NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó"

Átírás

1 FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright

2 Az Olvasó most egy egyetemi jegyzetet tart a kezében, vagy néz a számítógépe képerny jén. E jegyzetet a Budapesti M szaki és Gazdaságtudományi Egyetemen illetve az Eötvös Loránd Tudományegyetemen tartott numerikus módszerek kurzusainkhoz írtuk. Az írás során mindvégig azt vettük gyelembe, hogy a jegyzet segítségével hallgatóink alapos ismereteket tudjanak elsajátítani a tárgy témájában és egyben eredményesebben tudjanak felkészülni a vizsgákra. A jegyzet elején összefoglaljuk a szükséges el ismereteket. Ezután a matematikai modellalkotással foglalkozunk, részletesen kitérve a számítógépes számábrázolásra és az ebb l ered hibákra. Ezután a klasszikus numerikus analízis egyes fejezeteit vesszük sorra: numerikus lineáris algebra, polinominterpoláció, numerikus deriválás és integrálás, közönséges dierenciálegyenletek kezdetiés peremérték-feladatai. A jegyzetet a parciális dierenciálegyenletek véges dierenciás megoldásainak bemutatásával zárjuk. A jegyzetbe nem akartunk több dolgot belezsúfolni, mint amir l egy két féléves kurzus során az el adásokon is szó lehet, de igyekeztünk azért az érdekl d hallgatóknak is kitekintést nyújtani az el adások anyagán túlmutató elméletek felvillantásával vagy az ezeket tárgyaló irodalom megadásával. Mivel ez a jegyzet elektronikus formában lesz elérhet, így kihasználtuk azokat a lehet ségeket is, amiket az elektronikus forma megenged. Így számos helyen megadtunk internethivatkozásokat valamilyen szemléltet programhoz, b vebb leíráshoz vagy életrajzhoz. Kulcsszavak: numerikus módszerek, numerikus lineáris algebra, numerikus deriválás és integrálás, interpoláció, dierenciálegyenletek numerikus megoldása

3 Támogatás: Készült a TÁMOP /2/A/KMR számú, a Természettudományos (matematika és zika) képzés a m szaki és informatikai fels oktatásban cím projekt keretében. Készült: a BME TTK Matematika Intézet gondozásában Szakmai felel s vezet : Ferenczi Miklós Lektorálta: Havasi Ágnes Az elektronikus kiadást el készítette: Horváth Róbert Címlap grakai terve: Csépány Gergely László, Tóth Norbert Copyright: , Faragó István, ELTE, Horváth Róbert, BME A terminusai: A szerz nevének feltüntetése mellett nem kereskedelmi céllal szabadon másolható, terjeszthet, megjelentethet és el adható, de nem módosítható. Második, javított kiadás, 2013

4

5 Tartalomjegyzék 1. El ismeretek Vektorterek Valós és komplex vektorterek Normált terek Euklideszi terek Mátrixok Mátrixok sajátértékei és sajátvektorai Diagonalizálhatóság Normák és sajátértékek M-mátrixok Sorozatok és függvények konvergenciájának jellemzése Sorozatok konvergenciasebessége Függvények konvergenciavizsgálata A MATLAB programcsomag A fejezettel kapcsolatos MATLAB parancsok Feladatok Modellalkotás és hibaforrásai Modellalkotás A modellalkotás hibaforrásai A hiba mérése Feladatok kondicionáltsága Gépi számábrázolás és következményei A fejezettel kapcsolatos MATLAB parancsok Feladatok Lineáris egyenletrendszerek megoldása Lineáris egyenletrendszerek megoldhatósága Lineáris egyenletrendszerek kondicionáltsága Gauss-módszer LU-felbontás F elemkiválasztás, általános LU-felbontás, Cholesky-felbontás F elemkiválasztás Általános LU-felbontás Cholesky-felbontás Lineáris egyenletrendszerek klasszikus iterációs megoldása Jacobi-iteráció GaussSeidel-iteráció Relaxációs módszerek Iterációs módszerek konvergenciája Leállási feltételek Variációs módszerek

