Geometriai transzformációk

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Geometriai transzformációk"

Átírás

1 Geometriai transzformációk 11 elemi geometriafeladat 10. és DG Matektábor október 6.

2 Röviden a transzformációkról Tengelyes tükrözés 10. és ( DG Matektábor) Geometriai transzformációk október 6. 2 / 87

3 Röviden a transzformációkról Tengelyes tükrözés Középpontos tükrözés 10. és ( DG Matektábor) Geometriai transzformációk október 6. 2 / 87

4 Röviden a transzformációkról Tengelyes tükrözés Középpontos tükrözés Pont körüli elforgatás 10. és ( DG Matektábor) Geometriai transzformációk október 6. 2 / 87

5 Röviden a transzformációkról Tengelyes tükrözés Középpontos tükrözés Pont körüli elforgatás Párhuzamos eltolás 10. és ( DG Matektábor) Geometriai transzformációk október 6. 2 / 87

6 Röviden a transzformációkról Tengelyes tükrözés Középpontos tükrözés Pont körüli elforgatás Párhuzamos eltolás Középpontos hasonlóság 10. és ( DG Matektábor) Geometriai transzformációk október 6. 2 / 87

7 Röviden a transzformációkról Tengelyes tükrözés Középpontos tükrözés Pont körüli elforgatás Párhuzamos eltolás Középpontos hasonlóság Forgatva nyújtás: S(E, FED, ED EF ) 10. és ( DG Matektábor) Geometriai transzformációk október 6. 2 / 87

8 1. Feladat z DEF hatszög oldalai párhuzamosak. izonyítsuk be, hogy ha EF = ED = F D > 0, akkor a hatszög szögei egyenlők. F D E 10. és ( DG Matektábor) Geometriai transzformációk október 6. 3 / 87

9 Megoldás P R Q F D E EF -et eltoljuk F -ral P -t eltoljuk -ral Q D -t eltoljuk DE -ral R 10. és ( DG Matektábor) Geometriai transzformációk október 6. 4 / 87

10 P R Q F D E z eltolások miatt EF = PQ, F D = PR és ED = RQ. Ezekről tudjuk, hogy egyenlőek PQR szabályos 10. és ( DG Matektábor) Geometriai transzformációk október 6. 5 / 87

11 P R Q F D E a kék szögek 60 -osak a dupla szögek (külső szögek) 120 -osak DE = 120 és DR = DER = 60. Ugyanígy a többi paralelogrammában. 10. és ( DG Matektábor) Geometriai transzformációk október 6. 6 / 87

12 P R Q F D E Tehát a hatszög minden szöge 120 -os. 10. és ( DG Matektábor) Geometriai transzformációk október 6. 7 / 87

13 2. Feladat D konvex négyszögben D =. Legyen D oldal felezőpontja E, oldalé F. D és FE egyenesek metsszék egymást H pontban, és FE egyenesek G pontban. Mutassuk meg, hogy: HF = GF 10. és ( DG Matektábor) Geometriai transzformációk október 6. 8 / 87

14 Megoldás D négyszög: D H G E F I 10. és ( DG Matektábor) Geometriai transzformációk október 6. 9 / 87

15 E és F felezőpont: D H G E I F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

16 Toljuk el szakaszt vektorral I. H D G E I F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

17 I paralelogramma. F felezőpontja szakasznak, így I -nek is. D H G E I F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

18 DI -ben EF középvonal EF DI H G D E I F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

19 EF DI és I GF = ID H G D E I F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

20 I = = D ID = DI H G D E I F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

21 EF DI HF = DI = ID = GF H G D E I F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

22 3. Feladat D négyszögben legyen D oldal felezőpontja M, oldalé N. Ha 2MN = + D, akkor bizonyítsuk be, hogy D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

23 Megoldás M és N felezőpont: D M N 10. és ( DG Matektábor) Geometriai transzformációk október / 87

24 Indirekt: Tegyük fel, hogy: 2MN = + D, de D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

25 Tükrözzük az ábrát N pontra. D M N 10. és ( DG Matektábor) Geometriai transzformációk október / 87

26 2MN = MM + D = D + > D M D N M D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

