AZ EGYENSÚLYI ÁLLANDÓ HMÉRSÉKLET ÉS NYOMÁSFÜGGÉSE
|
|
- Ádám Horváth
- 8 évvel ezelőtt
- Látták:
Átírás
1 AZ EGYENSÚLYI ÁLLANDÓ HMÉRSÉLE ÉS NYOMÁSFÜGGÉSE A mésékletfüggés Egyensúlybn: zz G + R ln egyensúlyi G + R ln Átlkítv: ln G R A stndd ekció szbdentli kifejezését sználv ideális gázok: ln R µ vgy áltlábn ln R µ Az egyenletek méséklet szeinti diffeenciálásávl jutunk következ egyenletez: ln µ R A következkben ezzel z áltlános egyenlettel dolgozunk mjd s tágylásb temészetesen beleétjük z ideális gázok esetét is vlmint z összes olyn esetet ol stndd kémii otenciál vlmilyen iotetikus állot vontkozik! III/
2 III/ Ezek szeint µ ciális diffeenciálánydos d infomációt z egyensúlyi állndó méséklet függésél Hsználv ánydosok vontkozó diffeenciálási szbályokt: µ µ µ Most sználjuk következ jól ismet összefüggést: s µ Ebben kifejezésben kis bets szimbólum ciális moláis mennyiséget jelenti míg csillg z ktuális stndd állot jelölésée szolgál emészetesen ez legtöbbszö tiszt állot jelölésée szolgál de elfodult ogy ideálisn íg elegy tuljdonsággl endelkez tiszt nygot vgy egységnyi mollitású ideális elegyet jelent! Helyettesítsük be kifejezésünket z oldl tetején láttó diffeenciálánydosb s µ µ mjd sználjuk szbdentli definiáló egyenletébl levezetet s µ egyenletet µ elyée: s s s s + µ
3 III/3 Így z egyensúlyi állndó méséklet függését leíó R ln µ egyenlet következ lkot ölti: R R ln Hsználv stndd ekcióentli kifejezését: H mésékletfüggést kifejez végs lk: ln R H A kifejezést vn t Hoff-egyenletnek nevezik A mésékletfüggést teát stndd ekció ngyság és eljele szbj meg eát H > kko ln > H edig H < kko ln < Ez nem más mint Le Ctelie-elv egyik esete!
4 ÁRA: RM 75 ÁRA: RM 76 III/4
5 A kifejezést integálv feltételezve ogy stndd ekcióentli nem függ méséklettl: ln H R + Vegyük észe! Ez egy egyenes egyenlete! Egysze esete: C ln ln + H R Így kíséletileg is megtáoztó stndd ekcióentli viszonylg szk mésékletttománybn ÁRA RM 76b Mi teend kko H függ méséklettl? ln R III/5
6 III/6 Hsználjuk icoff- egyenletet! + d c R ln Átlkítv: d c R R + ln mjd d c R R H + ln Ezt kifejezést kell kiintegálni! Az els tg dj lineáis tgot z ln-/ összefüggésben második tg z egyenestl vló eltéését felels önnyebb dolgunk ismejük kcitások méséklet szeinti sofejtését
7 A nyomásfüggés iindulási ontunk z elz ész ln µ R egyenlete Az egyenlet nyomás szeinti diffeenciálásávl jutunk következ egyenletez: ln µ R Most sználjuk következ jól ismet összefüggést: µ v Ebben kifejezésben v szimbólum ciális moláis téfogtot jelenti míg csillg z ktuális stndd állot jelölésée szolgál emészetesen ez legtöbbszö tiszt állot jelölésée szolgál de elfodult ogy íg elegy tuljdonsággl endelkez tiszt nygot vgy egységnyi mollitású ideális elegyet jelent! Helyettesítsük be kifejezésünket nyomásfüggést leíó egyenletbe: ln v R Hsználv stndd ekciótéfogt-változás kifejezését: nyomásfüggést kifejez végs lk: V v ln III/7 V R
8 A nyomásfüggést teát stndd téfogtváltozás ngyság és eljele szbj meg eát H edig V > kko V < kko ln ln < > Ez nem más mint Le Ctelie-elv egy második esete! ÁRA: RM 77 Ezzel zonbn vigyázzunk! Ez csk kko igz ekcióbn észt vev komonensek stndd kémii otenciálji függenek -tl H IUPAC szeinti definíciót tekintjük kko egyetlen temodinmiki egyensúlyi állndó sem függ nyomástól! Gázekcióknál ezt definíciót sználtuk így egyételm ogy sem sem f nem függ nyomástól Azonbn ideális gázok sználtnánk x -et mi má függet nyomástól! Ugynez igz kondenzált fázisbn lejátszódó ekciók vgy eteogén ekciók! III/8
9 Mindzonáltl kondenzált fázisú ekcióknál z egyensúlyi állndó nyomásfüggése endkívül csekély Egy gykolti éld: mmóniszintézis méséklet- és nyomásfüggése ÁRA: RM 78 x nyomásfügg s bá nem z ciális nyomások eltolódnk bb z iányb mely Le Ctelie elvvel konzisztens A fenti áb csk szbdentliát muttj nyomás vgy méséklet függvényében de nem mond semmit stndd ekció szbdentliávl kcsoltbn! III/9
