a vevőbe beérkező céltárgyról reflektált jel zaj nélkül. Az additív zajt (teljes rendszerre vonatkozik) S ( ω)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "a vevőbe beérkező céltárgyról reflektált jel zaj nélkül. Az additív zajt (teljes rendszerre vonatkozik) S ( ω)"

Átírás

1 szempojából az illeszkedés feléele a döés pillaaába előálló leheséges maximum jel-zaj viszoy. A jel-zaj viszoy egyará meghaározza a deekció (deekciós és vaklárma valószíűség) és a mérés (mérési poosság) miőségé. 4. Ismer jel felismerése zajba Modell Tekisük a 4-. ábra modelljé, ahol f ( ) a vevőbe beérkező célárgyról reflekál jel zaj élkül. Az addiív zaj (eljes redszerre voakozik) S eljesíméy sűrűség spekrummal jellemezzük. A vevő lieáris jelfeldolgozásá a vevőszűrő ω y jele a deekció végzi, melyek ávieli karakeriszikája. A szűrő kimeő és a mérés alapja. A deekció és a mérés opimális megvalósíásáak előfeléele az alapjául szolgáló jel SR (Sigal o oise Raio) érékéek a maximalizálása. Az SR magyarul: Jel-zaj viszoy, de a magyar szakirodalom is az SR rövidíés szoka alkalmazi. f( ), ( ω ) + x( ) h( ), ( ω ) y( ), Y R ( τ), S 4-. ábra, Vevő modell idő- és frekveciaaromáyba eladauk ehá aak a ávieli karakeriszikáak a megkeresése, amely alkalmazásával a döés pillaaába maximális lesz a jel-zaj viszoy. Írjuk fel a kimeei jele időaromáyba: y ( ) = x( ) h 79

2 ( ) = f ( ) x + y ( ) = [ f ( ) + ( ) ] h( ) Képleeikbe a * a kovolúció jelei. A eljesség kedvéér a kovolúciós iegrál: f g = f τ g τ dτ = g τ f τ dτ. A kovolúciós iegrál a realizálhaó redszerek kauzaliása mia egyszerűbb alako vesz fel: y( ) = f ( ) h( ) = h( τ) f ( τ) dτ. Levezeésük sorá a ovábbiakba em fogjuk haszáljuk a kovolúciós iegrál. Eek az oka egyrész ehézkes mivola, másrész pedig a redszerek ávielé álalába frekveciaaromáyba szokás jellemezi a ávieli karakeriszikával. A zaj időbeli jeléek jelölésére ( ) - válaszouk. Ez egy egyszerűsíe jelölés, ugyais a zaj szochaszikus folyama, melyek egyik elerjed jelölésmódja: ( ξ,) A szochaszikus folyama egy időfüggvéy halmaz, ami aralmazza az összes leheséges időfüggvéy. Amikor megfigyelük egy kokré zajfolyamao, akkor a szochaszikus folyama egy kokré miafüggvéyé figyeljük meg, eek jelölése: ( ξ ), k A jelölés a k. miafüggvéy muaja. Időaromáybeli képleeikbe ez jelöljük egyszerűsíe formába ( ) -vel.! = ( ξ ), k 8

3 Térjük vissza a kimeei jel időaromáybeli felírására. A kimeei jele bosuk fel csak a jelből és csak a zajból származó agokra: y s y ( ) = f ( ) h ( ) = h Mivel a zaj szochaszikus folyama, ezér realizációjáak csak saiszikus jellemzői ekihejük ismerek. A zajról felesszük, hogy ergodikus és legalább gyegé sacioer. Az ergodiciás az jelei, hogy ( ξ,) szochaszikus folyama halmaz és időálagai megegyezek. A gyegé sacioariás jeleése: ( ξ,) folyama első és másodredű álagai időfüggeleek. Az elsőredű álag a folyama várhaó éréke, a másodredű álag pedig az álageljesíméye. Várhaó érék: { ( k )} η= E ξ, A Gauss zaj ergódikus, ezér jelölésüke egyszerűsíjük: ( ξ,) ( ) η = E{ ( ) } ovábbá a gyegé sacioariás is eljesül rá, így felírhajuk az időfüggele auokorrelációs függvéy: R τ τ τ = E + Az auókorrelációs függvéy a helye a folyama álageljesíméyé adja: R =. avg R τ auokorrelációs függvéy ourier raszformálja a folyama eljesíméy spekruma, ovábbiakba SD (ower Specral Desiy), jelölése pedig: S ( ω ). 8

4 R ( τ) S ( ω ) A SD dimeziója: S eloszlásá jellemzi. W ω = z, vagyis a zaj eljesíméyéek spekrális eladauk a jel-zaj viszoy, a döés pillaaába öréő maximalizálása a ( ω ) szűrő megfelelő megválaszásával. A szélsőérék problémá célszerűe frekvecia aromáyba oldjuk meg. A zaj álageljesíméye a szűrő bemeeé: i = S A zaj eljesíméyéek várhaó éréke a szűrő kimeeé: = S A kimeei jel pillaayi ampliúdója a pillaaba: y f j = ω e és ebből a pillaayi eljesíméy a pillaaba: S y = j = ω f e π végül a kimeei jel-zaj viszoy: 8

5 S = S e jω Eek a kifejezések kell a maximumá keresi a szűrő ávieli karakeriszika függvéyébe. Max S Vezessük be a kövekező segédfüggvéyeke: ω = ˆ S e jω S =ˆ Ekkor a jel-zaj viszoyra voakozó egyeleük a kövekezőképp alakul: S = A kifejezés maximumáak megállapíásához haszáljuk fel a Cauchy Buyakovszkij Schwarz 3 egyelőlesége: 3 Az egyelőlesége Cauchy Buyakovszkij Schwarz evek fémjelzik, így eze evek eszőleges halmazáak és részhalmazaiak bármely permuációja előfordul az irodalomba. A Cauchy Buyakovszkij Schwarz egyelőleség a valós vagy komplex számes felei V euklideszi vekorér eszőleges x és y eleméek <x,y> skaláris szorzaa abszolú érékéek felső becslésére szolgál. 83

6 az egyelőség akkor és csak akkor eljesül, ha ω = k. Ez figyelembe véve áalakíhajuk egyelőleségüke egyelőséggé α segéd kosas bevezeésével. α α = helyeesísük ez vissza a maximalizáladó egyeleükbe: S α = majd egyszerűsísük: S α = fei egyele a maximumo α = esebe veszi fel. Max S = ( ω ) eredei kifejezésé visszahelyeesíve: 84

7 Max S = S Az opimum szűrőre az α = = ω k megköésből kövekezeheük és visszahelyeesíve: eredei kifejezései op = k S e jω 4. Opimális szűrő fehér zajba ehér zaj eseébe S ( ω ) =. Az opimális szűrő ávieli karakeriszikája: op k e j ω ω = ω a jel-zaj viszoy maximuma pedig = S S Max = d = ω ω ω π E S Max = E 85

8 ahol E a jel eergiája. Megállapíhajuk, hogy fehér zaj eseébe a maximális jel-zaj viszoy em függ a moduláció jellegéől, csak a kisugárzo jel eergiájáól. 4.3 Illesze szűrő - korrelációs vevő op k e j ω ω = ω legye k = ugyaez időaromáyba: h op ( ) = f ( ) Mivel az opimális vevő ávieli karakeriszikája és súlyfüggvéye illeszkedik az ω szűrő illesze szűrőek evezzük. eredei jelhez, ezér op A 4-. ábra az illesze szűrő muaja frekvecia- és időaromáyba. 4-. ábra, Korrelációs vevő A szűrő időaromáybeli kimeee a jel auokorrelációs függvéye idővel elolva. Ez magyarázza a korrelációs vevő elevezés. Vizsgáljuk meg, milye aromáyba mozogha. 86

9 f a τ R b τ ( ) R c τ τ 4-3. ábra, Vevő korrelációs kimeee A 4-3. ábra /a részébe az f ( ) jel láhaó, ami mos az egyszerű áekiheőség érdekébe impulzus. A 4-3. ábra /b részébe az f ( ) jel auokorrelációs függvéyé R ( ) ábrázolja. R ( ) elvileg esebe jelehee meg a szűrő kimeeé. Azoba mi az a /b részbe jól láhaó, ez esebe a szűrő kimeeé hamarabb jelee meg a válasz, mi ahogy a bemeeé a gerjeszés. Ilye válaszás eseé ehá em lee kauzális a redszer. Ado példáál a kauzaliás feléele: = τ. A 4-3. ábra /c része a = τ esee muaja. Álaláos jelalakra em lehe kisebb, mi a jel időbeli arója, ami jele esebe =τ. 87

