Numerikus módszerek 1.
|
|
- Kornél Szalai
- 6 évvel ezelőtt
- Látták:
Átírás
1 Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek (LER) megoldása: direkt módszerek (Gauss-elimináció, LU felbontás, Cholesky felbontás, QR felbontás) és iterációs módszerek (Jacobi, Gauss-Seidel, Richardson, ILU algoritmus). Nemlineáris egyenletek megoldása. Banach-féle fixpont tétel. Newton-módszer, húrmódszer, szelımódszer. Becslés a polinom gyökeinek elhelyezkedésére. Az egyes elıadások tematikái 1. elıadás A lebegıpontos számábrázolás egy modellje. Az input függvény (fl) fogalma, tétel az ábrázolt szám hibájáról. A hibaszámítás elemei. Az abszolút és relatív hiba ill. hibakorlát fogalma. Tétel az alapmőveletek abszolút és relatív hibájáról. A függvényérték abszolút és relatív hibája. A függvény a pontbeli kondíciószámának fogalma. 2. elıadás Lineáris egyenletrendszerek (LER) megoldása Gauss-eliminációval. Az elimináció és a visszahelyettesítés mőveletigénye. A sor-, illetve oszlopcsere szükségessége. A részleges és teljes fıelemkiválasztás. A GE alkalmazásai: determináns számítása, azonos mátrixú lineáris egyenletrendszerek megoldása, mátrix inverz számítás. A GE felírása speciális mátrix szorzással. Kapcsolata az LU felbontással. 3. elıadás Az LU felbontás, tétel az! -rıl. A fıminorok és az LU felbontás kapcsolata. L és U elemeinek meghatározásának menete, sorrendek az elemek kifejezésére. Mőveletigénye. Fogalmak: A szimmetrikus, pozitív definit, szigorúan diagonálisan domináns a sorokra ill. oszlopokra, fél sávszélesség, profil, Schur-komplementer. A GE (LU felbontás) megmaradási tételei. 4. elıadás Az LDU felbontás és a Cholesky-féle felbontás, kapcsolatuk az LU felbontással. Tétel a Cholesky-féle felbontásról. QR felbontás Gram-Schmidt ortogonalizációval. 5. elıadás QR felbontás Householder transzformációval. A transzformáció tulajdonságai, alkalmazása LER megoldására. A vektor- és mátrix norma fogalma, példák. Normák ekvivalenciája. 6. elıadás
2 Az indukált mátrix norma konstrukciója, az illeszkedés fogalma. Az 1-es,, Frobenius mátrix norma. A 2-es mátrix norma és kapcsolata a spektrálsugárral. 7. elıadás A lineáris egyenletrendszer érzékenységére vonatkozó tételek. A kondíciószám fogalma és tulajdonságai. A LER megoldásának iterációs módszerei. Banach-féle n fixpont tétel IR -re. 8. elıadás n A LER megoldásának iterációs módszerei. Banach-féle fixpont tétel IR -re. Elégséges feltétel a konvergenciára. Szükséges és elégséges feltétel a konvergenciára. Speciális iterációs módszerek: Jacobi-iteráció, a koordinátákra felírt alakja és a konvergencia tétele. A szigorúan diagonálisan domináns (sorokra ill. oszlopokra) mátrix fogalma. 9. elıadás A csillapított Jacobi-iteráció, a koordinátákra felírt alakja és konvergencia tétele. A Gauss-Seidel-iteráció, a koordinátákra felírt alakja. A Gauss-Seidel relaxáció, a koordinátákra felírt alakja és a konvergencia tételei speciális mátrix osztályokra. 10. elıadás A Richardson-típusú iteráció, konvergencia tétele. Kerekítési hibák hatása az iterációkra. A részleges LU felbontás és az ILU algoritmus. 11. elıadás Nemlineáris egyenletek megoldása. Bolzano tétel, intervallum-felezés. A konvergencia rend fogalma. Brouwer-féle fixpont tétel, Banach-féle fixpont tétel [ a; b] IR -en. Elégséges feltételek a kontrakcióra. Az m-edrendő konvergenciára vonatkozó tétel. 12. elıadás A Newton-módszer és konvergencia tételei (monoton, lokális). Húrmódszer, szelımódszer, többváltozós Newton-módszer. 13. elıadás A Horner algoritmus polinom helyettesítési értékeinek gyors számolására. Becslés a polinom gyökeinek elhelyezkedésére. Az egyes gyakorlatok tematikái 1. gyakorlat Egyszerő hibaszámításos feladatok. A függvényérték hibájára példa. Állandó együtthatós kétlépéses rekurziók esetén a hibaterjedés számolása. Pl. Fibonacci sorozat. Gépi számhalmazra példa. Valós számnak megfeleltetett gépi szám keresése. Pl. 1/12, 1/3, 3,123 stb. Hibakorlát számolások, a számábrázolásból adódóan. 2. gyakorlat