10 AZ EGYENSÚLYI ÁLLANDÓ MÉRÉSE Egyensúlyi összetétel méése Adott és mellett z egyensúly beállás után minden ekciótne ktivitásánk összetételi változójánk ciális nyomásánk megméése egyensúlyi Glváncell elektomotoos eejének megtáozásávl Glváncellábn lejátszódó kémii ekciók áltl végezet mximális egyéb munk megegyezik ekció szbdentli-változásávl Pontosbbn: G zfe cell ol z glváncell cellekciójánk töltésszám változás F Fdy állndó míg E cell glváncellábn lejátszódó elektódekció otenciálj Má most ele jelezzük ogy E cell közelítleg megegyezik glváncell elektomotoos eejével zz E E A ekciótneek stndd állot esetén: cell MF G zfe cell G megtáozás egy má ismet egyenlettel viszonylg egysze: R ln egyensúlyi + R ln illntnyi G G -ból z egyensúlyi állndó könnyen számoltó Mivel s ebbl G R ln zfe R ln cell zf ex E cell R III/
11 EGYENSÚLYI ÁLLANDÓ SZÁMÍÁSA Számítások temodinmiki dtokból Szükséges dtok: A ekcióbn észt vev nygok vontkozó - stndd entliák - stndd entóiák Emlékezzünk: Az entliákt egy tetszleges zéus szintez viszonyítjuk: stndd nyomáson és egy viszonyítási mésékleten leggykbbn 985 mésékleten z ezen köülmények között stbil módosultú elemek kézdési entliáj stndd kézdési entliáj null Az elemek nem állndó módosultánk entliáj egyenl két módosult átlkulási jével 3 A vegyületek stndd entliáj egyenl stndd kézdési entliávl 4 A stndd entóiák kiszámításábn D III ftétele nyújt segítséget! A következ összefüggéseket edig má ismejük: H H + C III/ d + V V C V S S + d Az áltlunk vizsgált ekcióbn észt vev komonensek stndd kézdési entliái z elemek zéus szintjéez viszonyított stndd entliák teát méet és temészetesen számíttó dtok Az entói számolásánál nem szbd megfeledkezni fázisátlkulás entói ozzájáulásáól sem! Ebbl számíttó z összes komonens stndd entliáj és entóiáj H S mjd ezen mennyiségek sztöciometii számokkl súlyozott összege megdj H S s végül G H S mennyiségeket A stndd temodinmiki dtok áltlábn kézikönyvekben megtláltók d d
12 Péld: Snoeyink VL nd D Jenkins 98 Wte Cemisty Jon Wiley & Sons New Yok III/
13 Az ilyen fjt tábláztokból kiszámoltó éldául z áltlunk má vizsgált ekció stndd szbdentli-változás is! Vizsgáljuk meg következ ekciót melyben kbmid kézdik vizes közegben! CO g + NH 3 g CONH q + H O l 98 mésékleten és b nyomáson z lábbi stndd szbdentli étékek ismetek kj/mol: CO g -53 NH 3 g -95 CONH q ideális mol/kg -64 mollitás H O l -355 Az dtokból egysze sztöciometii számokkl súlyozott összegzést végejtv G -77 kj/mol A számíttó egyensúlyi állndó G R ln : γ γ γ CO CO mkbmid / m f HOxHO CO / γ / NH 3 NH 3 f H / O mkbmid m xho γ NH3 / / kbmid kbmid γ CO NH 3 mxf Megjegyzés: lcsony nyomásokon íg kbmid-oldtbn jó közelítést dt mkbmid / m mxf / / kifejezés CO NH 3 III/3
14 Az egyensúlyi állndó számítás tetszleges mésékleten dott nyomáson A stndd temodinmiki dtok mésékletfüggésébl entli entói A vn t Hoff egyenlet integálásávl z egyensúlyi állndót ismejük egy dott -n étékét egy másik méséklete is ki tudjuk számítni Mindkét esetben szükségesek z állndó nyomáson vett esetleg mésékletfügg kcitások Lásd koábbi kifejezéseket! Péld: Integálás után: ln H R + C ln ln H R Az egyensúlyi állndó számítás összetett ekciókbn Összetett ekciókbn két vgy több észekció összege dj buttó ekciót kko észekciók stndd ekció szbdentliáink összege dj buttó ekció stndd ekció szbdentliáját Azz: G + G + G + I II III G tot Ez z összefüggés mibl következik? Az egyes észléések egyensúlyi állndóink beelyettesítésével: R ln I R ln II R ln III R ln tot vgy III/4