10 f a τ b R R c + R c 4-4. ábra, Időbe elol auókorrelációs függvéy R A radaros alkalmazásál a kiado jelhez ovábbi késleleés adódik, így a c R R radar vevőszűrőjéek kimeeé az R jeleik meg, ahol a ag c c becslése jelei számukra a célárgy radiális ávolságáak mérésé (4. ábra). 4.4 Illesze szűrő kapcsolaa az impulzuskompresszióval Az impulzus kompresszió alkalmazó radarok időbe hosszú impulzus alkalmazak, ezzel bizosíják a deekcióhoz és a méréshez szükséges eergiá. Ahhoz azoba, hogy a radiális felboóképesség e romoljo, az impulzus spekrális kierjeszése szükséges. A kompressziós szűrő eze időbe és spekrálisa kierjesze impulzus yomja időbe össze. Az illesze szűrő f jelalak lehe kierjesze levezeése eljese álaláosa végezük, vagyis az spekrumú is. Az illesze szűrő az ilye jelalakok eseébe kompressziós jellege mua és ezér szokás kompressziós szűrőek is evezi. Szemléleese: a jel időbeli arójáak csökkeése szükségszerűe öveli aak ampliúdójá és így a jel-zaj viszoy, vagyis a maximális jel-zaj viszoy és a kompresszió azoos esebe valósul meg. 88

LINEÁRIS TRANSZFORMÁCIÓ

LINEÁRIS TRANSZFORMÁCIÓ 16..8. LINEÁRIS TRANSZFORMÁCIÓ (MÁTRIX) SAJÁTÉRTÉKE, SAJÁTVEKTORA BSc. Maemaika II. BGRMAHNND, BGRMAHNNC LINEÁRIS TRANSZFORMÁCIÓ Egy A: R R függvéy lieáris raszformációak evezük, ha eljesülek az alábbi

Részletesebben

Vezetéki termikus védelmi funkció

Vezetéki termikus védelmi funkció Budapes, 016. auguszus Bevezeés A vezeéki ermikus védelmi fukció alapveőe a három miavéeleze fázisáramo méri. Kiszámolja az effekív érékeke, és a hőmérsékle számíásá a fázisáramok effekív érékére alapozza.

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS SZAKCSOPORT

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS SZAKCSOPORT BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS SZAKCSOPORT MÉRNÖKI MATAMATIKA Segédle a Redszer és Paraméer Ideifikáció c.

Részletesebben

8. előadás Ultrarövid impulzusok mérése - autokorreláció

8. előadás Ultrarövid impulzusok mérése - autokorreláció Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,

Részletesebben

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI.

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. 216. okóber 7., Budapes JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. Alapfogalmak, fizikai réeg mindenki álal ismer fogalmak (hobbiból azér rákérdezheek vizsgán): jel, eljesímény,

Részletesebben

Váltakozóáramú hajtások Dr. TARNIK István 2006

Váltakozóáramú hajtások Dr. TARNIK István 2006 AUTOMATIZÁLT VILLAMOS HAJTÁSOK Válakozóáramú hajások Pollack Mihály Műszaki Kar Villamos Hálózaok Taszék Dr. TARNIK Isvá doces Válakozó áramú hajások 1. Aszikro gépek elvi felépíése. 1.1. Az aszikro gépek

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

1. Előadás: Készletezési modellek, I-II.

1. Előadás: Készletezési modellek, I-II. . Előadás: Készleezési modellek, I-II. Készleeke rendszerin azér arunk hogy, valamely szükséglee, igény kielégísünk. A szóban forgó anyag, cikk iráni igény, keresle a készle fogyásá idézi elő. Gondoskodnunk

Részletesebben

Helyettesítéses-permutációs iteratív rejtjelezők

Helyettesítéses-permutációs iteratív rejtjelezők Helyeesíéses-peruációs ieraív rejjelezők I. Shao-i elv: kofúzió/diffúzió Erős iverálhaó raszforáció előállíhaó egyszerű, köye aalizálhaó és ipleeálhaó, de öagába gyege raszforációk sokszori egyás uái alkalazásával.

Részletesebben

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik. 6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az

Részletesebben

Modellek áttekintése

Modellek áttekintése Modellek áekiése Összeállíoa: dr. Gerzso Miklós egyeemi doces PTE PMMIK Műszaki Iformaika Taszék 205.2.06. Ielliges redszerek I. PTE PMMIK Mérök iformaikus BSc szak A redszer fogalma A redszer kölcsöhaások

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Előszó. 1. Rendszertechnikai alapfogalmak.