3 Még példák az elızı témakörre, összeadás, kivonás a gépi számok körében. Hibakorlát számolás. Gauss-eliminációval LER megoldás. 3. gyakorlat Példák LU felbontásra többféle módon is. A megmaradási tételekbıl az egyszerőbbek bizonyítása. 4. gyakorlat Példák LDU, Cholesky felbontásra, QR felbontásra Gram-Schmidt ortogonalizációval. 5. gyakorlat Példák Gram-Schmidt ortogonalizációra és Householder transzformációkra. Normás feladatok: Frobenius nem indukált norma, sajátérték és mátrix norma kapcsolata. 6. gyakorlat Zárthelyi dolgozat 7. gyakorlat A * A szimmetrikus, pozitív szemidefinit. Spektrálsugár és norma kapcsolata. A normális esetben a 2-es norma kifejezhetı a spektrálsugárral. 1-es vagy végtelen mátrix norma képletének bizonyítása. A 2-es vektor és mátrixnorma invariáns az ortogonális transzformációkra. Frobenius norma tulajdonságai, illeszkedik a 2-es vektornormához. 8. gyakorlat Kondíciószám számítása különbözı mátrix normákban. A QR- és a Cholesky felbontás kondicionáltsága. Példák LER iterációs módszereire, az elégséges feltétel és a szükséges és elégséges feltétel alkalmazása a konvergencia bizonyítására. Hibabecslések. 9. gyakorlat Példák a Jacobi-, csillapított Jacobi-, Gauss-Seidel-iterációra. A tanult konvergencia tételek alkalmazása. 10. gyakorlat Példa Richardson-típusú iterációra, lépésenkénti optimális paraméter választás. Példa részleges LU felbontásra, és az ILU algoritmus. 11. gyakorlat Példa az intervallum-felezés módszerére. A konvergencia rend fogalma egyszerő nullsorozatokon. A fixpont tétel alkalmazása konkrét feladatokon, hibabecslések. Az m-edrendő konvergenciára vonatkozó tétel alkalmazása. 12. gyakorlat A Newton-módszer és konvergencia tételeinek (monoton, lokális) alkalmazása. A Horner algoritmus konkrét polinomok esetén. Becslés a polinom gyökeinek elhelyezkedésére. 13. gyakorlat Zárthelyi dolgozat
4 Numerikus módszerek 2. Tantárgy kódja: IP-08bNM2EG (1+2) Az elsajátítandó ismeretanyag rövid leírása: A polinom interpoláció. Lagrange és Newton alak. Hermite interpoláció. Spline interpoláció (intervallumonként és B-spline-okkal). Mátrix szinguláris felbontása. Az általánosított inverz és általánosított megoldás. Legkisebb négyzetek módszere. Ortogonális polinomok. Numerikus integrálás. Newton-Cotes formulák (érintı-, trapéz- és Simpson formula, összetett formulák). Csebisev és Gauss típusú kvadratúrák. Az egyes elıadások tematikái 1. elıadás A polinom interpoláció feladata, az interpolációs polinom létezése, egyértelmősége, Lagrange alakja, a Lagrange alappolinomok. 2. elıadás Az interpolációs polinom Newton alakja, az osztott differenciák fogalma. Hibabecslések. 3. elıadás A Csebisev polinom fogalma, tulajdonságai. Alkalmazása az interpolációnál. Az interpolációs polinomok konvergenciája. Az inverz interpoláció. 4. elıadás Az Hermite interpoláció fogalma, létezése, egyértelmősége. Speciális esetek. Hibaformula. Az osztott differencia fogalom kiterjesztése, a Newton-alak felírása. 5. elıadás Az l-edfokú spline fogalma, peremfeltételei. Az elsı és másodfokú spline megadása intervallumonként. 6. elıadás A harmadfokú spline megadása intervallumonként. 7. Globális bázis spline-okra. A B-spline-ok fogalma, a lineáris spline elıállítása B- spline-okkal. 8. elıadás A köbös spline elıállítása B-spline-okkal. Hibabecslések.
5 9. elıadás Mátrix szinguláris felbontása. Az általánosított inverz és általánosított megoldás fogalma, approximációs tulajdonsága. Elıállítása a teljes rangú esetekben. 10. elıadás Legkisebb négyzetek módszere. A négyzetesen legjobban közelítı polinom elıállítása. 11. elıadás A négyzetesen legjobban közelítı polinom elıállítása az általánosított inverzzel és szélsıérték feladatként. 12. elıadás Ortogonális polinomok. Az 1 fıegyütthatós ortogonális polinom rekurziója, gyökeire vonatkozó tételek. Klasszikus ortogonális polinomok (intervallum, súlyfüggvény). 13. elıadás Numerikus integrálás, interpolációs kvadratúra formulák. Tétel a pontosságról. Newton-Cotes formulák jellemzése, a zárt és nyílt formulák megadása. Érintı-, trapézés Simpson formula és hibabecsléseik. Összetett formulák. 14. elıadás Csebisev típusú kvadratúra formulák jellemzése, elıállítása a momentumok segítségével. Gauss típusú kvadratúra formulák jellemzése. Tétel a pontosságról, hibaformula.
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
Numerikus Analízis. Király Balázs 2014.
Numerikus Analízis Király Balázs 2014. 2 Tartalomjegyzék 1. A hibaszámítás elemei 7 1.1. A matematika modellezés folyamata és a hibaforrások megjelenése.. 7 1.2. Lebegőpontos számábrázolás.......................
Tétel: Ha,, akkor az ábrázolt szám hibája:
1. A lebegpontos számábrázolás egy modellje. A normalizált lebegpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl) fogalma,
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
Tárgymutató I Címszavak jegyzéke
9. Tárgymutató I 9.1. Címszavak jegyzéke adaptív integrációs módszer, 350 Aitken-féle eljárás, 350 Aitken Neville-eljárás, 324 alappontok, 250, 334 szabálytalanul elhelyezkedő, 317 algoritmus, 17 abszolút,
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Táblán. Numerikus módszerek 1. előadás (estis), 2017/2018 ősz. Lócsi Levente. Frissült: december 1.
Táblán Numerikus módszerek 1. előadás (estis), 2017/2018 ősz Lócsi Levente Frissült: 2017. december 1. Ebben az írásban a 2017/2018 őszi félév estis Numerikus módszerek 1. előadásának a diasorban nem szereplő,
KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY
Írta: MIHÁLYKÓ CSABA VIRÁGH JÁNOS KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Mihálykó Csaba, Pannon Egyetem Műszaki Informatikai Kar Matematika
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ VEKTOR- ÉS MÁTRIXNORMÁK,
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK
Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, A. csoport, MEGOLDÁSOK. Feladat. Az a. választás mellett A /( a) értéke.486. Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás
A CSOPORT 4 PONTOS: 1. A
A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Tartalomjegyzék 1 BEVEZETÉS 2
Tartalomjegyzék BEVEZETÉS FELADATOK. Lebegőpontos számok.............................. Normák, kondíciószámok........................... 5. Lineáris egyenletredszerek megoldása, mátrixok felbontása........
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Numerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEŞ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet A MAGYAR TAGOZAT FIZIKA INTÉZETE 1.4 Szakterület FIZIKA / ALKALMAZOTT
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEȘ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet MAGYAR FIZIKA INTÉZET 1.4 Szakterület FIZIKA 1.5 Képzési szint LICENSZ
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ GÉPI SZÁMÁBRÁZOLÁS
Lineáris algebra és mátrixok alkalmazásai
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Lineáris algebra és mátrixok alkalmazásai Szakdolgozat Készítette: Ruzsányi Orsolya Matematika BSc, matematikai elemző szakirány Témavezető: Fialowski
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Numerikus Analízis I.
Numerikus Analízis I. Sövegjártó András Jegyzet másodéves programozó és programtervező matematikus szakos hallgatóknak 2003. ,,A sikerhez és tudáshoz vezető út senki előtt sincs zárva, akiben van bátorság
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy
Numerikus integrálás április 18.
Numerikus integrálás 2016. április 18. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
NÉVMUTATÓ. Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J.
NÉVMUTATÓ Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J., 155 157 Cauchy, A. L., 155 157 Cayley, A., 272, 327 Codenotti, B., 93 Cramer,
Numerikus módszerek példatár
Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. július 5. Tartalomjegyzék Előszó 2 Feladatok 4 1. Előismeretek 4 1.1. Képletek, összefüggések............................ 4
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Numerikus Matematika
Numerikus Matematika Baran Ágnes Gyakorlat Interpoláció Baran Ágnes Numerikus Matematika 6.-7. Gyakorlat 1 / 40 Lagrange-interpoláció Példa Határozzuk meg a ( 2, 5), ( 1, 3), (0, 1), (2, 15) pontokra illeszkedő
14. fejezet. Tárgymutató Címszavak jegyzéke
14. fejezet Tárgymutató 14.1. Címszavak jegyzéke A Adams Bashforth módszerek 71 Adams Moulton módszerek 71 Adams módszerek, változó lépéstávolságú 96 algebro-differenciálegyenletek 150 alulintegráció 346,
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. címe:
Tantárgy rövid neve (Matematika II.) Tantárgy teljes neve (Matematika II.) Tantárgy neve angolul (Mathematics II.) Neptun kódja (SGYMMAT2012XA) Szak (Építőmérnöki szak, Menedzser szak) Tagozat (Nappali
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Numerikus integrálás
Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Numerikus módszerek 1.
Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
41. Szimmetrikus mátrixok Cholesky-féle felbontása
Benyújtja: Kaszaki Péter (KAPMAAT.SZE) 2005 november 21. 1.oldal Tartalomjegyzék 1. Bevezetés 4 2. A Gauss elimináció és az LU felbontás 4 2.1. Gauss elimináció 4 2.1.2. A Gauss elimináció mátrixos alakban
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Interpolációs eljárások
Interpolációs eljárások Szakdolgozat Írta: Baloghné Koterla Orsolya Matematika BSc szak - elemző szakirány Témavezető: Svantnerné Sebestyén Gabriella doktorandusz Alkalmazott Analízis és Számításmatematikai
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
1. Az euklideszi terek geometriája
1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
Numerikus módszerek példatár
Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. június Tartalomjegyzék El szó 5 Feladatok 9 1. El ismeretek 9 1.1. Képletek, összefüggések............................ 9 1.2.
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1
Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Eötvös Loránd Tudományegyetem Természettudományi Kar
Eötvös Loránd Tudományegyetem Természettudományi Kar Alapvető iterációs eljárások lineáris egyenletrendszerek megoldására Szakdolgozat Ruzsics László Matematika B.Sc., elemző szakirány Témavezető: Kurics
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Numerikus módszerek. Labor gyakorlatok. Muszaki és Társadalotudományi Kar Marosvásárhely
Numerikus módszerek Labor gyakorlatok Kupán Pál Muszaki és Társadalotudományi Kar Marosvásárhely Tartalomjegyzék. Sorok összegének a kiszámítása 5 2. A felez o módszer. A Newton-féle módszer. 7 3. A húr,
Matematika elméleti összefoglaló
1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.
ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Tartalomjegyzék. Typotex Kiadó, 2010
Tartalomjegyzék 15. Elliptikus egyenletek 7 15.1. Bevezetés: Elliptikus egyenletek alkalmazott feladatokban... 7 15.2. Elméleti háttér.......................... 9 15.3. Véges dierencia eljárások II...................
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0
Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Számítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
Az érintőformula A Simpson formula Gauss-kvadratúrák Hiba utólagos becslése. Numerikus analízis
Az érintőformul Érintőformul Az érintőformul egy nyílt Newton-Cotes formul, melyre: ( ) + b f (x)dx (b )f. 2 Az érintőformul úgy is értelmezhető, hogy függvényt z [, b] intervllum középpontjához húzott
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer