ØÚ Ò Ý Ø

È Ö ÙÞ ÑÓ ØÓØØ Ú Ð Ñ¹Ñ Þ Ö ØÓÐØ Ð ØÖÓ Ò Ñ ÔÖÓ Ð Ñ Ñ ÓÐ Ò ÖØ Å Ö Ò Ð Ç Ð Ú Ð Ñ ØÖÓÒ Ñ ÖÒ ÃÓÒÞÙÐ Ò ÈÖÓ º Öº ÃÙÞÑ ÒÒ Å Ð ºËº Ý Ø Ñ Ø Ò Ö ËÞ ÒÝ Á ØÚ Ò Ý Ø È Ö ÙÞ ÑÓ ØÓØØ Ú Ð Ñ¹Ñ Þ Ö ØÓÐØ Ð ØÖÓ Ò Ñ ÔÖÓ Ð Ñ Ñ ÓÐ Ò ÖØ Å Ö Ò Ð Ç Ð Ú Ð Ñ ØÖÓÒ Ñ ÖÒ ÃÓÒÞÙÐ Ò ÈÖÓ º Öº ÃÙÞÑ ÒÒ Å Ð ºËº Ý Ø Ñ Ø Ò Ö ËÞ ÒÝ Á ØÚ Ò Ý Ø Ñ ÙØÓÑ Ø Þ Ð Ì Ò Þ È º º Ó ØÓÖ ÖØ Þ ËÞ ÒÝ Á ØÚ Ò Ý

Részletesebben

Ú Þ Ø ÐÐ Þ Ð ÐØ Ð Ø Ñ Ú ÞØ Ø ÒÙÐÑ ÒÝÓÞ ÙÐ ÓÒØÓ ÐÐ ¹ Ð ÓÐÝ Ñ Ø Ò Ñ ÖØ Þº Ø Ñ Ú ÞØ Ñ ÖØ ÐРРй Ð ÔÓØ Ø Ð Ú Ö Ö ÐÐ Ó Ø Ò Ø Ò Ý Ö Ò Ð Ñ Ð ÓÖÓÞ Ø ÐÐ Ó Ò Ð

Ú Þ Ø ÐÐ Þ Ð ÐØ Ð Ø Ñ Ú ÞØ Ø ÒÙÐÑ ÒÝÓÞ ÙÐ ÓÒØÓ ÐÐ ¹ Ð ÓÐÝ Ñ Ø Ò Ñ ÖØ Þº Ø Ñ Ú ÞØ Ñ ÖØ ÐРРй Ð ÔÓØ Ø Ð Ú Ö Ö ÐÐ Ó Ø Ò Ø Ò Ý Ö Ò Ð Ñ Ð ÓÖÓÞ Ø ÐÐ Ó Ò Ð ÇÔØ ÃÚ ÒØÙÑ Ð ØÖÓÒ Ì Ò Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ Î Ö Ö ÐÐ Ó Ø Ñ Ú ÞØ Ñ ÐÑ ÞÓ Ò Ó ØÓÖ È µ ÖØ Þ Ø Þ Å Þ ÖÓ ËÞ ÓÐ Ì Ñ Ú Þ Ø Öº Ò Ö Ãº ÙÔÖ À ÖÚ Ö ¹ËÑ Ø ÓÒ Ò ÒØ Ö ÓÖ ØÖÓÔ Ý Ñ Ö ÍË Ð ÓÒÞÙÐ Ò Öº Î Ò Â Þ ÇÔØ ÃÚ ÒØÙÑ

Részletesebben

rot H = J + D div D = ρ, w = 1 2 E D H B,

rot H = J + D div D = ρ, w = 1 2 E D H B, Ë Ð Ø Þ Ð ØÖÓÑ Ò Ø Ö Ø ÒØ Ö Ý ÒÝ Ò ÐÑ ÐÝ Ø Þ È Ú Â Þ ¾¼½ º ÒÙ Ö ½º Ì ÖØ ÐÓÑ ÝÞ ½º Þ Ð ØÖÓ Ò Ñ Ø Ñ Ö Ø ÖØÓÞ Ð Ò ÓÔÓÖØÓ Ø ¾ ½º½º Þ Ð ØÖÓÑ Ò Ø Ö Ð Ø Ö Ð Ú ÐØÓÞ Ò Ô ÓÐ Ø ¾ ½º¾º ËØ Ø Ù Ø Ö d λ Ú Ý d δ º º º

Részletesebben

ÝÞ Ø Ô Ø Ñ ÖÒ ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò ¾¼¼¾º½¾º¾¾º Ú ÐØÓÞ Ø Ë ÑÓÒ Ã ÖÓÐÝ ¾¼¼¾º½¾º¾¾

ÝÞ Ø Ô Ø Ñ ÖÒ ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò ¾¼¼¾º½¾º¾¾º Ú ÐØÓÞ Ø Ë ÑÓÒ Ã ÖÓÐÝ ¾¼¼¾º½¾º¾¾ ÝÞ Ø Ô Ø Ñ ÖÒ ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò ¾¼¼¾º½¾º¾¾º Ú ÐØÓÞ Ø Ë ÑÓÒ Ã ÖÓÐÝ ¾¼¼¾º½¾º¾¾ ¾ Ä ØÓÖ ÐØ Öº Ë Ò ÓÖ Ý Ø Ñ ÙÒ ØÙ Ð Þ Þ ÝÞ Ø Öº Ë ÑÓÒ Ã ÖÓÐÝÒ Å Ô Ø Ñ ÖÒ Ã ÖÒÝ Þ Ø Ñ ÖÒ ÐÐ Ø Ò Ø ÖØÓØØ Ð ÒÝ Ø Ø ÖØ ÐÑ ÞÞ º

Részletesebben

ÃÓÑÔÐ Ü Ú ÒÝ Þ Ò Ö ÞÓÐ Ì Ã ÓÐ ÓÞ Ø Ä Ä Ú ÒØ ØØÔ»»ÐÓ ºÛ º ÐØ º Ù Ì Ñ Ú Þ Ø Ë ÔÔ Ö Ò ¾¼¼ º ÒÓÚ Ñ Ö

ÃÓÑÔÐ Ü Ú ÒÝ Þ Ò Ö ÞÓÐ Ì Ã ÓÐ ÓÞ Ø Ä Ä Ú ÒØ ØØÔ»»ÐÓ ºÛ º ÐØ º Ù Ì Ñ Ú Þ Ø Ë ÔÔ Ö Ò ¾¼¼ º ÒÓÚ Ñ Ö ÃÓÑÔÐ Ü Ú ÒÝ Þ Ò Ö ÞÓÐ Ì Ã ÓÐ ÓÞ Ø Ä Ä Ú ÒØ ØØÔ»»ÐÓ ºÛ º ÐØ º Ù Ì Ñ Ú Þ Ø Ë ÔÔ Ö Ò ¾¼¼ º ÒÓÚ Ñ Ö Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾º ÃÓÑÔÐ Ü Ú ÒÝ Ö ÞÓÐ Ñ ¾º½º Ã Ø Ó z wµ Ö ÞÓÐ º º º º º º º º º º º º º º º º º º º

Részletesebben

ÔÐÓÑ Ø ÖÚ ÈÖÓ Ö ÑÓÞ Ø Ô ÖØÝ ÒÝ ØÓØØ ÞØÓÒ ÖØ Á ØÚ Ò ÓÐØ ÃÓÒÞÙÐ Ò Öº Î Á ØÚ Ò À Ö Ø Ò Ì Ò Þ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ¾¼¼½º ÔÐÓÑ Ø ÖÚ Ö ÖØ Á ØÚ Ò ÓÐØ ÔÖÓ Ö ÑÓÞ Ø Ô ÖØÝ Ø Ð ÖØÝ Ñ Ö Øò ÞØÓÒ Ó Ñ ÖÓ Þ Ñ Ø

Részletesebben

einsteini newtoni Az adó nyugszik Mindegy A vevõ nyugszik

einsteini newtoni Az adó nyugszik Mindegy A vevõ nyugszik ½ newtoni einsteini Az adó nyugszik Mindegy A vevõ nyugszik ½º Ö º 1 Ö Ð Ø Ú Ø ÐÑ Ð Ø Ð Ô Ì ÊÌ ÄÇÅ Ã Þ Ø Ñ ÝÞ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ºÓÐ Ð Ý ÓÖÐ Ð ØÓ

Részletesebben

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö Ø Ø Þ ÒÝ ØÙ ÓÑ ÒÝ ÔÖÓ Ö Ñ Ö Ø Ò Þ ÖØ Ð Þ Ø Ø ÌýÅÇȹ º¾º¾» ¹½¼»½¹¾¼½¼¹¼¼¾ Þ Ñ ÔÖÓ Ø Ø ÑÓ ØØ º ÔÖÓ Ø Þ

Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö Ø Ø Þ ÒÝ ØÙ ÓÑ ÒÝ ÔÖÓ Ö Ñ Ö Ø Ò Þ ÖØ Ð Þ Ø Ø ÌýÅÇȹ º¾º¾» ¹½¼»½¹¾¼½¼¹¼¼¾ Þ Ñ ÔÖÓ Ø Ø ÑÓ ØØ º ÔÖÓ Ø Þ ÌÌà ½ À Ø ÖÓ Ò ÒÝ Ó ÖÓ Ó Ø Ö Ý Ø Ñ Ó ØÓÖ È µ ÖØ Þ À Ð Þ ÓÐØ Ò Ì Ñ Ú Þ Ø Öº ÃÙÒ Ö Ò Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½¾ Ã Þ ÐØ Ö Ò Ý Ø Ñ Þ ÌÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ Ò ËÞ Ð Ö

Részletesebben

ËÞ ÓÐ ÓÞ Ø ÞòÖ Ð Ö Ó Ð ÐÑ Þ Ö Ú Ø ÙÐРѹ Ð Ð Ó Ú Þ Ð Ø Ò Þ Ö Ð Þ Þ Ëº Þ Ù Þ Ö ÒÝ ÁÁÁº Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Öº Ê Þ Á ØÚ Ò Ï Ò Ö ÊÅÃÁ Ð ÓÒÞÙÐ Ò Öº È ÐÐ Ä Þ

ËÞ ÓÐ ÓÞ Ø ÞòÖ Ð Ö Ó Ð ÐÑ Þ Ö Ú Ø ÙÐРѹ Ð Ð Ó Ú Þ Ð Ø Ò Þ Ö Ð Þ Þ Ëº Þ Ù Þ Ö ÒÝ ÁÁÁº Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Öº Ê Þ Á ØÚ Ò Ï Ò Ö ÊÅÃÁ Ð ÓÒÞÙÐ Ò Öº È ÐÐ Ä Þ ËÞ ÓÐ ÓÞ Ø ÞòÖ Ð Ö Ó Ð ÐÑ Þ Ö Ú Ø ÙÐРѹ Ð Ð Ó Ú Þ Ð Ø Ò Þ Ö Ð Þ Þ Ëº Þ Ù Þ Ö ÒÝ ÁÁÁº Ú ÓÐÝ Ñ Ì Ñ Ú Þ Ø Öº Ê Þ Á ØÚ Ò Ï Ò Ö ÊÅÃÁ Ð ÓÒÞÙÐ Ò Öº È ÐÐ Ä ÞÐ ÄÌ ÌÌà ¾¼½ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾º Ö Ú Ø ÙÐÐ ÑÓ

Részletesebben

Ì ÖØ ÐÑ Þ Ó Ð Ð Þ ÜÓ ÓÐÝ ÙØ Ø ÐÐ Þ Ø Ý Ð Ö Ø Ø Ð Ò ÑÓÒ Ø Ù Ð ¹ ÒØ ÒÞ Ú Ò Ð Ú Ú ÐØ Þ ÙØ Ø ÚØ Þ Òº Ø ÚÓÐ ÐÐ Ó Ö Ð Ö Ò ÓÐÝ Ö Ò Þ Ö Ñ Ñ Ö ÝÖ ÖÒÝ ÐØ Ô Ø Ø

Ì ÖØ ÐÑ Þ Ó Ð Ð Þ ÜÓ ÓÐÝ ÙØ Ø ÐÐ Þ Ø Ý Ð Ö Ø Ø Ð Ò ÑÓÒ Ø Ù Ð ¹ ÒØ ÒÞ Ú Ò Ð Ú Ú ÐØ Þ ÙØ Ø ÚØ Þ Òº Ø ÚÓÐ ÐÐ Ó Ö Ð Ö Ò ÓÐÝ Ö Ò Þ Ö Ñ Ñ Ö ÝÖ ÖÒÝ ÐØ Ô Ø Ø Ë Á ÌÍ ÇÅýÆ Ì Å Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ ÁÒ ÓÖÑ Ø Ã Ö Ã ÖÐ Ø Þ Ì Ò Þ ÐÐ Þ Þ ÁÈÄÇÅ ÅÍÆÃ ÜÓ ÓÐÝ Ö Ò Þ Ö ÓØÓÑ ØÖ Ú Þ Ð Ø Ã Þ Ø ØØ À ÇÖ ÓÐÝ Ì Ñ Ú Þ Ø Öº ËÞ Åº ÝÙÐ Ý Ø Ñ Ø Ò Ö Ë Ì ÌÌÁà à ÖÐ Ø Þ Ì Ò Þ ØÙ ÓÑ ÒÝÓ ÑÙÒ

Részletesebben

Ö Ó Ö Þ Ö Þ Ø Ñ Ö Ú Ø ÓÐØ Ó ØÓÖ ÖØ Þ Ì Ñ Ú Þ Ø ÂÓÖ Ò Ì ÓÖ Ý Ø Ñ Ó Ò Ò ØÙ ÄÌ ÌÌÃ Å Ø Ñ Ø Ó ØÓÖ ÓÐ Ó ØÓÖ ÓÐ Ú Þ Ø Ä Þ ÓÚ Å Ð Ð ÐÑ ÞÓØØ Ñ Ø Ñ Ø Ó ØÓÖ ÔÖÓ Ö Ñ ÔÖÓ Ö Ñ Ú Þ Ø ÈÖ ÓÔ Ò Ö Ó ØÓÖ ÖØ Þ Þ ØÚ ÄÓÖ Ò

Részletesebben

Ò Ö ÐÝ ÅÁÇÆ Ä Ê Ã Ê Ë Ã Ì ÃÁËÄ Ë Ã Æ È ÖØ Þ Ì Ñ Ú Þ Ø Ê Þ Ã ÖÓÐÝ Þ ØÙ ÓÑ ÒÝ Ó ØÓÖ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ¹ ÇÔØ ÃÚ ÒØÙÑ Ð ØÖÓÒ Ì Ò Þ ÅÌ ËÞ Ð Ö Ø Ø Þ ÇÔØ ÃÙØ

Ò Ö ÐÝ ÅÁÇÆ Ä Ê Ã Ê Ë Ã Ì ÃÁËÄ Ë Ã Æ È ÖØ Þ Ì Ñ Ú Þ Ø Ê Þ Ã ÖÓÐÝ Þ ØÙ ÓÑ ÒÝ Ó ØÓÖ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ¹ ÇÔØ ÃÚ ÒØÙÑ Ð ØÖÓÒ Ì Ò Þ ÅÌ ËÞ Ð Ö Ø Ø Þ ÇÔØ ÃÙØ ÑÑ Ò Ö ÐÝ ÅÁÇÆ Ä Ê Ã Ê Ë Ã Ì ÃÁËÄ Ë Ã Æ È ÖØ Þ Ì Ñ Ú Þ Ø Ê Þ Ã ÖÓÐÝ Þ ØÙ ÓÑ ÒÝ Ó ØÓÖ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ¹ ÇÔØ ÃÚ ÒØÙÑ Ð ØÖÓÒ Ì Ò Þ ÅÌ ËÞ Ð Ö Ø Ø Þ ÇÔØ ÃÙØ Ø ÒØ Þ Ø ¹ Ù Ô Ø ¾¼¼¾ Ì ÖØ ÐÓÑ ÝÞ Ú Þ Ø ½ Ñ ÓÒ

Részletesebben

Å ÖÓ ÓÒÓÑ Ø Ð ØÝ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ º Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ ÂÙÒ ½¾ ¾¼¼ ½

Å ÖÓ ÓÒÓÑ Ø Ð ØÝ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ º Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ ÂÙÒ ½¾ ¾¼¼ ½ Å ÖÓ ÓÒÓÑ Ø Ð ØÝ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ º Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ ÂÙÒ ½¾ ¾¼¼ ½ Ì Ú Û ÜÔÖ ÓÒ Ø Ø Ö ÑÝ ÓÛÒ Ò Ó ÒÓØ Ò Ö ÐÝ Ö ÔÖ ÒØ Ø

Részletesebben

½µ Þ Ü Ñ Ö ÚÓÒ Ø ÓÞ Ð ÔÚ Ø Ñ Ö Ø Ý Ñ Ø Ñ Ø ÐÑ Ð Ø Ð Ô Ø Ò Ð Ô ÐÚ Å Ò Ò Ñ Ø Ñ Ø ÐÑ Ð Ø Ó ÐÑ ÐÐ Ø Ó Ýò Ø Ñ ÒÝ ÒØ Ó Ø Ðº Þ ÐÑ Ð Ø Ð Ô Ø ÓÖ Ò Ð ÞÒ ÐØ Ó ÐÑ

½µ Þ Ü Ñ Ö ÚÓÒ Ø ÓÞ Ð ÔÚ Ø Ñ Ö Ø Ý Ñ Ø Ñ Ø ÐÑ Ð Ø Ð Ô Ø Ò Ð Ô ÐÚ Å Ò Ò Ñ Ø Ñ Ø ÐÑ Ð Ø Ó ÐÑ ÐÐ Ø Ó Ýò Ø Ñ ÒÝ ÒØ Ó Ø Ðº Þ ÐÑ Ð Ø Ð Ô Ø ÓÖ Ò Ð ÞÒ ÐØ Ó ÐÑ Î Ö Þ Ä ÞÐ ÓÑ ØÖ Ü Ñ Ö Ò Þ Ö ÑÓ ÐÐ ÄÌ ÌÌÃ Å Ø Ñ Ø ÁÒØ Þ Ø ÓÑ ØÖ Ì Ò Þ Ù Ô Ø ¾¼½½ ½µ Þ Ü Ñ Ö ÚÓÒ Ø ÓÞ Ð ÔÚ Ø Ñ Ö Ø Ý Ñ Ø Ñ Ø ÐÑ Ð Ø Ð Ô Ø Ò Ð Ô ÐÚ Å Ò Ò Ñ Ø Ñ Ø ÐÑ Ð Ø Ó ÐÑ ÐÐ Ø Ó Ýò Ø Ñ ÒÝ ÒØ Ó Ø Ðº Þ

Részletesebben

Ð Ô Ø Ø Ù ÔÖÓ Ö Ñ Þ Ð Ø Ð Þ Ð Ø È º º ÖØ Þ Ø Þ Â Þ ÂÙ Ø Ì Ñ Ú Þ Ø Öº Ý Ñ Ø Ý Ì ÓÖ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ ÁÒ ÓÖÑ Ø Ã Ö ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ ËÞ ¾¼¼ Ú Þ Ø ÔÖÓ Ö Ñ Þ Ð Ø Ð ÓÞ Þ Ð Ö ÓÞ ÓÒÐ Ø Ñ Ø

Részletesebben

ËÞ Ñ Ø ÐÑ Ð Ø Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º ÒÙ Ö ¾ º

ËÞ Ñ Ø ÐÑ Ð Ø Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º ÒÙ Ö ¾ º ËÞ Ñ Ø ÐÑ Ð Ø Ö ÝÞ Ø Ð Öº Þ ÓÐØ ÍØÓÐ Ñ Ó Ø ¾¼¼ º ÒÙ Ö ¾ º ¾ Ð Þ Þ ÓÐÝ Ñ ØÓ Ò Ú Ð Ö ÝÞ Ø Þ ÄÌ ÁÒ ÓÖÑ Ø Ã Ö Ò ¾¼¼ ¹ ¾¼¼ ¹ Þ Þ Ñ ÞØ Ö Ò Ø ÖØÓØØ ËÞ Ñ Ø ÐÑ Ð Ø Ñò ÙÖÞÙ ÒÝ Ø Ø Ö¹ Ø ÐÑ ÞÞ º Þ ÐØ Ð Ø Ø ÒÝ Ø Ø

Részletesebben

ÅÌ Ó ØÓÖ ÖØ Þ Ì Þ À Þ ÐÐ ØÓ Þ Ú Ø Ð Ô Ò Þ Ö Ú Þ Ø Ø Ð Ð ÑÞ ÐØ Ö Ð ØØ Ò ÐÐ ÔÓØÓ Ò Öº ËÞ Ò Ö È º ºµ à ÔÓ Ú Ö Ý Ø Ñ ýðð ØØÙ ÓÑ ÒÝ Ã Ö Ã ÔÓ Ú Ö ¾¼½ ½º Ú Þ Ø dc_534_12 Þ ÐÐ ØØ ÒÝ ÞØ ØÙ ÓÑ ÒÝÓ Ø Ö Ð Ø Ò ÝÖ

Részletesebben

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0)

t 2 t 1 x(t + t) x(t). t v(t) = (v x (t), 0, 0) Þ ÞÓÐÐ Þ ÑÒÒÝ ÑÖØÝ Þ Þ ÐÒØ ØÖÑ ÞØØÒ ØÖÑ ÞØØÙÓÑ ÒÝÓ Ý º Þ Ø ÖÝ Ø ÔÞ ØÖÑ ÞØÒ ÐÓÖÙÐ ÑÖØ ÖÔÖÓÙ ÐØ ÐÒ Ý Ö Þº ýðøð Ò ÒÑ ÑÒ Þ ÓÐÝÒ ÐÒ Ð ÓÐÐÓÞ ÑÐÝ ÓÖ Ò ÒÑ Ú ÐØÓÞ Þ ÒÝÓ Ñ ÞØØÐº Þ Ý ÐÓÒØÓ ÐÑ ÑÖ º ÑÖ ÓÖ Ò ÚÐÑÐÝÒ

Részletesebben

Þ Ö ÓÓ Ò ÓÖÑ Ö Ò Þ Ö Ó ØÓÖ È º ºµ ÖØ Þ Ê Ú ÒÝ Ì ÓÖ ÓÐØ Ì Ñ Ú Þ Ø Öº ÃÓÖÑÓ Â ÒÓ Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½¼

Þ Ö ÓÓ Ò ÓÖÑ Ö Ò Þ Ö Ó ØÓÖ È º ºµ ÖØ Þ Ê Ú ÒÝ Ì ÓÖ ÓÐØ Ì Ñ Ú Þ Ø Öº ÃÓÖÑÓ Â ÒÓ Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½¼ Þ Ö ÓÓ Ò ÓÖÑ Ö Ò Þ Ö Ó ØÓÖ È º ºµ ÖØ Þ Ê Ú ÒÝ Ì ÓÖ ÓÐØ Ì Ñ Ú Þ Ø Öº ÃÓÖÑÓ Â ÒÓ Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ Ø Ó ØÓÖ Á ÓÐ Ö Ò ¾¼½¼ Þ Ò ÖØ Þ Ø Ö Ò Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ó ØÓÖ Ì Ò ÁÒ ÓÖÑ

Részletesebben

¾

¾ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ Î ÐÐ ÑÓ Ñ ÖÒ ÁÒ ÓÖÑ Ø Ã Ö ËÞ Ð Ú À Ö ÞÐ Î ÐÐ ÑÓ Ø Ò Ì Ò Þ Å¹ Ð Ð Ø Ø ÐØ òöò Ñ Ö Ò Þ ÑÙÐ Ì Ã ÓÐ ÓÞ Ø Ã Þ Ø ØØ ÃÓÒÞÙÐ Ò Ö Æ Ý Á ØÚ Ò Ê Ö Ø Ò Ö ¾¼½ º Ó Ø Ö ¾¾º ¾ Ì ÖØ ÐÓÑ ÝÞ Ã

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½º½º Þ Ó Ø Ø ØÖÙ Ø Ö ÐØ º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º Ø Ø ÓÒ ÓÞ Ð Ø º º º º º º º º º º º º º º º º º º º

Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½º½º Þ Ó Ø Ø ØÖÙ Ø Ö ÐØ º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º Ø Ø ÓÒ ÓÞ Ð Ø º º º º º º º º º º º º º º º º º º º ÞØ Ö ÞÝ Ã ÖÓÐÝ ÓÐ Å Ø Ñ Ø ÁÒ ÓÖÑ Ø ÁÒØ Þ Ø ËÞ Ñ Ø Ø Ò Ú Ö ÒÝ ÃÓÚ ÞÒ Ö ÐÝ ÓÚ Þ Ö º Ø º Ù À ÖÒÝ ÓÐØ Ò ØØÔ»»Û º Ø º Ù»Û»ÀÞ Þ Ö º Ø º Ù Ö ¾¼½¼ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½º½º Þ Ó Ø Ø ØÖÙ Ø Ö ÐØ º º º º º º º º º

Részletesebben

ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö Ã Ø Ñ ÒÞ Ø Ð Ð ÔÔ ÓÐ Ó ËÞ ÓÐ ÓÞ Ø Ã Ö ÐÐ Å Ø Ñ Ø Ëº Ð ÐÑ ÞÓØØ Ñ Ø Ñ Ø Ù Þ Ö ÒÝ Ì Ñ Ú Þ Ø Ã Ö ÐÝ Ì Ñ Ý Ø Ñ ÙÒ ØÙ ÇÔ Ö ÙØ Ø Ì Ò Þ Ù Ô Ø ¾¼½½ ÆÝ Ð Ø ÓÞ Ø Æ Ú

Részletesebben

x = r sin θ cosϕ y = r sinθ sinϕ z = r cosθ. ¾µ x = f(t) y = g(t) z = h(t) x = pt + a y = qt + b z = st + c

x = r sin θ cosϕ y = r sinθ sinϕ z = r cosθ. ¾µ x = f(t) y = g(t) z = h(t) x = pt + a y = qt + b z = st + c ÐÑ Ð Ø Þ Áº ÐÑ Ð Ø Ñ Ò ÀÖ È Ø Ö È ¾¼¼¾º Ì ÖØ ÐÓÑ ÝÞ ½º½º ÑÓÞ Ð Ö ÖØ ¹ ÓÓÖ Ò Ø Ðº º º º º º º º º º º º º º º º ¾ ½º¾º Æ ÛØÓÒ¹ Ý ÒÐ Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º º Æ ÛØÓÒ¹

Részletesebben

V 2 (V bn) = nrt, ½µ

V 2 (V bn) = nrt, ½µ ÚÒ Ö ÏÐ ¹ Þ ÐÐÔÓØÝÒÐØ ݹÄÙ ¹ ÂÓÙÐÌÓÑ ÓÒ¹ ÖÐØ Ã ÞØ Ë ÞÙ ÐÐØ Þ Ñ Ö ÖØ ÂÞ ØÚ ÄÓÖ Ò ÌÙÓÑ ÒÝÝØÑ ÃÓÑÔÐÜ ÊÒ ÞÖ Þ ÌÒ Þ ¾¼¼º ÑÖ ¾º ÑÓ ØÚ ¾¼½º ÔÖÐ ¾º ½º ÚÒ Ö ÏÐ ¹ Þ ÚÒ Ö ÏÐ ¹ Þ ÐÐÔÓØÝÒÐØ ) + an bn) = nr, ½µ ÓÐ n

Részletesebben

Ì ÖØ ÐÓÑ ÝÞ Ì ÖØ ÐÓÑ ÝÞ Ú Þ Ø ½ Ð ØòÞ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Þ ÖØ Þ Ð Ô Ø º º º º º º º º º º º º º º º

Ì ÖØ ÐÓÑ ÝÞ Ì ÖØ ÐÓÑ ÝÞ Ú Þ Ø ½ Ð ØòÞ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Þ ÖØ Þ Ð Ô Ø º º º º º º º º º º º º º º º ÙÒ ÓÒ Ð ÔÖÓ Ö ÑÓÞ ÒÝ ÐÚ ÐÝ Ú Þ Ð Ø Ó ØÓÖ ÖØ Þ ¾¼¼ º Ì Ð Å Ø ØØÔ»»Ñ Ø ºÛ º ÐØ º Ù» Ñ Ø Ò º ÐØ º Ù Ì Ñ Ú Þ Ø Öº ÀÓÖÚ Ø ÓÐØ Ò Ý Ø Ñ Ø Ò Ö ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ã Ö À¹½½½ Ù Ô Ø È ÞÑ ÒÝ È Ø Ö Ø ÒÝ

Részletesebben

X 1 (x i ) º. X 1 (], b]) º. ], a 1 ], ]a 1, a 2 ],...,]a p 1, a p ], ]a p, + ], j=1. i i

X 1 (x i ) º. X 1 (], b]) º. ], a 1 ], ]a 1, a 2 ],...,]a p 1, a p ], ]a p, + ], j=1. i i ÈÖÓ Ð Ø Ô ØÖ Ð Ñ ÒØ Ø Ø Ø ÕÙ ÙØ ü Ô ÖØ Ö ÓÒÒ ÖÙØ ÕÙ Ð Ø Ø Ú ÒÓÒ Ö µ ÓÙ ÕÙ ÒØ Ø Ø Ú Ö µ Ò Ö Ô Ö Ñ ØÖ Ô ÖÑ ØØ ÒØ ÖÒ Ö Ù ÔÖ Ñ Ö ÓÙÔ ³ Ð Ð Ø Ò Ò Ò Ö Ð Ð ÔÓÔÙÐ Ø ÓÒ ØÙ Ö ÔÖ ÒØ Ø ÓÒ Ö Ô ÕÙ ÓÖ Ö Ö Ò ÙÖ ÑÓÝ ÒÒ

Részletesebben

x T i x j = δ ij, 1 i, j k, ¾µ

x T i x j = δ ij, 1 i, j k, ¾µ ÐÓ Ð ÓÔØ Ñ Ð Þ Ð Ð ÐÑ Þ Ó Þ Ñ ¹ÓÒ¹Ð Ò Ð Ô ÓÐ Ó ØÓÖ ÖØ Þ Ø Þ ÐÓ Â ÒÓ Ì Ñ Ú Þ Ø Öº Ò Ì ÓÖ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ËÞ ¾¼¼ Ú Þ Ø Ó ØÓÖ ÖØ Þ Þ ÖÞ Ò ÐÓ Ð ÓÔØ Ñ Ð Þ Ð Ð ÐÑ Þ Ø Ö Ð Ø Ò Ý Þ Ö Ø ÓÔØ Ñ Ð Þ Ð Ð ØÓÒ Ð ÖØ

Részletesebben

È ÖÑÙØ ÓÖ ÓÐ Ó Ð ÐÑ Þ ÅÌ Ó ØÓÖ ÖØ Þ ÒØ Ý È Ø Ö

È ÖÑÙØ ÓÖ ÓÐ Ó Ð ÐÑ Þ ÅÌ Ó ØÓÖ ÖØ Þ ÒØ Ý È Ø Ö È ÖÑÙØ ÓÖ ÓÐ Ó Ð ÐÑ Þ ÅÌ Ó ØÓÖ ÖØ Þ ÒØ Ý È Ø Ö ¾ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾º ÇÖ ÓÐ Ó ½ ¾º½º Å ÖØ Þ ÑÑ ØÖ º º º º º º º º º º º º º º º º º º º º º º º º ½ ¾º¾º ÇÖ ÓÐ Ó Ö Ð ÐØ Ð Ò º º º º º º º º º º º º º

Részletesebben

Ì Ú ÖÞ ÐØ ÐÚ Ø Ð Ð ÑÞ Ý Ø Ñ ÝÞ Ø Ä ÞÐ Á ØÚ Ò ÓÖÒ ÓÖ Öº Ø Á ØÚ Ò ØØ ÊÓ ÖØÓ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ ÁÒ ÓÖÑ Ø Ö Ù Ô Ø ¾¼½ º Ì ÖØ ÐÓÑ ÝÞ ½º Å Ø Ú ÖÞ Ð ½º½º Ø Ú ÖÞ Ð Ð ÙÐ Ð º º º º º º º º º º º º º º º ½º¾º

Részletesebben

1 + e β(x d). 0, x a δ/2 x (a δ/2), a δ/2 < x < a + δ/2 1, a + δ/2 x. σ ( β)

1 + e β(x d). 0, x a δ/2 x (a δ/2), a δ/2 < x < a + δ/2 1, a + δ/2 x. σ ( β) ÙÞÞÝ Ú Ø ÞØ Ø ÑÓ ÐÐ ÙÞÞÝ Þ ÖØ Ò Ð ÔÙÐ ÐÓ Ó ØÓÖ ÖØ Þ Ø Þ Ö ÓÐØ Ì Ñ Ú Þ Ø Öº ÓÑ Â Þ ËÞ ÌÙ ÓÑ ÒÝ Ý Ø Ñ ËÞ ¾¼¼ ½º Ú Þ Ø Þ ÖØ Þ Ö Ñ ÒÝ Þ Ð ÖÓÑ ÔÓÒØ Ò Ó Ð Ð Ø Þ º Ð Þ Ö ÑÙØ Ø Ý ÓÐÝ Ò Ö ÙÞÞÝ Þ ÐÝØ ÒÙÐ ÑÓ ÐÐØ

Részletesebben

À Ö¹ÒÙÐÐ ÐÑ ÞÓ Ñ Ó Ø Ö ÓÒÞ ÞØ Ò Ø Ö Þ ÒØÓÖ ÐÑ ÞÓ ÓÒ ÔÐÓÑ ÑÙÒ Ã Þ Ø ØØ ËÞÐ ÓÐØ Ò Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø Ð Å ÖØÓÒ Ý Ø Ñ ÙÒ ØÙ Ò Ð Þ Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ

À Ö¹ÒÙÐÐ ÐÑ ÞÓ Ñ Ó Ø Ö ÓÒÞ ÞØ Ò Ø Ö Þ ÒØÓÖ ÐÑ ÞÓ ÓÒ ÔÐÓÑ ÑÙÒ Ã Þ Ø ØØ ËÞÐ ÓÐØ Ò Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø Ð Å ÖØÓÒ Ý Ø Ñ ÙÒ ØÙ Ò Ð Þ Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ À Ö¹ÒÙÐÐ ÐÑ ÞÓ Ñ Ó Ø Ö ÓÒÞ ÞØ Ò Ø Ö Þ ÒØÓÖ ÐÑ ÞÓ ÓÒ ÔÐÓÑ ÑÙÒ Ã Þ Ø ØØ ËÞÐ ÓÐØ Ò Ñ Ø Ñ Ø Ù Þ Ì Ñ Ú Þ Ø Ð Å ÖØÓÒ Ý Ø Ñ ÙÒ ØÙ Ò Ð Þ Ì Ò Þ ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø Ñ Ì ÖÑ Þ ØØÙ ÓÑ ÒÝ Ã Ö ØÚ ÄÓÖ Ò ÌÙ ÓÑ ÒÝ Ý Ø

Részletesebben

ÐÙÐ ÖÓØØ ÀÓÐÞ Ö Ì Ñ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ÐÐ Ø Ð ÒØ Ñ Ó Ý ÞØ ÔÐÓÑ Ø ÖÚ Ø Ñ Ò Ñ Ò ØØ Ø Ò Ð Ð Ø Ñ Ñ Þ Ø ØØ Ñ ÔÐÓÑ Ø ÖÚ Ò Ñ ¹ ÓØØ ÓÖÖ Ó Ø ÞÒ ÐØ Ñ Ð

ÐÙÐ ÖÓØØ ÀÓÐÞ Ö Ì Ñ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ ÐÐ Ø Ð ÒØ Ñ Ó Ý ÞØ ÔÐÓÑ Ø ÖÚ Ø Ñ Ò Ñ Ò ØØ Ø Ò Ð Ð Ø Ñ Ñ Þ Ø ØØ Ñ ÔÐÓÑ Ø ÖÚ Ò Ñ ¹ ÓØØ ÓÖÖ Ó Ø ÞÒ ÐØ Ñ Ð Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ À Ö Ø Ò Ì Ò Þ ÖÝËÝË Ä ÓÖ Ø Ö ÙÑ ËÔÓÒØ Ò ÓÓÔ Ö Ð ÙÐ Ð Ò Þ ÒÒ Ø Ð Ø ÖØÓÞ Þ ÒÞÓÖ Ð Þ ØÓ Þ ØØ Ë Ø Þ ÐÐÓÑ Ó Ø ÀÓÐÞ Ö Ì Ñ ÃÓÒÞÙÐ Ò Ö ÙØØÝ Ò Ä Ú ÒØ ÐÙÐ ÖÓØØ ÀÓÐÞ Ö Ì Ñ Ù Ô Ø Åò Þ Þ

Részletesebben

Ø Ø Ñ Ð Ò Ø Þ Á Þ Ý Ê Ò Þ Ø Å Ò ÞØ Ö ÙÑ Ú Ð Ñ ÒØ Þ Ñ Ö ÂÓ Ó Å Ý Ö Ã ÞÔÓÒØ Ã Þ Ð Ô ØÚ ÒÝ Ø ÑÓ ØØ ÓÒ Ö Ò Þ ÖÚ Þ È Ý Å Ø ÓÒ Ö Ò Ð Ð Î Ö ¾¼¼ Þ ÖÞ ¾¼¼ Þ Ö

Ø Ø Ñ Ð Ò Ø Þ Á Þ Ý Ê Ò Þ Ø Å Ò ÞØ Ö ÙÑ Ú Ð Ñ ÒØ Þ Ñ Ö ÂÓ Ó Å Ý Ö Ã ÞÔÓÒØ Ã Þ Ð Ô ØÚ ÒÝ Ø ÑÓ ØØ ÓÒ Ö Ò Þ ÖÚ Þ È Ý Å Ø ÓÒ Ö Ò Ð Ð Î Ö ¾¼¼ Þ ÖÞ ¾¼¼ Þ Ö ÍÊ È Á ÂÇ Ë ÂÇ ÁÄÇ Á ÓÒ Ö Ò Ø ÒÙÐÑ ÒÝÓ Þ ÙÖ Ô ÒØ Ö ØÚ Ò Ú ÓÖ ÙÐ Ò ÒÒ Ô Ö Þ Ö ÞØ ØØ Ô Ý Ñ Ø Ë ÆÌ ÁËÌÎýÆ ÌýÊËÍÄ Ì Þ ÔÓ ØÓÐ ËÞ ÒØ Þ Ã ÒÝÚ Ù Ô Ø ¾¼¼ Ø Ø Ñ Ð Ò Ø Þ Á Þ Ý Ê Ò Þ Ø Å Ò ÞØ Ö ÙÑ Ú Ð Ñ ÒØ Þ Ñ Ö ÂÓ

Részletesebben

x = x m x h x m x h x m h = x m x h x h U g V U R (a)

x = x m x h x m x h x m h = x m x h x h U g V U R (a) Å Ö Ø Ò Ð Ø Ñ Ø Ö ÔÞ ÐÚ Ø Ð Ú Þ ÓÞ ËÙ ÖØ Ä ÞÐ Ù Ô Ø Åò Þ Þ ØÙ ÓÑ ÒÝ Ý Ø Ñ Å Ö Ø Ò ÁÒ ÓÖÑ Ê Ò Þ Ö Ì Ò Þ ¾¼½ º Ñ Ö Ú Þ Ø Ð Ø Ð Å Î ÐÐ ÑÓ Ñ ÖÒ ÁÒ ÓÖÑ Ø Ã Ö ÎÁõ Ú ÐÐ ÑÓ Ñ ÖÒ Þ Ò Ò ÙÐ Ñ Ø Ö¹ Å˹µ ÔÞ ÐÚ Ø Ð

Részletesebben

F V (n) = 2 2n (n N 0 )º

F V (n) = 2 2n (n N 0 )º ÃÓÑ Ò ØÓÖ Ù Ø Ð Ò 0¹ Ý Þ Öò Ð ÓÔÓÖØÓ Þ Ô ØÖÙÑ È º º ÖØ Þ Ã Ø ¹ÍÖ Ò Ã Ñ ÐÐ Ì Ñ Ú Þ Ø Öº Å Ý Ä ÞÐ Öº ËÞ Å Ø Ñ Ø ¹ ËÞ Ñ Ø ØÙ ÓÑ ÒÝÓ Ó ØÓÖ Á ÓÐ ÓÐÝ ÁÒØ Þ Ø Ë Ì ÌÌÁà ¾¼¼ ËÞ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ½ ¾º Ð ÞÑ ÒÝ

Részletesebben

Egyéb természetes 26% Radon 55% Orvosi diagnosztika 11% Radioaktív gyógyszer 4% Fogyasztási cikkek 3% Egyéb 1%

Egyéb természetes 26% Radon 55% Orvosi diagnosztika 11% Radioaktív gyógyszer 4% Fogyasztási cikkek 3% Egyéb 1% Ð ¹ Ù ÖÞ Ó ÓÞØ ÐÚ ÐØÓÞ Ó Ð Ø Ò Ë ÐÑ Þ Ú ¾¼¼½º ÔÖ Ð Ì ÊÌ ÄÇÅ à ½ Ì ÖØ ÐÓÑ ÝÞ ½º Ú Þ Ø ¾ ¾º Ð ØòÞ ÐØ Ø Ð Þ º ÁÖÓ ÐÑ ØØ ÒØ º½º ÓÐ Þ Ó Ð Ð º º º º º º º º º º º º º º º º º º º º º º º º½º½º Ë Ø ÓÐ º º º

Részletesebben

σ m α η e m η m η N η ) α m η m η T cond

σ m α η e m η m η N η ) α m η m η T cond Ö Ð Þ ÑÑ ØÖ ÐÝÖ ÐÐ ÓÖÖ Ú Ö ÒÝ Ò Ã Ö Å Ò Þ Ë Ì Ñ Ú Þ Ø Ò Å Ø ÄÌ ÌÌà ØÓÑ Þ Ì Ò Þ ¾¼½½º Ò Ù º à ÚÓÒ Ø Á Ñ ÖØ Ó Ý Ø Ö ÐÑ Ð Ø Þ ÑÑ ØÖ Ò Ö Ð Ð Ð Ö Þ Ø Ñ ÖØº ÐØ Ø Ð Þ ¹ Þ Ö ÒØ Þ ÑÑ ØÖ Ò ÝÓÒ Ñ Ñ Ö Ð Øò Þ Ò ÐÝÖ

Részletesebben

Ú Þ Ø Þ Ñ Ø ÐÑ Ð Ø ÁÁº Å Ò ÓÖÑ Ø Ù ¹ ÐÐ Ø Þ Ñ Ö Ð Ø ¾¼¼ º Ø Ú Þ ÎÁË ½½¼ Ð ÓÞ Þ ÐÐ ØÓØØ Ð Ò Ö Ì Ñ A B s t X

Ú Þ Ø Þ Ñ Ø ÐÑ Ð Ø ÁÁº Å Ò ÓÖÑ Ø Ù ¹ ÐÐ Ø Þ Ñ Ö Ð Ø ¾¼¼ º Ø Ú Þ ÎÁË ½½¼ Ð ÓÞ Þ ÐÐ ØÓØØ Ð Ò Ö Ì Ñ A B s t X Ú Þ Ø Þ Ñ Ø ÐÑ Ð Ø ÁÁº Å Ò ÓÖÑ Ø Ù ¹ ÐÐ Ø Þ Ñ Ö Ð Ø ¾¼¼ º Ø Ú Þ ÎÁË ½½¼ Ð ÓÞ Þ ÐÐ ØÓØØ Ð Ò Ö Ì Ñ A B s t X Ì ÖØ ÐÓÑ ÝÞ Ú Þ Ø ¾ ½ºº ÙÐ Ö À Ñ ÐØÓÒ Ö Ó ¾ºº À Ð Þ Ø ÓÐÝ ÑÓ ºº Å Ò Ö Ø Ø Ð ºº È ÖÓ Ö Ó Ô ÖÓ Ø

Részletesebben

Pr(X 1 = j X 0 = i) Pr(T 1 < t X 0 = i) Pr(X 1 = j, T 1 < t X 0 = i) = Pr(X 1 = j X 0 = i) = [( D 0 ) 1 D 1 ] ij. Pr(T 1 < t X 0 = i) = [e D0t 1I] i

Pr(X 1 = j X 0 = i) Pr(T 1 < t X 0 = i) Pr(X 1 = j, T 1 < t X 0 = i) = Pr(X 1 = j X 0 = i) = [( D 0 ) 1 D 1 ] ij. Pr(T 1 < t X 0 = i) = [e D0t 1I] i Ì Å ÃÁË ÇÄ ýäýë ÁÁº Ô Ð ÓÖÓ Ñ ÓÐ Ì Ð Å Ð Ù Ô Ø Åò Þ Ý Ø Ñ ¾¼¼ º ¾¼¼¾º  Һ º Ì Ñ ÞÓÐ Ð Ú Þ ½» Ý D 0, D 1 Ñ ØÖ ÜÓ Ð ÓØØ Å È Ø Ò X 0, X 1,... Þ Ö Þ ÙØ Ò Þ Ñ T 0 = 0, T 1,... Þ Ö Þ Ô ÐÐ Ò Ø º Ñ Ú Ø Þ Ú Ð

Részletesebben

ÅÇ ÊÆ ÃÇ ÅÇÄ Á Ë ý Á Ë ÆÌÊÇÈÁÃÍË ÄÎ Ã Ó ØÓÖ ÖØ Þ ÖØ À Ø ÓÐØ Ì Ñ Ú Þ Ø Öº Ð Þ Ð Ý Ø Ñ Ø Ò Ö ÄÌ ÌÌÃ ÐÐ Þ Ø Ì Ò Þ Þ Ó ØÓÖ ÓÐ Á ÓÐ Ú Þ Ø Öº ÀÓÖÚ Ø Ð Ò Ý Ø

ÅÇ ÊÆ ÃÇ ÅÇÄ Á Ë ý Á Ë ÆÌÊÇÈÁÃÍË ÄÎ Ã Ó ØÓÖ ÖØ Þ ÖØ À Ø ÓÐØ Ì Ñ Ú Þ Ø Öº Ð Þ Ð Ý Ø Ñ Ø Ò Ö ÄÌ ÌÌà ÐÐ Þ Ø Ì Ò Þ Þ Ó ØÓÖ ÓÐ Á ÓÐ Ú Þ Ø Öº ÀÓÖÚ Ø Ð Ò Ý Ø ÅÙÒ Ñ Ø Þ Ö Ø ØØ Ô ÖÓÑÒ Þ Ð ÑÒ ÒÐÓѺ Þ Ö Ø Á Ø Ò Ø ÓÐØ ½ ¾µ ÅÇ ÊÆ ÃÇ ÅÇÄ Á Ë ý Á Ë ÆÌÊÇÈÁÃÍË ÄÎ Ã Ó ØÓÖ ÖØ Þ ÖØ À Ø ÓÐØ Ì Ñ Ú Þ Ø Öº Ð Þ Ð Ý Ø Ñ Ø Ò Ö ÄÌ ÌÌà ÐÐ Þ Ø Ì Ò Þ Þ Ó ØÓÖ ÓÐ Á ÓÐ Ú Þ Ø Öº ÀÓÖÚ

Részletesebben

g IJ (G) = η IJ, Γ I JK(G) = 0 ½º½µ

g IJ (G) = η IJ, Γ I JK(G) = 0 ½º½µ ȹ ÖÐ Ø ÐÚ Ð Ô ÀÖ È Ø Ö ½º ÓÖ Ñ ÒØ Ó ÐÑ º Þ ÐØ Ð ÒÓ Ö Ð Ø Ú Ø ÐÑ Ð Ø ÑòÚ Ð Þ ØØ Ý Ø ÖØ Ú Ò Ò Ó Ý ÓÖ Ñ ÒØ Ø Ö ÐØ Ø Ö Ò ÓÖ ÔÖ Ø Ø Ñ Ö Øò Ñ Þ ÑÑ ØÖ Ù ÖÓ Þ ÔÓ µ Ô Ò Ò Þ Ö ÒÝ Ø ÖÓÞÞ Ñ ½ º Þ ¹ Ö ÒØ Ý òö ÐÓ Ð

Részletesebben