6 2 Tartalomjegyzék Gradiens-módszer Konjugált gradiens-módszer A QR-felbontás QR-felbontás Householder-tükrözésekkel QR-felbontás Givens-forgatásokkal Túlhatározott rendszerek megoldása Megoldás a normálegyenlet segítségével Megoldás a QR-felbontás segítségével Lineáris egyenletrendszerek megoldása a MATLAB-ban Feladatok Sajátérték-feladatok numerikus megoldása Sajátérték-feladatok kondicionáltsága A sajátértékeket egyenként közelít eljárások A hatványmódszer Inverz iteráció Rayleigh-hányados iteráció Deációs eljárások Householder-deáció Rangdeáció Blokk háromszögmátrix deáció A sajátértékeket egyszerre közelít eljárások A Jacobi-módszer QR-iteráció Sajátértékszámítás a MATLAB-ban Feladatok Nemlineáris egyenletek és egyenletrendszerek megoldása Nemlineáris egyenletek A gyökök elkülönítése Nemlineáris egyenletek megoldásának kondicionáltsága Geometriai módszerek Intervallumfelezési módszer Húrmódszer Szel módszer Newton-módszer Fixpont-iterációk Aitken-gyorsítás Mintafeladat Nemlineáris egyenletrendszerek megoldása Feladatok Interpolációs feladatok Globális polinominterpoláció Az interpolációs polinom Lagrange-féle el állítása A baricentrikus interpolációs formula Az interpolációs polinom el állítása Newton-féle osztott dierenciákkal Az interpolációs hiba Interpoláció Csebisev-alappontokon Hermite-interpoláció

7 Tartalomjegyzék Szakaszonként polinomiális interpoláció Szakaszonként lineáris interpoláció Szakaszonként kvadratikus interpoláció Szakaszonként harmadfokú interpoláció Trigonometrikus interpoláció Gyors Fourier-transzformáció Közelítés legkisebb négyzetek értelemben Interpolációs feladatok megoldása a MATLAB-ban Feladatok Numerikus deriválás A numerikus deriválás alapfeladata Az els derivált közelítése A második derivált közelítése A deriváltak másfajta közelítései Lépéstávolság-dilemma Feladatok Numerikus integrálás A numerikus integrálás alapfeladata NewtonCotes-féle kvadratúraformulák Összetett kvadratúraformulák Összetett trapézformula Összetett érint formula Összetett Simpson-formula Romberg-módszer Gauss-kvadratúra Numerikus integrálási eljárások a MATLAB-ban Feladatok A kezdetiérték-feladatok numerikus módszerei Bevezetés A közönséges dierenciálegyenletek kezdetiérték-feladata Egylépéses módszerek Taylor-sorba fejtéses módszer Néhány nevezetes egylépéses módszer Az explicit Euler-módszer Az implicit Euler-módszer A CrankNicolson-módszer Az általános alakú egylépéses módszerek alapfogalmai és pontbeli konvergenciája Az egylépéses módszerek pontbeli konvergenciája A RungeKutta típusú módszerek A másodrend RungeKutta típusú módszerek A magasabb rend RungeKutta típusú módszerek Az implicit Runge-Kutta típusú módszerek Az egylépéses módszerek egy tesztfeladaton A többlépéses módszerek A lineáris többlépéses módszer általános alakja és rendje A kezdeti értékek megválasztása és a módszer konvergenciája

8 4 Tartalomjegyzék Adams-típusú módszerek Retrográd dierencia módszerek A lineáris és a merev rendszerek numerikus megoldása A kezdetiérték-feladatok numerikus megoldása MATLAB segítségével Feladatok A peremérték-feladatok numerikus módszerei Bevezetés Peremértékfeladatok megoldása véges dierenciákkal A véges dierenciás séma felépítése A véges dierenciás séma megoldhatósága és tulajdonságai A véges dierenciás módszer konvergenciája Összefoglalás A közönséges dierenciálegyenletek peremérték-feladatának megoldhatósága A lineáris peremérték-feladat megoldhatósága A peremérték-feladat numerikus megoldása Cauchy-feladatra való visszavezetéssel A belövéses módszer Lineáris peremérték-feladatok numerikus megoldása A peremérték-feladat numerikus megoldása véges dierenciák módszerével Véges dierenciás approximáció Az általános alakú peremérték-feladat megoldása a véges dierenciák módszerével A lineáris peremérték-feladatok approximációja a véges dierenciák módszerével A lineáris peremérték-feladatok numerikus megoldásának általános vizsgálata A lineáris peremérték-feladatok M-mátrixokkal A diszkrét maximumelv és következményei A peremérték-feladatok numerikus megoldása MATLAB segítségével A modellfeladat: stacionárius h eloszlás homogén vezetékben A tesztfeladat numerikus megoldása MATLAB segítségével Feladatok A parciális dierenciálegyenletek numerikus módszerei A parciális dierenciálegyenletek alapfogalmai Lineáris, másodrend, elliptikus parciális differenciálegyenletek A Laplace-egyenlet analitikus megoldása egységnégyzeten Elliptikus egyenletek közelít megoldása véges dierenciák módszerével Általános kit zés és az alaptétel Az elliptikus feladatok numerikus közelítésének konvergenciája A numerikus módszer realizálásának algoritmusa Lineáris, másodrend, parabolikus parciális differenciálegyenletek Az egydimenziós h vezetési egyenlet analitikus megoldása A h vezetési feladat numerikus megoldása véges dierenciák módszerével A véges dierenciás közelítés konvergenciája A numerikus módszer realizálásának algoritmusa Egy másik véges dierenciás séma és vizsgálata Általánosítás és magasabb rend módszerek A parciális dierenciálegyenletek numerikus megoldása MATLAB segítségével A Poisson-egyenlet megoldása els (Dirichlet-féle) peremfeltétellel