27 4. Feladat Egy szabályos háromszögben van egy P pont úgy, hogy P = 3, P = 4 és P = 5 Mekkora a háromszög kerülete? 4 5 P és ( DG Matektábor) Geometriai transzformációk október / 87

28 1. Megoldás Szabályos háromszög Ha egy szabályos háromszögnek tudjuk a oldalát, akkor a háromszög területe a m 2 = a Ha a területe T, akkor meg az oldala 3 4 T. m D f a 10. és ( DG Matektábor) Geometriai transzformációk október / 87

29 Forgassuk el P -et pont körül 60 -kal.. Így keletkezett egy P szabályos, és egy 3, 4, 5 oldalú háromszög. 4 5 P és ( DG Matektábor) Geometriai transzformációk október / 87

30 Úgyanígy 60 -kal forgassuk el P -et, körül, és P -et körül. Így keletkezik egy hatszög, aminek a területe az eredeti háromszög területének kétszerese P és ( DG Matektábor) Geometriai transzformációk október / 87

31 Keletkezett három szabályos, és három 3,4,5 oldalú, melyeknek egyenként tudjuk a területét = 3 3 = = és ( DG Matektábor) Geometriai transzformációk október / 87

32 T = a = = = = 10. és ( DG Matektábor) Geometriai transzformációk október / 87

33 4 = = = = 3 = K = és ( DG Matektábor) Geometriai transzformációk október / 87

34 2. Megoldás 4 P -et elforgatjuk körül 60 -kal P 3 P és ( DG Matektábor) Geometriai transzformációk október / 87

35 2. Megoldás P 3 P 5 4 P -et elforgatjuk körül 60 -kal. PP = 60 a forgatás miatt PP szabályos PP = és ( DG Matektábor) Geometriai transzformációk október / 87

36 60 P P M PP -ben PP = 3, P = 4 és P = 5 PP = 90 (Pitagoraszi számhármas) 10. és ( DG Matektábor) Geometriai transzformációk október / 87

37 60 P P M PP -ben PP = 3, P = 4 és P = 5 PP = 90 (Pitagoraszi számhármas) Álĺıtsunk merőlegest P -re -ből M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

38 P P M P P = 60 és PP = 90 P M = 30 P M egy szabályos fele M = 2, P M = és ( DG Matektábor) Geometriai transzformációk október / 87

39 P P M P P = 60 és PP = 90 P M = 30 P M egy szabályos fele M = 2, P M = 2 3 M -ben alkalmazva a Pitagorasz-tételt 2 = ( ) és ( DG Matektábor) Geometriai transzformációk október / 87

40 = = 6, 7664 P P M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

41 P = = 6, 7664 Ker = 3 = 3 6, 7664 = 20, P M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

42 5. Feladat D egy egység oldalú négyzet. P, Q, M és N pontok,, D és D oldalakon helyezkednek el úgy, hogy P + N + Q + M = 2. izonyítsuk be, hogy PM QN 10. és ( DG Matektábor) Geometriai transzformációk október / 87

43 Megoldás P + N + Q + M = 2 D N M Q P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

44 90 -os forgatás után. Q D M M N P Q D N P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

45 feladat meghatározása miatt tudjuk, hogy: P + N + Q + M = 2 P + N = 2 Q M z ábrárol látszik, hogy: MQ = 2 Q M Q D M M N P Q D N P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

46 Tehát P + N = MQ és párhuzamosak is. Vagyis Q MPN egy paralelogramma,ezért Q N MP Q D M M N P Q D N P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

47 Tehát a 90 -os forgatás előtt: PM QN Q D M M N β = 90 α = 90 P Q D N PF 10. és ( DG Matektábor) Geometriai transzformációk október / 87

48 6. Feladat háromszögben,. külső szögfelezője E pontban metszi körüĺırt körét. Legyen E-ből -ra álĺıtott merőleges talppontja F. izonyítsuk, hogy: 2F = 10. és ( DG Matektábor) Geometriai transzformációk október / 87