Előszó. 1. Rendszertechnikai alapfogalmak. Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Képlékenyalakítás elméleti alapjai. Feszültségi állapot. Dr. Krállics György

Képlékenyalakítás elméleti alapjai. Feszültségi állapot. Dr. Krállics György Képlékeyalakíás elmélei alapjai Feszülségi állapo Dr. Krállics György krallics@eik.bme.hu Az előadás sorá megismerjük: A érfogai és felülei erőke, a feszülség ezor. A feszülség ezor főérékei és főiráyai;

Részletesebben

D 1: 2.a: 2.b: 3: Σ: Digitális technika felvételi feladatok szeptember J-K flip-flopokból az alábbi sorrendi hálózatot építettük.

D 1: 2.a: 2.b: 3: Σ: Digitális technika felvételi feladatok szeptember J-K flip-flopokból az alábbi sorrendi hálózatot építettük. Digiális echika felvéeli feladak 008. szepember 30. D :.a:.b: 3: Σ:. Adja meg aak a 4 bemeeő (ABCD), kimeeő (F) kmbiációs hálózaak a Karaugh áblázaá, amelyek kimeee, ha: - A és B bemeee külöbözı érékő

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása umerius módszere. emlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel Legye :[ a, b] R olyoos, a, b, és eressü az egyele egy [ a, b] -beli megoldásá. Bolzao éele: Legye olyoos a véges,

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Gazdasági és megbízhatósági elemzések

Gazdasági és megbízhatósági elemzések Budapesi Mőszaki és Gazdaságudomáyi Egyeem Gazdaság- és Társadalomudomáyi Kar Üzlei Tudomáyok Iéze Meedzsme és Vállalagazdasága Taszék Dr. Kövesi Jáos Erdei Jáos Dr. Tóh Zsuzsaa Eszer Gazdasági és megbízhaósági

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

Portfóliókezelési szolgáltatásra vonatkozó szerzıdéskötést megelızı tájékoztatás lakossági partnerbesorolású ügyfelek részére

Portfóliókezelési szolgáltatásra vonatkozó szerzıdéskötést megelızı tájékoztatás lakossági partnerbesorolású ügyfelek részére Bevezeés rfóliókezelési szlgálaásra vakzó szerzıdésköés megelızı ájékzaás lakssági parerbesrlású ügyfelek részére A 2007. évi CXXXVIII. örvéy a befekeési vállalkzáskról és az áruızsdei szlgálaókról, valami

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Síkalapok vizsgálata - az EC-7 bevezetése

Síkalapok vizsgálata - az EC-7 bevezetése Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül

Részletesebben

GYAKORLÓ FELADATOK 5. Beruházások

GYAKORLÓ FELADATOK 5. Beruházások 1. felada Egymás kölcsööse kizáró beruházások közöi válaszás. Ké külöböző ípusú gépe szerezheük be egyazo művele elvégzésére. A ké egymás kölcsööse kizáró projek pézáramlásai ($) a kövekező ábláza muaja:

Részletesebben

IFFK 2013 Budapest, 2013. augusztus 28-30. Vasúti járművek energiafogyasztásának csökkentése prediktív optimalizáció alkalmazásával

IFFK 2013 Budapest, 2013. augusztus 28-30. Vasúti járművek energiafogyasztásának csökkentése prediktív optimalizáció alkalmazásával IFFK 13 Budapes, 13. auguszus 8-3. Vasúi járművek eergiafogyaszásáak csökkeése predikív opimalizáció alkalmazásával Bécsi Tamás, Aradi Szilárd, Tarai Géza, Sághi Balázs, Cseh Aila Budapesi Műszaki és Gazdaságudomáyi

Részletesebben

Folytonosidejű időinvariáns lineáris rendszerek

Folytonosidejű időinvariáns lineáris rendszerek Folyoosdejű dővarás leárs redszerek A Folyoosdejű dővarás leárs redszerek LTI (Lear Te Ivara Syses) öbbféleképp bevezeheők. Vegyük egy ódosío Drac függvéy: Végezzük el a kövekező közelíés: És végül: ahol

Részletesebben

A sztochasztikus idősorelemzés alapjai

A sztochasztikus idősorelemzés alapjai A szochaszikus idősorelemzés alapjai Ferenci Tamás BCE, Saiszika Tanszék amas.ferenci@medsa.hu 2011. december 19. Taralomjegyzék 1. Az idősorelemzés fogalma, megközelíései 2 1.1. Az idősor fogalma...................................

Részletesebben

Aggregált termeléstervezés

Aggregált termeléstervezés Aggregál ermeléservezés Az aggregál ermeléservezés feladaa az opimális ermékszerkeze valamin a gyáráshoz felhasználhaó erőforrások opimális szinjének meghaározása. Termékek aggregálása. Erőforrások aggregálása.

Részletesebben

Statisztika II. előadás és gyakorlat 1. rész

Statisztika II. előadás és gyakorlat 1. rész Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika

Részletesebben

Több piacra épülő webáruház térbeli árversenye

Több piacra épülő webáruház térbeli árversenye Közgazdaság Szemle, LXIV. évf., 207. júus (62 629. o.) Keleme József Több pacra épülő webáruház érbel árverseye aulmáy a érbel árversey Ljese [20] álal ovábbfejlesze modelljé és aak egy olya válozaá muaja

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből

Részletesebben

Vizsgainformációk A vizsgán 2 elméleti tételt kell kidolgozni (15 pont / tétel), a példamegoldási rész 20 pont (1 nagyobb és 1 kisebb feladat), míg a

Vizsgainformációk A vizsgán 2 elméleti tételt kell kidolgozni (15 pont / tétel), a példamegoldási rész 20 pont (1 nagyobb és 1 kisebb feladat), míg a Vizsgaiformációk A vizsgá elmélei éel kell kidolgozi (5 po / éel), a példamegoldási rész 0 po ( agyobb és kisebb felada), míg a godolkodaó kérdés 0 po. A kiado kidolgozo éelek csak egy javasol megoldás

Részletesebben

INFOKOMMUNIKÁCIÓ távoktatási segédletek-

INFOKOMMUNIKÁCIÓ távoktatási segédletek- INFOKOMMUNIKÁCIÓ ávokaási segédleek- Készíee: a GDF Redszerechikai Iéze Iformaikai Alkalmazások Taszék mukaközössége. TAGJAI: DR. HÁZMAN ISTVÁN DR. ZSIGMOND GYULA SPISÁK ANDOR PUSKÁS ISTVÁN LSI KÖNYVKIADÓ

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Meserséges Inelligencia MI Valószínűségi emporális kövekezeés Dobrowiecki Tadeusz Eredics Péer, és mások BME I.E. 437, 463-28-99 dobrowiecki@mi.bme.hu, hp://www.mi.bme.hu/general/saff/ade X - a időpillanaban

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Schmitt-trigger tanulmányozása

Schmitt-trigger tanulmányozása Schmirigger anulmányozása 1. Bevezeés Analóg makroszkopikus világunkban minden fizikai mennyiség folyonos érékkészleű. Csak néhánya emlíve ilyenek a hossz, idő, sebesség, az elekromos mennyiségek (feszülség,

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)

Részletesebben

5. Szerkezetek méretezése

5. Szerkezetek méretezése . Serkeeek méreeése Hajlío, ömör gerinű gerendaarók és oso selvénű nomo rúd méreeési példái..1. Tömör gerinű gerendaarók méreeése.1.1. elegen hengerel gerendaarók Sükséges ismereek: - Keresmesei ellenállások

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel

3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel Válakozó (hibásan váló-) menniségeknek nevezzük azoka a jeleke, melek időbeli lefolásuk közben polariás (előjele) válanak, legalább egszer. A legalább eg nullámenei (polariásválás) kriériumnak megfelelnek

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Tőkeköltségvetési kérdések, elemzések

Tőkeköltségvetési kérdések, elemzések Tőkekölségveési kérdések, elemzések Fő émakörök 7. Az egymás kölcsööse kizáró proekek őke-kölségveési elemzése 8. Kockázai elemzés a őke-kölségveésbe 9. Porfolió modellek a őke-kölségveési döésekbe 1 7.1.

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

BODE-diagram szerkesztés

BODE-diagram szerkesztés BODE-diagram szerkeszés Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmű kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli

Részletesebben

Oldalszög Magassági szög Moduláció Antenna 0 * 0 * 1 1

Oldalszög Magassági szög Moduláció Antenna 0 * 0 * 1 1 . ADA MÉÉS ALAPJAI, HULLÁMCSOMAG TEJEDÉSE A radar alapölee igen egyserű: a radar nagyfrekvenciás elekromágneses energiá sugáro ki, majd a a különböő reflekáló objekumokról vissaverődve deekálja és méri.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM

Részletesebben

Piaci részesedések eloszlásának előrejelzése Markovmodellel a biztosítási piacon Kovács Norbert 1

Piaci részesedések eloszlásának előrejelzése Markovmodellel a biztosítási piacon Kovács Norbert 1 Piaci részesedések eloszlásáak előreelzése Markomodellel a bizosíási iaco Koács Norber Abszrak: A iaci ersey kérdésköréel foglalkozó szakirodalom számos módszer aál a iaci erő közee és közele mérésére.

Részletesebben

Primitív függvény. (határozatlan integrál)

Primitív függvény. (határozatlan integrál) Primiív füvéy (haározala ierál) PR Primiív füvéy (haározala ierál) Az ebbe a részbe szereplő füvéyek mideyike leye ey I eszőlees, poziív hosszúsáú iervallumo érelmeze valós érékű füvéy (I R). Primiív füvéy

Részletesebben

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11 ELEKTONIKA (BMEVIMIA7) Az ún. (normál) kaszkád erősíő. A kapcsolás: C B = C c = 3 C T ki + C c = C A ranziszorok soros kapcsolása mia egyforma a mnkaponi áramk (I B - -nak véve, + -re való leoszásával

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

Közelítő módszerek általános elmélete Konkrét véges differencia sémák

Közelítő módszerek általános elmélete Konkrét véges differencia sémák Közelíő módszerek álaláos elmélee Kokré véges dereca sémák Szépszó Gabrella szepszo.g@me. Előadások ayaga: p://mbs.ele./~melo Ismélés: dro-ermodamka egyeleek Mozgásegyeleek Koás egyele Termodamka egyele

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (3)

Modulzáró ellenőrző kérdések és feladatok (3) Modulzáró ellenőrző kérdések és feladaok (3) 1. Érelmezze az alábbi, fennarási rendszerekkel és sraégiákkal kapcsolaos fogalmaka (1): Üzemvieli folyama. Meghibásodásig örénő üzemeleés. TMK jellegű fennarás.

Részletesebben

Beruházási lehetőségek tőke-költségvetési és kockázati elemzése

Beruházási lehetőségek tőke-költségvetési és kockázati elemzése Beruházási és fiaszírozási döések Levelező 3. kozuláció Beruházási leheőségek őke-kölségveési és kockázai elemzése Tőkekölségveési kérdések, elemzések 1. rész 1 Beruházási proekek érékelése A B proek proek

Részletesebben

A HOZAMGÖRBE TANULÁSI. Romhányi Balázs

A HOZAMGÖRBE TANULÁSI. Romhányi Balázs A HOZAMGÖRBE TANULÁSI HIPOTÉZISE Romháyi Balázs PÉNZÜGYTAN TANSZÉK Témavezeő: Király Júlia Bírálóbizoság: Romháyi Balázs 200 2 Budapesi Közgazdaságudomáyi Egyeem Közgazdasági szakosíású dokori program

Részletesebben

3. Fejezet. Deformáns jelek

3. Fejezet. Deformáns jelek 3. Fejeze Deforás jele 3.. Bevezeés z Eleroechia I. és a jele jegyze eddigi részeibe idvégig olya jeleel (árao, feszülsége alálozu, aelye iszá sziusz vagy osziusz függvéye segíségével auláyozhaó. Ezzel

Részletesebben

A határokon átnyúló egyesülések adóvonatkozásai és azok hatásai a vállalat beruházásainak értékére

A határokon átnyúló egyesülések adóvonatkozásai és azok hatásai a vállalat beruházásainak értékére 2010. KILENCEDIK ÉVFOLYAM 3. SZÁM 267 CSOMÓS BALÁZS A haároko áyúló egyesülések adóvoakozásai és azok haásai a vállala beruházásaiak érékére Egy emzeközi cégcsopor ásrukurálása vagy egy M&A-razakció sorá

Részletesebben

Makroökonómiai modellépítés monetáris politika

Makroökonómiai modellépítés monetáris politika Makroökonómiai modellépíés moneáris poliika Szabó-Bakos Eszer 200. ½oszi félév Téelezzük fel, hogy az álalunk vizsgál gazdaságban a reprezenaív fogyaszó hasznossági függvénye az X U = ln C +! v M+ L +

Részletesebben

9. HAMILTON-FÉLE MECHANIKA

9. HAMILTON-FÉLE MECHANIKA 9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=

Részletesebben

A FORGALMI ÁRAM FLUKTUÁCIÓJÁNAK HATÁSA AZ ÚT-TELJESÍTMÉNY GÖRBÉRE

A FORGALMI ÁRAM FLUKTUÁCIÓJÁNAK HATÁSA AZ ÚT-TELJESÍTMÉNY GÖRBÉRE Gradus Vol 4, No 2 (27) 46-466 ISSN 264-84 A FORGALMI ÁRAM FLUKTUÁCIÓJÁNAK HATÁSA AZ ÚT-TELJESÍTMÉNY GÖRBÉRE Kovács Tamás *, Alvarez Gil Rafael Informaika Tanszék, GAMF Műszaki és Informaikai Kar, Neumann

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

- 1 - KÉPLETEK ÉS SZÁMPÉLDÁK A SŰRŰSÉGMÉRÉS FOGALOMKÖRÉBŐL ANYAGSŰRŰSÉGMÉRÉS. Oldat Sűrűség [g/cm 3 ]

- 1 - KÉPLETEK ÉS SZÁMPÉLDÁK A SŰRŰSÉGMÉRÉS FOGALOMKÖRÉBŐL ANYAGSŰRŰSÉGMÉRÉS. Oldat Sűrűség [g/cm 3 ] - 1 - KÉPLEEK ÉS SZÁPÉLDÁK SŰRŰSÉGÉRÉS FOGLOKÖRÉBŐL Folyadék sűrűségének mérése areomeerrel NYGSŰRŰSÉGÉRÉS Olda Sűrűség [g/cm 3 ] íz 0,995 10 %-os CaCl 2 olda 1,100 14 %-os CaCl 2 olda 1,140 20 %-os CaCl

Részletesebben

Optikai mérési módszerek

Optikai mérési módszerek Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " Opikai mérési módszerek Máron Zsuzsanna 1,,3,4,5,7 3457 Tóh György 8,9,1,11,1 Pálfalvi László 6 TÁMOP-4.1.1.C-1/1/KONV-1-5

Részletesebben

Statisztika gyakorló feladatok

Statisztika gyakorló feladatok . Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

A T LED-ek "fehér könyve" Alapvetõ ismeretek a LED-ekrõl

A T LED-ek fehér könyve Alapvetõ ismeretek a LED-ekrõl A T LED-ek "fehér könyve" Alapveõ ismereek a LED-ekrõl Bevezeés Fényemiáló dióda A LED félvezeõ alapú fényforrás. Jelenõs mérékben különbözik a hagyományos fényforrásokól, amelyeknél a fény izzószál vagy

Részletesebben

) leképezést jelenti, ahol a ξ. moduláló jelet az f (.) funkcionál leképezi az η

) leképezést jelenti, ahol a ξ. moduláló jelet az f (.) funkcionál leképezi az η Moduláció Bevezeés moduláció lénege, céla. moduláció röviden válozaás elen. Például a zenében a kulcs megválozaásá, míg a hírközlésben a vivőhullám valamel ellemzőének válozaásá nevezik modulációnak. Persze

Részletesebben

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS Zsembery Levene VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS PÉNZÜGYI INTÉZET BEFEKTETÉSEK TANSZÉK TÉMAVEZETŐ: DR. SZÁZ JÁNOS Zsembery Levene BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI ÉS ÁLLAMIGAZGATÁSI EGYETEM

Részletesebben

6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok

6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok 6. szemináriumi Gyakorló feladaok. Tőkekínála. Tőkekeresle. Várhaó vs váralan esemény őkepiaci haása. feladaok A feladaok megoldása során ahol lehe, írjon MATLAB scripe!!! Figyelem, a MATLAB a gondolkodás

Részletesebben

ELVÉTELES KONDENZÁCIÓS ÉS ELLENNYOMÁSÚ GŐZTURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI MODELLEZÉSE

ELVÉTELES KONDENZÁCIÓS ÉS ELLENNYOMÁSÚ GŐZTURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI MODELLEZÉSE EVÉEES KONENZÁCIÓS ÉS EENNYOMÁSÚ GŐZURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHAÓSÁGI MOEEZÉSE r. Fazekas Anrás Isván Magyar Vllamos Művek Zr. / Buapes Buapes Műszak és Gazaságuomány Egyeem Energeka Gépek és Renszerek

Részletesebben

Túlgerjesztés elleni védelmi funkció

Túlgerjesztés elleni védelmi funkció Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan

Részletesebben

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek

Részletesebben

Stabilitás Irányítástechnika PE MI_BSc 1

Stabilitás Irányítástechnika PE MI_BSc 1 Stabilitás 2008.03.4. Stabilitás egyszerűsített szemlélet példa zavarás utá a magára hagyott redszer visszatér a yugalmi állapotába kvázistacioárius állapotba kerül végtelebe tart alapjelváltás Stabilitás/2

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

MAGYAR ÉPÜLETGÉPÉSZET

MAGYAR ÉPÜLETGÉPÉSZET w : u T UL N.h ÚJ P U le EG A M N L po e O H epg w. w MAGYAR ÉPÜLETGÉPÉSZET 6 9 É P Ü L E T G É P É S Z E T I A D Ó F T. S T R O B E L-V E R L A G A olyadékhûõk új geerácója: Arwell AQTL (csak hűős és

Részletesebben

A BIZOTTSÁG MUNKADOKUMENTUMA

A BIZOTTSÁG MUNKADOKUMENTUMA AZ EURÓPAI UNIÓ TANÁCSA Brüsszel, 2007. május 23. (25.05) (OR. en) Inézményközi dokumenum: 2006/0039 (CNS) 9851/07 ADD 2 FIN 239 RESPR 5 CADREFIN 32 FELJEGYZÉS AZ I/A NAPIRENDI PONTHOZ 2. KIEGÉSZÍTÉS Küldi:

Részletesebben

Takács Lajos ( ) és Prékopa András ( ) emlékére.

Takács Lajos ( ) és Prékopa András ( ) emlékére. Haladvány Kiadvány 17-06-15 Mely merev kör½u gráfok és hogyan használhaók valószín½uségi becslésekhez? Hujer Mihály hujer.misigmail.com Ajánlás. Takács Lajos (1924 2015) és Prékopa András (1929 2016) emlékére.

Részletesebben

REZONANCIÁRA HANGOLVA

REZONANCIÁRA HANGOLVA REZONANCIÁRA HANGOLVA r. Bagány Mihály, r Kodácsy János, Nagy Péer 3, r. Pinér Isván 4 Jelen anulmányunkban egy igen onos izikai jelensége a rezonanciá járjuk körül. Az elsı három részben sajá munkáink

Részletesebben

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8. . feladat: Eg 5 fős osztálba va fiú és 4 lá. z iskolai bálo (fiú-lá) pár fog tácoli. Háféleképpe tehetik ezt meg? párok sorredje em számít, viszot az, hog ki kivel tácol, az már ige. (0 pot) Válasszuk

Részletesebben

2.5. A lineáris kongruencia egyenlet.

2.5. A lineáris kongruencia egyenlet. 2.5. A lieáris kogruecia egyelet. Defiíció: Kogruecia Az a és b egész számokat kogruesek modjuk az modulus szerit, ha az szeriti osztás utái maradékaik megegyezek, vagy ami ugyaaz: ha. Jelölésbe: a bmod.

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Járműelemek I. (KOJHA 7) Tengelyköés kisfelada (A ípus) Szilárd illeszés Járműelemek és Hajások Tanszék Ssz.: A/... Név:...................................

Részletesebben

HŐTAN Oktatási segédanyag

HŐTAN Oktatási segédanyag Eergeikai Géek és Redszerek aszék HŐAN Okaási segédayag Kézira Szerkeszee: dr. Zsebik Albi Faluskai Norber Budaes, 003. jauár Hoa_.do.do Eergeikai Géek és Redszerek aszék aralojegyzék. Alafogalak.....

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

Az ökotérképezés. Az ökotérképezés. Milyen térkép. A térképezés végzésének fázisai. Települési elhelyezkedés. Települési elhelyezkedés

Az ökotérképezés. Az ökotérképezés. Milyen térkép. A térképezés végzésének fázisai. Települési elhelyezkedés. Települési elhelyezkedés Az ökoérképezés Az ökoérképezés Az öko-érképezés az ayagáram elemzése alapuló módszer a köryezei éyezık haásaiak grafikus megjeleíésére a köryezei iformációk megjeleíéséek egyszerő módja viszoylag köye

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben

8. A KATÓDSUGÁR-OSZCILLOSZKÓP, MÉRÉSEK OSZCILLOSZKÓPPAL

8. A KATÓDSUGÁR-OSZCILLOSZKÓP, MÉRÉSEK OSZCILLOSZKÓPPAL 8. A KATÓDSUGÁR-OSZCILLOSZKÓP, MÉRÉSEK OSZCILLOSZKÓPPAL Célkiűzés: Az oszcilloszkóp min mérőeszköz felépíésének és kezelésének megismerése. Az oszcilloszkópos mérésechnika alapveő ismereeinek alkalmazása.

Részletesebben

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása

1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása hagyományos beszállíás JIT-elvû beszállíás az uolsó echnikai mûvele a beszállíás minõségellenõrzés F E L H A S Z N Á L Ó B E S Z Á L L Í T Ó K csomagolás rakározás szállíás árubeérkezés minõségellenõrzés

Részletesebben