9 Tartalomjegyzék A h vezetési egyenlet megoldása véges dierenciák módszerével Feladatok Tárgymutató 395 Irodalomjegyzék 397

10

11 El szó Az Olvasó most egy egyetemi jegyzetet tart a kezében vagy néz a számítógépe képerny jén. E jegyzetet a Budapesti M szaki és Gazdaságtudományi Egyetemen illetve az Eötvös Loránd Tudományegyetemen tartott numerikus módszerek kurzusainkhoz írtuk. Az írás során mindvégig azt vettük gyelembe, hogy a jegyzet segítségével hallgatóink alapos ismereteket tudjanak elsajátítani a tárgy témájában és egyben eredményesebben tudjanak felkészülni a vizsgákra. Ezt a célt szolgálják a magyarázó ábrák, a szemléltet példák, az ellen rz kérdések, a gyakorló feladatok és a jegyzet végén található szószedet is. A jegyzetbe nem akartunk több dolgot belezsúfolni, mint amir l egy két féléves kurzus során az el adásokon is szó lehet, de igyekeztünk azért az érdekl d hallgatóknak is kitekintést nyújtani az el adások anyagán túlmutató elméletek felvillantásával vagy az ezeket tárgyaló irodalom megadásával. A jegyzetben a deníciókat és tételeket vastag vonallal emeltük ki. Azokat a példákat, amelyek a jobb megértést segítik bekeretezve közöljük. Szintén bekeretezve szedtük az egyes algoritmusokat és programrészleteket. A bizonyítások végét, a példák és megjegyzések végét pedig jel zárja. A deníciók, a tételek, a következmények és a megjegyzések fejezetenként folytonosan sorszámozódnak. A fontosabb fogalmakat d lt bet vel szedtük. Általában ezek kerültek a szószedetbe is. Mivel ez a jegyzet elektronikus formában lesz elérhet, így kihasználtuk azokat a lehet ségeket is, amiket az elektronikus forma megenged. Így számos helyen megadtunk internethivatkozásokat valamilyen szemléltet programhoz, b vebb leíráshoz vagy életrajzhoz. Természetesen mivel ezek internetes tartalmak, a jöv ben változhatnak és elérhetetlenné is válhatnak. A képletekre, tételekre vagy a szószedetbeli elemekre való hiperhivatkozások a pdf fájlban egy kattintással elérhet k, majd az ALT+ billenty vel visszatérhetünk ez eredeti olvasási helyhez. Köszönet illeti hallgatóinkat, akik az elmúlt félévek során alaposan átnézték a jegyzet korábbi változatait, megjegyzéseikkel hozzájárultak az anyag kialakulásához és végleges formába öntéséhez, és a korábbi változatokban lév hibákra felhívták gyelmünket. Köszönet illeti Dr. Havasi Ágnest értékes javaslataiért, aki a t le megszokott alapossággal nézte át a kéziratot. A jegyzet a TÁMOP /2/A/KMR: Természettudományos (matematika és zika) képzés a m szaki és informatikai fels oktatásban pályázat támogatásával jött létre. Budapest, január A Szerz k Nagyon köszönjük mindenkinek, hogy megosztotta velünk észrevételeit és javaslatait a jegyzettel kapcsolatban a hibabejelent oldalon. A második, javított kiadásban már gyelembe vettük ezeket. Budapest, augusztus A Szerz k 7