15 I II III R ln tot R ln s ebbl I II III tot Eedményünk szeint észléések egyensúlyi állndóink szozt dj buttó ekció egyensúlyi állndóját! Péld: szén égése két léésben szén-monoxidon keesztül szén-dioxiddá Vigyázt! Hsonló tás vn egy egyensúlyi ekció sztöciometiáj megváltozttásánk Például egy ekcióegyenlet sztöciometii számink kettvel tötén szozás stndd ekció szbdentli kettvel tötén szozását eedményezi mi viszont z egyensúlyi állndó négyzete emelését jelenti! Ugynezen z elven z eed ekció két vgy több észekció különbsége kko z egyensúlyi állndók ánydos dj z eed ekció egyensúlyi állndóját! Péld: egy egysze oxigéncsee ézoxid edukciój szénnel Cu + ½ O CuO C + ½ O CO G I G II CuO + C Cu +CO G II G I G tot A buttó ekció egyensúlyi állndójá: II I tot Néány további észletét l disszociációfok és egyensúlyi állndó kcsolt ld Riedel M jegyzetét! III/5
Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző
Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI III.
TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI III. OLDTOK EGYENSÚLYI: KORLÁTOZOTT OLDÓDÁS z elegyedés oldódás nem feltétlenül korlát, zz nem megy végbe teljes összetétel-trtománybn! H z oldódás korlátozott, kkor
Ez a kifejezés ekvivalens a termokémia részben már megismert standard reakció szabadentalpiával! A termodinamikai egyensúlyi állandó: egyensúlyi
ÜLÖNÖZ REACIÓ EGYENSÚLYI ÁLLANDÓ Egyensúlybn: r G + RT ln Az egyenlet els tgj különböz ódokon írhtó el stndrd állotok egválsztásától üggen Ezek szerint ásodik tg s így z állndó értéke is változik h különböz
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!
TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai
Numerikus módszerek 2.
Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS
REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet
A torokgerendás fedélszerkezet erőjátékáról 1. rész
A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk
Ellenállás mérés hídmódszerrel
1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint
IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)
Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér
Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható
émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa
III. Differenciálszámítás
III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
10. Kémiai egyensúlyok
1. émii egyensúlyok 1.1. ktivitások és stndrd állotok termodinmiki számításokbn stndrd állot rögzítése lvető fontosságú, hiszen lvetően meghtározz kémii otenciálok értékét. következőben különböző kémii
Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
Összetettebb feladatok
A szinusztétel és koszinusztétel lklmzás Összetettebb feldtok 055..,7 m háom kö közötti síkidom teülete. Kössük össze köök középpontjit, így kpunk egy háomszöget. Legyen m, b m, 5 m. Számítsuk ki koszinusztétellel
Összeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
5.2. ábra. A mágnestűk a rúdmágnes erőterében az erővonalak irányát mutatják.
8 5. Néány közelítő megoldás geometrii szemléltetése A dy dx = y2 x 2 2xy y 2 x 2 +2xy 5.1. ábr. differenciálegyenlet lpján rjzoltó iránymező. 5.2. ábr. A mágnestűk rúdmágnes erőterében z erővonlk irányát
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,
Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt
Mátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
VIII. Szélsőérték számítás
Foglmk VIII. Szélsőéték számítás Az elem úton meghtáozhtó függvények jellemző: () ételmezés ttomány és étékkészlet megdás (b) zéushelyek (hol y ) és y tengelypontok (hol ) meghtáozás (c) folytonosság vzsgált
Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)
Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit
2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:
. Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek
Megint a szíjhajtásról
Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.