49 Megoldás 2F = E F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

50 Mérjük fel -t -re D. E D F 10. és ( DG Matektábor) Geometriai transzformációk október / 87

51 Tehát tudjuk, hogy = D és E = E valamint, E = ET = E = E E = E E F D T 10. és ( DG Matektábor) Geometriai transzformációk október / 87

52 ED = E T E F D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

53 E = ED ED egyenlőszárú. Tehát EF magasság felezi az alapot. Vagyis: 2F = E F D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

54 2. Megoldás E D F Tükrözzük -t az F-re D.Kellene, hogy D =. 10. és ( DG Matektábor) Geometriai transzformációk október / 87

55 E D F Ha E -t E körül elforgatjuk, akkor ED -t kellene kapnunk, mert akkor = D. 10. és ( DG Matektábor) Geometriai transzformációk október / 87

56 E D F Ha E -t E körül elforgatjuk, akkor ED -t kellene kapnunk, mert akkor = D. Kellene, hogy = E = DE. 10. és ( DG Matektábor) Geometriai transzformációk október / 87

57 E D = E, mert -n lévő kerületi szögek. 10. és ( DG Matektábor) Geometriai transzformációk október / 87

58 E D = E, mert -n lévő kerületi szögek. DE egyenlőszárú ED = ED DE = 180 2ED = 180 2ED 10. és ( DG Matektábor) Geometriai transzformációk október / 87

59 7. Feladat z O középpontú kör áthalad és csúcsán és elmetszi és oldalakat K és N pontokban. és KN körül írt körei és M pontokban metszik egymást. izonyítsuk be, hogy OM = és ( DG Matektábor) Geometriai transzformációk október / 87

60 O K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

61 Megoldás Legyen t egy O-n áthaladó M-re egyenes t O K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

62 Ha M pont a t egyenesre esik OM = 90 t O K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

63 , K pontokat tükrözzük t tengelyre, K t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

64 t, KK t, M t KK M t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

65 Legyen α = K = α mert K az egyenesen fekszik t α O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

66 K és K kerületi szögek K = α t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

67 NK = 180 α, NK és MK is kerületi szögek, ezért NK = MK = α t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

68 M és MK = K K és MK váltószögek, K, M egy egyenesre esik t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

69 K tükörképe t-re K K = K t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

70 M = 180 α mivel M húrnégyszög t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

71 MT = α, mert M = 180 α t O K K N M T 10. és ( DG Matektábor) Geometriai transzformációk október / 87

72 M = α mert egyállású szög MT -gel t O K K N M T 10. és ( DG Matektábor) Geometriai transzformációk október / 87

73 M = 180 2α M egy egyenlőszárú M csúccsal és t szimmetriatengellyel, tehát t átmegy M-en t O K K N M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

74 t O K K N M T 10. és ( DG Matektábor) Geometriai transzformációk október / 87

75 8. Feladat ED = 20,D = 60 DE = 30,E = 50 ED =? E D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

76 Megoldás Tükrözzük D-t az szögfelezőjére F E G D M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

77 Megoldás Tükrözzük D-t az szögfelezőjére F E G D G és DGF egyenlő oldalú. Kellene, hogy FE = EG, mert akkor FED DEG. M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

78 G = = E EG egyenlőszárú EG = 80. F D E G M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

79 G = = E EG egyenlőszárú EG = 80. E F G D EGF = FG EG = = 40. FEG = 180 GE = 100. M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

80 GFE = 40 = FGE EF = EG ez kellett. F D E G M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

81 GFE = 40 = FGE EF = EG ez kellett. ED = FD 2 = 30. F D E G M 10. és ( DG Matektábor) Geometriai transzformációk október / 87

82 9. Feladat Egy háromszögben, = 60. O pont úgy helyezkedik el, hogy O = O = O. E és F pontok és oldalak felezőpontjai. izonyítsuk be, hogy, E, O és F pontok egy körön helyezkednek el. 10. és ( DG Matektábor) Geometriai transzformációk október / 87