12

13 1. El ismeretek Ebben a fejezetben azokat az el ismereteket gy jtjük össze, amik nem tartoznak szorosan a numerikus módszerek tárgy témaköréhez, de ismeretük elengedhetetlen lesz a kés bbiekben. Ezek az ismeretek f leg a lineáris algebra és a funkcionálanalízis tárgyhoz tartoznak. Bevezetjük a vektor- és mátrixnorma fogalmát, igazoljuk a Banach-féle xponttételt, ismertetjük a GramSchmidt-féle ortogonalizációs eljárást, felsorolunk néhány nevezetes mátrixtípust és megvizsgáljuk a tulajdonságaikat. Szó lesz még a mátrixok sajátértékeir l és sajátvektorairól, ezek normákkal való kapcsolatáról, az M-mátrixokról ill. a diagonalizálható mátrixokról. Összehasonlítjuk a sorozatok és függvények konvergenciasebességét. A fejezetet a MATLAB programcsomag bemutatásával zárjuk. Azok a hallgatók, akik tanultak lineáris algebrát és funkcionálanalízist e fejezet nagy részét átugorhatják az olvasás során. Bár a jelölések megismerésének érdekében érdemes minden fejezetet átszaladni, nekik csak a Gersgorin-tételt ( tétel), a Banach-féle xponttételt ( tétel), a normák és sajátértékek kapcsolatáról szóló fejezetet, az M-mátrixokról szóló fejezetet és a konvergenciasebességr l szóló 1.3. fejezetet érdemes alaposan átnézni Vektorterek Valós és komplex vektorterek Jelentse a továbbiakban K vagy a valós számok (R) vagy a komplex számok (C) testjét deníció. Egy V halmazt (K = R esetén valós, K = C estén komplex) vektortérnek nevezünk, ha értelmezve van rajta egy összeadás és egy számmal való szorzás m velet az alábbi tulajdonságokkal: 1. x + y = y + x, x, y V, 2. (x + y) + z = x + (y + z), x, y, z V, 3. o V, x + o = x, x V, 4. x V, ˆx V, x + ˆx = o, 5. 1 x = x, x V, 6. α(x + y) = αx + αy, x, y V, α K, 7. (α + β)x = αx + βx, x V, α, β K, 8. α(βx) = (αβ)x, x V, α, β K. 9

14 10 1. El ismeretek A vektortér fenti axiómáiból könnyen nyerhet k az alábbi tulajdonságok: 0 x = o minden x V esetén, α o = o minden α K esetén és ˆx = ( 1) x minden x V esetén. Ez utóbbi tulajdonság alapján az x y különbségen az x + ( 1) y összeget értjük. Valós vektorteret alkotnak pl. a sík és a tér helyvektorai, az n-elem valós oszlopvektorok halmaza (R n ), az m-szer n-es valós mátrixok halmaza (R m n ), az [a, b] intervallumon folytonos függvények halmaza (C[a, b]), az [a, b] intervallumon legalább k-szor folytonosan deriválható függvények halmaza (C k [a, b]), a valós együtthatós polinomok halmaza (P ), a legfeljebb n-edfokú valós együtthatós polinomok halmaza (P n ) és ezek [a, b] intervallumra vonatkozó leszorításai (P [a, b], P n [a, b]) a szokásos m veletek esetén 1. Komplex vektorteret alkotnak pl. az n-elem komplex oszlopvektorok halmaza (C n ) és az m-szer n-es komplex mátrixok halmaza (C m n ). Ebben a fejezetben jelentsen a továbbiakban V egy adott (valós vagy komplex) vektorteret. V elemeit általánosan vektoroknak hívjuk deníció. Egy x V vektort az x 1,..., x k V vektorok lineáris kombinációjának hívunk, ha vannak olyan α 1,..., α k K konstansok, hogy x = α 1 x α k x k deníció. Egy V vektortér egy W részhalmazát a vektortér egy alterének hívjuk, ha W maga is vektortér a V -beli m veletekre nézve. Például a legfeljebb harmadfokú polinomok vektorterében a legfeljebb másodfokú polinomok alteret alkotnak. Jelölje lin(x 1, x 2,..., x n ) az x 1, x 2,..., x n V vektorok összes lineáris kombinációjának halmazát. Ekkor lin(x 1, x 2,..., x n ) a V vektortér egy altere lesz a V -beli m veletekre nézve deníció. Az x 1,..., x k V vektorrendszert lineárisan függetlennek mondjuk, ha az α 1 x 1 + +α k x k = o egyenl ségb l α i = 0 (i = 1,..., k) következik. Végtelen sok vektorból álló vektorrendszert akkor hívunk lineárisan függetlennek, ha bármely véges részhalmaza lineárisan független vektorokat tartalmaz. A nem lineárisan független vektorrendszereket lineárisan összefügg rendszereknek hívjuk deníció. Egy vektorrendszert a V vektortér bázisának hívunk, ha lineárisan független, és V minden eleme el állítható a vektorrendszer elemeinek lineáris kombinációjaként. Bázisvektorok lineáris kombinációjaként minden V -beli vektor pontosan egyféleképpen írható fel. Ha V -nek van véges sok elemb l álló bázisa, akkor V -t véges dimenziós vektortérnek hívjuk. Egy véges dimenziós vektortér minden bázisának egyforma az elemszáma. Ez a vektortér dimenziója. 1 A jegyzetben használt vektorokkal és mátrixokkal kapcsolatos jelöléseket és elnevezéseket az 1.2. fejezetben foglaltuk össze.

15 1.1. Vektorterek Normált terek deníció. A (V, ) párt normált térnek hívjuk, ha V egy vektortér, és : V R egy adott függvény, ún. norma, az alábbi tulajdonságokkal: 1. x = 0 x = o, 2. αx = α x, x V, α K, 3. x + y x + y, x, y V (háromszög-egyenl tlenség). Mivel a sík- ill. a térvektorok vektorterében a vektorok hossza normát ad meg, ezért általánosan is szokás egy vektor normáját a vektor hosszának nevezni megjegyzés. Könnyen igazolható, hogy a norma csak nemnegatív értéket vehet fel. Vizsgáljuk ugyanis egy tetsz leges x elem esetén az x x értéket! A norma második és harmadik tulajdonságát felhasználva azt kapjuk, hogy amib l következik az állítás. 0 = o = x x x + x = 2 x, Most felsorolunk néhány fontos példát normált terekre. A sík és a tér helyvektorai, ha a v norma a vektor szokásos hossza. A K n vektortér, ha egy x = [x 1,..., x n ] T vektor esetén a normát pl. az x p = p x 1 p + + x n p képlettel értelmezzük p = 1, 2,... esetén. A leggyakrabban használt normák ezek közül az 1-es vagy oktaédernorma x 1 = x x n és a 2-es vagy euklideszi norma x 2 = x x n 2, valamint a p határátmenettel nyert, -nel jelölt maximumnorma x = max{ x 1,..., x n }. A K n vektortéren megadott normákat vektornormáknak A C[a, b] vektortér, ha a normát pl. az hívjuk. f C[a,b] = max x [a,b] { f(x) } módon értelmezzük (maximumnorma), amely tulajdonképpen a függvénygrakon x-tengelyt l mért legnagyobb eltérésének nagyságát adja meg.

16 12 1. El ismeretek A K m n vektortér, ha a normát egy A = [a ij ] K m n mátrix esetén az A = max { a ij } i=1,...,m; j=1,...,n képlettel értelmezzük. A K m n vektortéren megadott normákat mátrixnormáknak hívjuk. Kés bb majd látni fogunk más fontos mátrixnormákat is. A norma alkalmas arra, hogy mérjük két folytonos függvény, két vektor vagy két mátrix "távolságát". Így mérni tudjuk, hogy pl. egy lineáris egyenletrendszer közelít megoldása "milyen messze" van a pontos megoldástól. A távolság segítségével konvergenciát is deniálhatunk deníció. Az x, y (V, ) vektorok távolságán az x y számot értjük. A távolság elnevezés jogosságát az alábbi tétel mutatja tétel. A fent deniált távolságra teljesülnek az alábbi tulajdonságok: 1. x y 0, x, y (V, ), x y = 0 x = y, 2. x y = y x, x, y (V, ), 3. x y x z + z y, x, y, z (V, ) (háromszög-egyenl tlenség). A háromszög-egyenl tlenség közvetlen következménye az alábbi tétel, ami azt mutatja, hogy két vektor normájának eltérése tetsz legesen kicsi lehet, ha a két vektor távolságát elegend en kicsinek választjuk tétel. Egy (V, ) normált térben x y x y minden x, y (V, ) esetén. Bizonyítás. Alkalmazzuk kétféleképpen a háromszög-egyenl tlenséget: y = (y x) + x y x + x, x = (x y) + y x y + y. Az els egyenl tlenségb l kapjuk, hogy y x y x, a másikból pedig hogy x y x y. Az utóbbi egyenl séget az y x y x alakba írva a két egyenl ség együttesen a y x y x y x alakot ölti, ami a bizonyítandó állítással ekvivalens deníció. Azt mondjuk, hogy az {x k } (V, ) sorozat tart az x (V, ) elemhez (konvergens), ha az { x k x } valós számsorozat nullához tart. Jelölés: x k x. Az x vektort a sorozat határértékének hívjuk. Könnyen igazolható, hogy a határérték egyértelm.