2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
Sűrűségmérés. 1. Szilárd test sűrűségének mérése
Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél
5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
4. Hatványozás, gyökvonás
I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)
6. Termodinamikai egyensúlyok és a folyamatok iránya
6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer
finanszírozza más városnak, tehát ezt máshonnan finanszírozni nem lehet.
19 finnszírozz más városnk, tehát ezt máshonnn finnszírozni lehet. Amennyiben z mortizációs költség szükségessé váló krbntrtási munkár elég, s melynek forrás csk ez, bbn z esetben z önkormányzt fizeti
TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA
9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos
A torokgerendás fedélszerkezet erőjátékáról 2. rész
A torokgerendás fedélszerkezet erőjátékáról rész Az részben ddig jutottunk, hogy z A ) terhelési esetre vezettünk le képleteket Most további, gykorltilg is fontos esetek következnek B ) terhelési eset:
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0
Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (
9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R
Arányosság. törtszámot az a és a b szám arányának, egyszer en aránynak nevezzük.
Arányosság Az törtszámot z és szám rányánk, egyszeren ránynk nevezzük. Az rány értéke zt ejezi ki, hogy z szám hányszor ngyo számnál, illetve szám hányszor kise z számnál. Az rányokkl végezhet két legontos
Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)
I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
Az előadás vázlata:
Az előadás vázlata: I. emokémiai egyenletek. A eakcióhő temodinamikai definíciója. II. A standad állapot. Standad képződési entalpia. III. Hess-tétel. IV. Reakcióentalpia számítása képződési entalpia (képződéshő)
Néhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
Térbeli pont helyzetének és elmozdulásának meghatározásáról - I.
Térbeli pont helyzetének és elmozdulásánk meghtározásáról - I Egy korábbi dolgoztunkbn melynek címe: Hely és elmozdulás - meghtározás távolságméréssel már volt szó címbeli témáról Ott térbeli mozgást végző
2. NUMERIKUS INTEGRÁLÁS
numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.
Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137
ELEKTROTECHNIKA-ELEKTRONIKA Kovács Judit A LINEÁRIS EGYENLETRENDSZEREK GAUSS-FÉLE ELIMINÁCIÓVAL TÖRTÉNŐ MEGOLDÁSÁNAK SZEREPE A VILLAMOSMÉRNÖK SZAKOS HALLGATÓK MATEMATIKA OKTATÁSÁBAN ON THE ROLE OF GAUSSIAN
Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.
Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L
Els gyakorlat. vagy más jelöléssel
Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,
Gyökvonás. Hatvány, gyök, logaritmus áttekintés
Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása
Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3 októbe 7 technológia és a költségek dualitása oábban beláttuk az alábbi összefüggéseket: a) Ha a munka hatáteméke nő akko a hatáköltség csökken
FELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
A Hardy-Weinberg egyensúly
Hrdy-Weinerg egyensúly Evolúciót úgy definiáltuk, hogy ouláción z llélgykoriságok megváltozás. Egy ideális ouláció olyn, hogy n evolúció nincs. Ismérvei megmuttják, hogy mely folymtos vezethetnek evolúcióhoz.
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a
Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest
Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W G v,,, G v,,, z ϕ αzf G G, ( ) ϕ zf α G G 1, ϕ αzf G
BIOKOMPATIBILIS ANYAGOK.
1 BIOKOMPATIBILIS ANYAGOK. 1Bevezetés. Biokomptbilis nygok különböző funkcionális testrészek pótlásár ill. plsztiki célokt szolgáló lkos, meghtározott méretű, nygok ill. eszközök, melyek trtósn vgy meghtározott
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
f (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
A lecke célja... A vállalati gazdálkodás célja hét A monopolerő hatása a kínálati magatartásra
04..07. -3. hét A monopolerő htás kínálti mgtrtásr A tiszt monopólium htárbevétele és mximális profitot biztosító kibocsátás. Hszonkulcs és monopolerő. A monopolerő jóléti htási. Természetes monopólium.