83 E 120 O F és ( DG Matektábor) Geometriai transzformációk október / 87

84 Megoldás O = O 60 O O 60 O 10. és ( DG Matektábor) Geometriai transzformációk október / 87

85 O és O hasonló 60 O 120 O O 10. és ( DG Matektábor) Geometriai transzformációk október / 87

86 O -t nagyítjuk/kicsinyítjük / aránnyal E E O 10. és ( DG Matektábor) Geometriai transzformációk október / 87

87 z O -t elforgatjuk +120 kal O pont körül ekkor O = O és E = F E O = F=E = 10. és ( DG Matektábor) Geometriai transzformációk október / 87

88 EOF = 120, és mivel = 60 következik, hogy O,E, és F pontok egy körön vannak. E s O = 120 t F=E 60 = 10. és ( DG Matektábor) Geometriai transzformációk október / 87

89 EOF = 120, és mivel = 60 következik, hogy O,E, és F pontok egy körön vannak. E s O = 120 t F=E 60 = 10. és ( DG Matektábor) Geometriai transzformációk október / 87

90 10. Feladat egy szabályos, és oldalakon úgy helyezkednek el M és P pontok, hogy MP -vel. MP súlypontja D és P felezőpontja E. Határozzuk meg DE szögeit. M E D P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

91 Megoldás D K M E H P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

92 Megoldás D K Forgatva kicsinyítsük P szakaszt D körül M E H P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

93 Megoldás D K Forgatva kicsinyítsük P szakaszt D körül M E H P K, H és E egy egyenesre esik P = M = KE KH 10. és ( DG Matektábor) Geometriai transzformációk október / 87

94 D K -ből E ED = 60 & DE = 1 2 D M E H P 10. és ( DG Matektábor) Geometriai transzformációk október / 87

95 E D DE egy szabályos fele 10. és ( DG Matektábor) Geometriai transzformációk október / 87

96 E D DE egy szabályos fele Szabályos D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

97 11. Feladat Legyen DEF egy konvex hatszög, amiben teljesül, hogy + D + F = 360 és D DE EF F = 1. izonyítsd be, hogy E EF FD D = 1? 10. és ( DG Matektábor) Geometriai transzformációk október / 87

98 F D DE EF F = 1 Kéne: E E EF FD D = 1 D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

99 Mivel + D + F = 360 ezért, hogyha megcsináljuk a következő két forgatást: S(E, FED, ED/EF ) és S(, D, D/) akkor D, és egy egyenesre esnek. F E D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

100 forgatás miatt D = F ED EF D = D F E D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

101 Ha ezt a kettőt egyenlővé teszem, és leosztok F ED EF -fell, akkor kijön, hogy F D EF ED = 1 amiről tudjuk, hogy igaz. Tehát F E D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

102 Hasonlóságok miatt: EF = ED DEF = E ; DE/FE = E/E DEF E F E D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

103 Ugyanígy D Tehát = D = FD E EF Ebből az következik, hogy E EF FD F D = 1 E D 10. és ( DG Matektábor) Geometriai transzformációk október / 87

104 Köszönjük a figyelmet! arta Gergely, Formanek alázs, Gáll Péter, Horváth ndor, Kiss Mária, Kovács Máté, Szendi Ágoston, Telek enjámin Felkészített: Groma Tanárnő Forrás: Mathematical Excalibur 13/ október 6.

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Ismételjük a geometriát egy feladaton keresztül!

Ismételjük a geometriát egy feladaton keresztül! Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z 146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Síkgeometria. Ponthalmazok

Síkgeometria.  Ponthalmazok Síkgeometria http://zanza.tv/matematika/geometria Ponthalmazok Alapfogalmak: pont egyenes sík (nincs kiterjedése; általában nagy betűvel jelöljük) (végtelen hosszú; általában kis betűvel jelöljük) (végtelen

Részletesebben

Geometriai transzformációk

Geometriai transzformációk Geometriai transzformációk I. Egybevágósági transzformációk 58. a) Eltolás az y tengely mentén -vel negatív irányba. (Eltolás a v(0; -) vektorral.) b) Tükrözés az x = 10 egyenesre. c) A körüli -90 -os

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

Komplex számok a geometriában

Komplex számok a geometriában Eötvös Loránd Tudományegyetem Természettudományi Kar Komplex számok a geometriában Szakdolgozat Készítette: Varga Bettina Matematika Bsc Matematika tanári szakirány Témavezető: Ágoston István egyetemi

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

11. Geometriai transzformációk

11. Geometriai transzformációk 11. Geometriai transzformációk I. Elméleti összefoglaló Geometriai transzformációknak nevezzük azokat a függvényeket, amelyeknek az értelmezési tartománya és értékkészlete is ponthalmaz. Ha a transzformáció

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Ismétléses permutáció: ha az elemek között van olyan, amelyik többször is előfordul, az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Tétel: ha n elem között p 1, p 2, p 3, p k darab megegyező

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

11. Geometriai transzformációk

11. Geometriai transzformációk 11. Geometriai transzformációk I. Elméleti összefoglaló Geometriai transzformációknak nevezzük azokat a függvényeket, amelyeknek az értelmezési tartománya és értékkészlete is ponthalmaz. Ha a transzformáció

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Számítógépes geometria

Számítógépes geometria 2011 sz A grakus szállítószalag terv a geometriai (matematikai) modell megalkotása modelltranszformáció (3D 3D) vetítés (3D 2D) képtranszformáció (2D 2D)... raszterizáció A grakus szállítószalag: koncepció

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22. osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z

Részletesebben

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Telepítő programok Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Súgó Menü Súgó Visszalépés a főmenübe Visszalépés a kiválasztott

Részletesebben

8. Geometria = =

8. Geometria = = 8. Geometria I. Nulladik ZH-ban láttuk: 1. Egy négyzet átlójának hossza 4 + 2. Mennyi a négyzet oldalhossza? (A) 1 + 2 2 (B) 4 + 2 (C) 2 2 + 2 (D) 2 + 2 (E) 2 2 + 1 Egy a oldalú négyzet átlója a 2. Ezt

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

A vektor fogalma (egyszer

A vektor fogalma (egyszer Vektorműveletek a koordináta-rendszerben Vektorműveletek a koordináta-rendszerben Elméleti anyag: A vektor fogalma (egyszerű meghatározás): az irányított szakaszokat nevezzük vektoroknak. Egy vektornak

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

18. Kerületi szög, középponti szög, látószög

18. Kerületi szög, középponti szög, látószög 18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)

Részletesebben

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2 3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12. XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután

Részletesebben

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

1. feladatsor Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk

1. feladatsor Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk 1. feladatsor 2013.09.13. 1. Legyen ABCDEF egy szabályos hatszög. A hatszög AB és BC oldalára megrajzoljuk kifelé a BAXY és CBZT négyzeteket, illetve a CD és DE oldalára befelé a CDP Q és DERS négyzeteket.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat 1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Matematika 9. matematika és fizika szakos középiskolai tanár. V. fejezet (kb. 24 tanóra) > o < október 18.

Matematika 9. matematika és fizika szakos középiskolai tanár. V. fejezet (kb. 24 tanóra) > o < október 18. Matematika 9 Tankönyv és feladatgyűjtemény Juhász László matematika és fizika szakos középiskolai tanár V. fejezet (kb. 24 tanóra) > o < 2015. október 18. copyright: c Juhász László Ennek a könyvnek a

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0; 98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $

Részletesebben

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21.

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21. Geometria I. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006. április 21. Szilágyi Ibolya (EKF) Geometria 2006. április 21. 1 / 77 Outline Szimmetrikus alakzatok, speciális

Részletesebben

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! 1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Geometria. 9 10. évfolyam. Szerkesztette: Hraskó András, Surányi László. 2015. augusztus 4.

Geometria. 9 10. évfolyam. Szerkesztette: Hraskó András, Surányi László. 2015. augusztus 4. Geometria 9 10. évfolyam Szerkesztette: Hraskó András, Surányi László 2015. augusztus 4. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás)

Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás) Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás) A foglalkozáson olyan bizonyításokkal, okoskodásokkal foglalkozunk, amelyekből kapott eredmények a józan eszünknek és az eddigi matematikai

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

Harmadik epochafüzet

Harmadik epochafüzet Harmadik epochafüzet Matematika 9. évfolyam Tulajdonos:... HARMADIK EPOCHAFÜZET GEOMETRIA Tartalomjegyzék Kurzus leírás...2 Alapfogalmak...3 Szögszámítás, nevezetes szögpárok...5 A háromszög...8 Összefüggések

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

I. Sokszögek és négyszögek

I. Sokszögek és négyszögek 8. modul: NÉGYSZÖGEK, SOKSZÖGEK 11 I. Sokszögek és négyszögek Módszertani megjegyzés: A modul feldolgozását néhány bevezető gondolat után csoportmunkában célszerű elkezdeni az alább megadott kérdésekre

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

Fejezetek az euklideszi geometriából

Fejezetek az euklideszi geometriából Fejezetek az euklideszi geometriából Ebben a fejezetben euklideszi térben dolgozunk: vagyis mindvégig feltételezzük, hogy érvényes az abszolút geometria axiómarendszere és az euklideszi párhuzamossági

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

Így a Bálint számára kedvező esetek száma +, hiszen duplán számoltuk azokat az eseteket, amikor a számok sem 2-vel, sem 5-tel nem oszthatók.

Így a Bálint számára kedvező esetek száma +, hiszen duplán számoltuk azokat az eseteket, amikor a számok sem 2-vel, sem 5-tel nem oszthatók. Országos Középiskolai Tanulmányi Verseny, 2006 2007-es tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a

Részletesebben

Geometria I. Vígh Viktor

Geometria I. Vígh Viktor Geometria I. Vígh Viktor Kivonat Jelen jegyzet az SZTE osztatlan matematikatanár-képzésében szereplő Geometria I. tantárgyhoz íródott. A kurzus a tanulmányok első félévében kötelező. Ezért a tárgyalásban

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69 TARTALOMJEGYZÉK ELŐSZÓ............................................................ 7 1. GONDOLKOZZ ÉS SZÁMOLJ!............................. 9 Mit tanultunk a számokról?............................................

Részletesebben

(4 pont) Második megoldás: Olyan számokkal próbálkozunk, amelyek minden jegye c: c( t ). (1 pont)

(4 pont) Második megoldás: Olyan számokkal próbálkozunk, amelyek minden jegye c: c( t ). (1 pont) Országos Középiskolai Tanulmányi Verseny, 2005 2006-os tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Feladatgyűjtemény Geometria I. kurzushoz

Feladatgyűjtemény Geometria I. kurzushoz Feladatgyűjtemény Geometria I. kurzushoz Vígh Viktor 1. Térelemek kölcsönös helyzete, illeszkedés 1.1. gyakorlat. Bizonyítsuk be, hogy ha három sík közül bármely kettő egy egyenesben metszi egymást, és

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Feladatok az 1. Geometria gyakorlathoz Geometria 1 haladó szint (2011/2012 es tanév, 2. félév)

Feladatok az 1. Geometria gyakorlathoz Geometria 1 haladó szint (2011/2012 es tanév, 2. félév) Feladatok az 1. Geometria gyakorlathoz 1) Az euklideszi síkon adva van két egyenlő sugarú kör k 1 és k 2, amelyek az M, N pontokban metszik egymást. Jelölje r a két kör sugarát. Az M ponttal, mint centrummal,

Részletesebben

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n Országos Középiskolai Tanulmányi Verseny, 2012 13-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító

Részletesebben

VI.3. TORPEDÓ. A feladatsor jellemzői

VI.3. TORPEDÓ. A feladatsor jellemzői VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont

Részletesebben