17 1.1. Vektorterek deníció. Azt mondjuk, hogy egy H (V, ) halmaz zárt, ha minden olyan {x k } H sorozatra, amely tart valamilyen x (V, ) elemhez, igaz, hogy x H. Egy H (V, ) halmaz nyílt, ha komplementere zárt deníció. Egy V vektortéren értelmezett és normákat ekvivalensnek nevezzük, ha vannak olyan c 1, c 2 > 0 konstansok, melyekre c 1 x x c 2 x, x V. Könnyen látható, hogy a normák ekvivalenciája ekvivalencia-reláció, azaz reexív, szimmetrikus és tranzitív. Ekvivalens normák ugyanazt a konvergenciát deniálják. Ez azt jelenti, hogy ha egy sorozat az egyik normában tart egy adott elemhez, akkor a másik normában is ahhoz az elemhez fog tartani. A kés bbiekben többször alkalmazzuk majd az alábbi tételt tétel. Véges dimenziós vektorterekben minden norma ekvivalens. Bizonyítás. Legyen V egy véges dimenziós vektortér a v 1,..., v n bázissal. Ebben a vektortérben minden x vektor egyértelm en írható fel x = n k=1 α kv k alakban, ahol az α k együtthatók K-beli egyértelm en meghatározott konstansok. Ekkor a vektortérben a µ(x) = n k=1 α k 2 függvény normát deniál ( feladat). Legyen egy tetsz leges norma az adott V vektortéren. A tétel igazolásához elegend megmutatnunk, hogy és µ ekvivalens normák, mert a normák tranzitivitása miatt így bármely két norma ekvivalens lesz. Legyen x egy tetsz leges V -beli vektor. Ekkor n n x = α k v k α k v k n α k 2 n v k 2 = c 2 µ(x), k=1 k=1 ahol c 2 = n k=1 v k 2 egy, az x vektortól független konstans. Az utolsó becslésnél a Cauchy Schwarz-egyenl tlenséget használtuk. Így a norma felülr l becsülhet a µ norma konstansszorosával. Az alsó becsléshez tekintsük az euklideszi normával ellátott K n teret, melyen deniáljuk az f : (K n, 2 ) R, f(χ) = f(χ 1,..., χ n ) = n k=1 χ kv k függvényt. Ez a függvény folytonos, ugyanis az tétel alapján tetsz leges γ = (γ 1,..., γ n ), β = (β 1,..., β n ) K n vektorok esetén n n n f(γ) f(β) = γ k v k β k v k (γ k β k )v k c 2 γ β 2. k=1 Mivel az f függvény tehát folytonos, így a k=1 k=1 k=1 G = {χ K n χ 2 = 1} korlátos és zárt gömbhéjon van legkisebb értéke. Legyen ez a legkisebb érték f. Az f érték nyilvánvalóan nagyobb nullánál, hiszen különben a v 1,..., v n vektorok nem lennének függetlenek. k=1