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK
we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így
Z600 Series Color Jetprinter
Z600 Series Color Jetprinter Hsználti útmuttó Windows rendszerhez Az üzeme helyezéssel kpcsoltos hielhárítás Megoldás gykori üzeme helyezési prolémákr. A nyomttó áttekintése Tudnivlók nyomttó részegységeiről
Minta feladatsor I. rész
Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!
Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk
Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem
Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W ,, G G v,, v, z, G G, αzf F ϕ, G G 1 ( α ) zf ϕ zf,,
17. Szélsőérték-feladatok megoldása elemi úton
7. Szélsőéték-feldtok egoldás elei úton I. Eléleti összefoglló Függvény szélsőétéke Definíció: Az f: A B függvénynek x A helyen (bszolút) xiu vn, h inden x A esetén f(x) f(x ).A függvény (bszolút) xiu
Kémiai alapismeretek 11. hét
Kémiai alapismeretek 11. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. május 3. 1/8 2009/2010 II. félév, Horváth Attila c Elektród: Fémes
K=1, tiszta anyagokról van szó. Példa: víz, széndioxid. Jelöljük a komponenst A-val.
EGYKOMPONENS RENDSZEREK FÁZISEGYENSÚLYA FÁZISOK STABILITÁSA: A FÁZISDIAGRAMOK K1, tiszta anyagokról van szó Példa: víz, széndioxid Jelöljük a komonenst A-val Legyen jelen egy ázis Hogyan változik az A
Az integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
RB 6000 Good/Best. Üzemeltetési útmutató magyar. 1.778-211 RB 6312 Good 1.778-411 RB 6314 Good 1.778-511 RB 6315 Good 1.778-611 RB 6316 Good
mgyr 1.778-211 RB 6312 Good 1.778-411 RB 6314 Good 1.778-511 RB 6315 Good 1.778-611 RB 6316 Good 1.778-221 RB 6312 Best 1.778-421 RB 6314 Best 1.778-521 RB 6315 Best 1.778-621 RB 6316 Best www.krcher.com
MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok
MATEMATIKA 9. osztály I. HALMAZOK Számegyenesek, intervllumok. Töltsd ki tábláztot! Minden sorbn egy-egy intervllum háromféle megdás szerepeljen!. Add meg fenti módon háromféleképpen következő intervllumokt!
Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása
Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0
VB NÉGYZÖG KEREZTETZET TERVEZÉE HAJLÍTÁRA Vseton keresztmetszet tervezése történet: kötött tervezéssel: keresztmetszet nygi és méretei ottk, megtervezenő mértékó nyomtékoz szükséges célmennyiség, sz tervezéssel:
Az ideális Fermi-gáz termodinamikai mennyiségei
Az ideális Fermi-gáz termodinamikai mennyiségei Kiegészítés III. éves BSc fizikusok számára Cserti József Eötvös Loránd udományegyetem, Komplex Rendszerek Fizikája anszék 2017. március 1. Néhány alapvető
IZOTÓPHÍGÍTÁSOS ANALÍZIS
IZOTÓPHÍGÍTÁSOS ANALÍZIS Az zotóphígításos elezés ódszerek ndegyk változtánk z lényege, hogy rdozotópr nézve zárt rendszerben z összktvtás (z dott zotóp ennysége) ne változk zzl, hogy stbl zotóp ennységét
A BUX-index alakulása a 4. héten ( )
A BUX-index lkulás A BUX-index lkulás 2010 jnuár 30. Flg 0 Értékelés kiválsztás Még Givenincs A BUX-index értékelve lkulás Give A BUX-index lkulás Give A BUX-index lkulás Mérték Give A BUX-index lkulás
Bio-Optica Milano S.p.a. Papanicolaou Harris Hematoxilin
25 89 12 16 SZAKASZ. Az Tűzvédelmi Fiziki Ökológii Egyéb veszély expozíció és információk. kémii meghtározás. intézkedések. ellenőrzése/egyéni tuljdonságok.... / >>...... / >> / >> védelem.... / >>...
Radioaktív nyomjelzés a fizikai kémiában
Rdioktív nyojelzés fiziki kéiábn Rdioktív nyojelzés fiziki kéiábn Oldékonyság eghtározás Hevesy: PbS oldékonyságánk eghtározás Pb ( NO 3 ) 0 PbS fjlgos ktivitás ugynnnyi szilárd ill. oldott állpotbn: /=áll.
Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.
01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj
Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
SCHWARTZ 2009 Emlékverseny A TRIÓDA díj-ért kitűzött feladat megoldása ADY Endre Líceum Nagyvárad, Románia 2009. november 7.
SCHWARTZ 009 Emlékveseny A TRIÓA díj-ét kitűzött feldt megoldás AY Ende Líceum Ngyvád, Románi 009. novembe 7. Az elekton fjlgos töltésének meghtáozás mgneton módszeel A szező áltl jánlott teljes megoldás,
0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha
Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α
Általános Kémia Gyakorlat II. zárthelyi október 10. A1
2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +
GAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z
Szemináriumi feladatok megoldása (kiegészítés) I. félév
Szemináriumi feldtok megoldás (kiegészítés) I. félév VI. Szeminárium 1. Frncis kísérlet (1925). Az ionos mechnizmus indirekt zzl támszthtó lá, hogy sem mgs hőmérsékletre, sem ultriboly fényre nincs szükség
Kerületi Közoktatási Esélyegyenlőségi Program Felülvizsgálata Budapest Főváros IX. Kerület Ferencváros Önkormányzata 2011.
Kerületi Közokttási Esélyegyenlőségi Progrm Felülvizsgált Budpest Főváros IX. Kerület Ferencváros Önkormányzt 2011. A felülvizsgált 2010-ben z OKM esélyegyenlőségi szkértője áltl ellenjegyzett és z önkormányzt
MAGYAR. A motor és a tápegység közötti kéteres kábel vezetékelésének utasításai. m mm 2. 0-20 2 x 0,75 0-50 2 x 1,50
A motor és tápegység közötti kéteres káel vezetékelésének utsítási Vezesse káelt tápegységtől z lkhoz. Megjegyzés: A megfelelő káelméreteket táláztn tlálj. A motor cstlkozttás: Lásd z dott termékkel kpott
Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium
űszki folymtok közgzdsági elemzése Elődásvázlt 3 októer onoólium A tökéletesen versenyző válllt számár ici ár dottság, így teljes evétele termékmennyiség esetén TR () = ínálti monoólium: egyetlen termelő
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Mtemtik középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivlók Formi előírások:
tud vinni, tehát nem kényszeríthetjük építsen magának, hogy a mozsárkályhát Abból indulnék ki, hogy nem elvétett gondolat-e a fűtőmű
lterntívát nem rr, kéményt bete brikettre. 85 tud vinni, tehát nem kényszeríthetjük építsen mgánk, mozsárkályhát T ó t h bból indulnék ki, nem elvétett gondolte fűtőmű megvlósítás, mert kb. 1 milliárd
Termokémia, termodinamika
Termokémia, termodinamika Szalai István ELTE Kémiai Intézet 1/46 Termodinamika A termodinamika a természetben végbemenő folyamatok energetikai leírásával foglalkozik.,,van egy tény ha úgy tetszik törvény,
q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)
ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább
1. Laboratóriumi gyakorlat ELMÉLETI ALAPFOGALMAK
. Lortóriumi gykorlt LMÉLTI ALAPFOGALMAK. Műveleti erősítők A műveleti erősítőket feszültség erősítésre, összehsonlításr illetve különöző mtemtiki műveletek elvégzésére hsználják (összedás, kivonás, deriválás,
VB-EC2012 program rövid szakmai ismertetése
VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
DIFFÚZIÓS KÖDKAMRA MUTATNI A LÁTHATATLANT Győrfi Tamás Eötvös József Főiskola, Baja Raics Péter Debreceni Egyetem, Kísérleti Fizikai Tanszék
DIFFÚZIÓS KÖDKAMRA MUTATNI A LÁTHATATLANT Győrfi Tmás Eötvös József Főiskol, Bj Rics Péter Debreceni Egyetem, Kísérleti Fiziki Tnszék A rdioktivitás és vele járó ionizáló sugárzások természet részét képezik.
Formális nyelvek. Aszalós László, Mihálydeák Tamás. Számítógéptudományi Tanszék. December 6, 2017
Formális nyelvek Aszlós László, Mihálydeák Tmás Számítógéptudományi Tnszék Deember 6, 2017 Aszlós, Mihálydeák Formális nyelvek Deember 6, 2017 1 / 17 Problémfelvetés Az informtikábn ngyon gykori feldt