18 14 1. El ismeretek Mivel x o esetén µ(x/µ(x)) = 1, ezért x/µ(x) f, amib l következik, hogy x f µ(x). Ez mutatja, hogy c 1 = f megfelel választás. Ezt akartuk megmutatni deníció. Azt mondjuk, hogy az {x k } (V, ) sorozat Cauchy-sorozat, ha minden ε > 0 számhoz van olyan M N szám, melyre x n x m < ε minden n, m M esetén tétel. Minden (V, ) normált térbeli konvergens sorozat Cauchy-sorozat. A tétel megfordítása nem igaz deníció. Azt mondjuk, hogy a (V, ) normált tér Banach 2 -tér, ha minden (V, )-beli Cauchy-sorozat konvergens sorozat is egyben. A normált terekre korábban felsorolt példák egyben példák Banach-terekre is. Tehát pl. R n Banach-tér a felsorolt normákkal, és mivel ezen a vektortéren minden norma ekvivalens, ezért bármilyen más normával is. Ugyanakkor nem minden normált tér Banach-tér. Ha a C[a, b] vektortéren a normát az f = b f(x) dx módon deniáljuk, akkor az így nyert normált tér nem a lesz Banach-tér. Most igazoljuk azt a tételt, amely a kés bbi iterációs eljárások konvergenciáját fogja majd biztosítani tétel. (Banach-féle xponttétel) Legyen (V, ) egy Banach-tér, és H (V, ) egy tetsz leges nem üres zárt részhalmaz. Tegyük fel, hogy az F : H H leképezés kontrakció, azaz van olyan 0 q < 1 valós szám, mellyel F (x) F (y) q x y bármely x, y H elemek esetén. Ekkor F-nek egyértelm en létezik xpontja H-ban, azaz egy olyan x H elem, mellyel F (x ) = x. Tetsz leges x 0 H kezd elemmel az x k+1 = F (x k ) módon el állított sorozat x -hoz tart. Érvényes az becslés. x x m qm 1 q x 1 x 0 (1.1.1) 2 Stefan Banach (1892 (Lvov)-1945), lengyel matematikus. A modern funkcionálanalízis megalapítója. Eredményei jelent sen hozzájárultak a topologikus vektorterek, a mértékelmélet, az integrálás és az ortogonális sorok elméletéhez is. Részletes angol nyelv életrajz található pl. az Banach.html oldalon.

19 1.1. Vektorterek 15 Bizonyítás. Tekintsük egy tetsz leges x 0 H elem esetén az x k+1 = F (x k ) rekurzióval de- niált sorozatot, melynek nyilvánvalóan mindegyik eleme H-ban található. Ekkor a kontrakciós tulajdonság miatt x k+1 x k = F (x k ) F (x k 1 ) q x k x k 1... q k x 1 x 0. Tetsz leges két n > m természetes szám esetén x n x m = x n x n 1 + x n 1 x n x m+1 x m x n x n 1 + x n 1 x n x m+1 x m q n 1 x 1 x 0 + q n 2 x 1 x q m x 1 x 0 = (q n 1 + q n q m ) x 1 x 0 = (q n m 1 + q n m )q m x 1 x 0 = qn m 1 q m x 1 x 0 qm q 1 1 q x 1 x 0. Ez mutatja, hogy {x k } egy H-beli Cauchy-sorozat, hiszen 0 q < 1, és ε > 0 esetén ln(ε(1 q)/ x1 x 0 ) M = ln q (1.1.2) jó választás. Mivel Banach-terekben minden Cauchy-sorozat konvergens, ezért létezik olyan x (V, ), melyre x k x. H zártsága miatt x H is igaz. Most azt fogjuk igazolni, hogy x xpontja F-nek. Ha x 1 = x 0, akkor ez nyilvánvaló. Mivel F (x ) x k+1 = F (x ) F (x k ) q x x k 0 (k ), ezért x k+1 F (x ). Mivel x k+1 x is igaz, így a határérték egyértelm ségéb l következik, hogy F (x ) = x. Az egyértelm ség igazolásához indirekt módon feltételezzük, hogy van legalább két különböz xpont: x és x. Ekkor x x = F (x ) F (x ) q x x, ami nyilván csak úgy lehet (q < 1), ha x = x, ami ellentmondás. Az állítás harmadik részében szerepl becslés úgy igazolható, hogy az n indexszel végtelenhez tartunk az (1.1.2) becslésben. A tételben természetesen H lehet a teljes (V, ) normált tér is. Vegyük észre, hogy a tétel második állítása gyakorlati útmutatást is ad arra, hogy a xpontot hogy kell megkeresnünk. A harmadik részben szerepl becslés pedig a xponthoz tartó sorozat els két elemének távolságával és a q konstanssal ad fels becslést arra, hogy a sorozat m-edik eleme milyen messze van a határértékét l. Vegyük észre azt is, hogy az {x k } sorozat kezd eleme tetsz leges volt, így az x xpont tetsz leges H-beli kezd elemr l induló iterációs sorozat határértékeként el állítható deníció. Egy F : (V 1, ) (V 2, ) leképezés folytonos az x (V 1, ) pontban, ha minden {x k } (V 1, ) sorozatra, melyre x k x, következik, hogy F (x k ) F (x ) (V 2, )-ben. F folytonos, ha minden x (V 1, ) pontban folytonos. Fontos példa, hogy az F : (V, ) (R,. ), F (x) = x folytonos leképezés, hiszen tetsz leges x k x (V, )-beli sorozat esetén minden k indexre igaz, hogy x k x x k x ( tétel), azaz x k x.

20 16 1. El ismeretek deníció. Egy F : (V 1, ) (V 2, ) leképezés korlátos, ha van olyan K R + 0 F (x) K x minden x (V 1, ) esetén. szám, melyre deníció. Egy F : (V 1, ) (V 2, ) leképezést lineáris operátornak nevezünk, ha F (αx + βy) = αf (x) + βf (y) minden x, y (V 1, ), α, β K esetén tétel. Lineáris operátorokra a folytonosság és a korlátosság ekvivalens tulajdonságok. Ha egy lineáris operátor folytonos egy pontban, akkor folytonos (V 1, ) minden pontjában. Jelölje B(V 1, V 2 ) az összes korlátos L : (V 1, ) (V 2, ) lineáris operátor vektorterét, ahol a m veleteket az módon értelmezzük tétel. Az (L 1 + L 2 )(x) = L 1 (x) + L 2 (x), (αl)(x) = α L(x) L(x) L := sup x o x (a korlátosság miatt jól deniált) hozzárendelés normát ad meg a B(V 1, V 2 ) vektortéren, így B(V 1, V 2 ) normált tér. (Ha V 2 Banach-tér, akkor B(V 1, V 2 ) is Banach-tér.) Alkalmazzuk az el z tételt az L : (K n, ) (K m, ), L(x) = Ax lineáris leképezésre, ahol A K m n. A normák ekvivalenciája miatt ( tétel) az L leképezés folytonos, azaz korlátos. Ekkor az el z tételt alkalmazva az Ax A := L = sup (1.1.3) x 0 x hozzárendelés mátrixnormát ad meg. A vektornormákból a fenti képlettel származtatott mátrixnormákat indukált normáknak hívjuk tétel. Tegyük fel, hogy a K n és K m normált terekben is ugyanazt a vektornormát használjuk. Ekkor a korábban megismert vektornormák az alábbi mátrixnormákat indukálják: Oktaédernorma (p = 1): A 1 = max j=1,...,n m i=1 a ij (oszlopösszegnorma), Maximumnorma (p = ): n A = max i=1,...,m j=1 a ij (sorösszegnorma), Euklideszi norma (p = 2): A 2 = ϱ(a H A), ahol ϱ az A mátrix spektrálsugara, és A H az A mátrix transzponált konjugáltja.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Diszkrét matematika II., 1. el adás. Lineáris leképezések

Diszkrét matematika II., 1. el adás. Lineáris leképezések 1 Diszkrét matematika II., 1. el adás Lineáris leképezések Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. február 6 Gyakorlati célok Ezen el adáson,

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát.

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát. 1. Vektorok 1.1. Alapfogalmak, alapműveletek 1.1.1. Elméleti összefoglaló Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

KALKULUS II. PÉLDATÁR

KALKULUS II. PÉLDATÁR Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez

Részletesebben

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1 Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

MATEMATIKA II. FELADATGY JTEMÉNY

MATEMATIKA II. FELADATGY JTEMÉNY MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today. KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom DIFFERENCIÁLSZÁMÍTÁS KÉZI CSABA GÁBOR 5. Taylor-polinom 5.. Feladat. Írjuk fel az f(x) = e x függvény x 0 = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével számoljuk ki e közelítő értékét!

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév 1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Néhány közelítő megoldás geometriai szemléltetése

Néhány közelítő megoldás geometriai szemléltetése 5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

TDK dolgozat. Korlátosság vizsgálata irány-hossz vegyes gráfok esetén

TDK dolgozat. Korlátosság vizsgálata irány-hossz vegyes gráfok esetén TDK dolgozat Korlátosság vizsgálata irány-hossz vegyes gráfok esetén Szabó Botond Alkalmazott matematikus szak Eötvös Loránd Tudományegyetem Természettudományi Kar 2009 Témavezet : Jordán Tibor, egyetemi

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Sztochasztikus folyamatok

Sztochasztikus folyamatok Sztochasztikus folyamatok Pap Gyula, Sz cs Gábor Szegedi Tudományegyetem Bolyai Intézet, Sztochasztika Tanszék Utolsó frissítés: 2014. február 8. Tartalomjegyzék Tartalomjegyzék 2 1. Sztochasztikus folyamatok

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben