Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
|
|
- Amanda Szilágyi
- 9 évvel ezelőtt
- Látták:
Átírás
1 YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához nélkülözhetetlenek, valamint matematikai ismeretek bővítése a szakirodalom tanulmányozásához. Tartalom: Határozatlan integrál alkalmazásai (ívhossz, felszín, súlypont, inercia számítására). Kétváltozós függvények szélsőértékhelyének meghatározása. Improprius integrál. Közelítő integrálás. Lineáris algebra elemei: függetlenség, bázis. Lineáris egyenletrendszer megoldása: Gauss elimináció. Determináns, Cramer szabály a lineáris egyenletrendszer megoldására. Mátrix sajátvektora, sajátértéke. Valószínűségszámítás: Véletlen esemény, eseménytér, műveletek eseményekkel. Klasszikus eseménytér, kombinatorika. Valószínűségi változó és jellemzői (eloszlásfüggvény, sűrűségfüggvény, várható érték szórás, medián). Nevezetes eloszlások. Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. Irodalom: Kovács J., Takács G., Takács M.: Analízis (Matematika a műszaki főiskolák számára), 7. fejezet); Páldi V., Hajdu A., Dr Reimann I., B. Tóth F.: Matematika III. (Nemzeti Tankönyvkiadó, J15-425) 1., 3. fejezetek; Thomas-féle kalkulus II. (Typotex Kiadó), , 7., , , 9.5 fejezetek; Szabó I.: Valószínűségszámítás (Kodolányi János Főiskola), fejezetek; Nagyné Csóti Beáta: Valószínűségszámítás példatár (Nagy Duó Bt. Tatabánya, 2001); Égertné Molnár É., Hujter Mihály, Kálovics F.,. Mészáros J.: Numerikus matematika mérnököknek (Ybl Miklós Műszaki Főiskola, 1995), I.1, I.2, II., III.5 fejezetek. Ajánlott irodalom: Giordano Hass Thomas Weir: Thomas-féle kalkulus 1., Typotex Kiadó, Hass Thomas Weir: Thomas-féle kalkulus 2., Typotex Kiadó, Követelmények: 1. zh a 4. alkalommal 2. zh a 8. alkalommal 3. zh a 12. alkalommal Félévi jegy kiszámítása: A hallgatók a 4. héten írnak egy 30 pontos, a 8. héten írnak egy 35 pontos, és a 12. héten írnak egy 35 pontos dolgozatot. Mindegyik dolgozat 45 perces, és a gyakorlati órákon írják a hallgatók. Javító dolgozat az utolsó gyakorlaton, ahol minden zh külön javítható. Ha egy
2 hallgató legfeljebb 3-3 alkalommal hiányzik az előadásokról, ill. a gyakorlatokról, összesen legalább 30 pontot elér a gyakorlatokon megírt dolgozatokból úgy, hogy mindegyik dolgozatból szerzett legalább 5 pontot, akkor a hallgató megkapja az aláírást. Plusz 10 pontot szerezhetnek a hallgatók egy, a karon tanári felügyelet mellett megírt házi dolgozaton a házi dolgozat kiírásában szereplő feltételek teljesítése esetén -ez a dolgozat lesz a Hajós György Matematika verseny házi válogatója-, ill. további 10 plusz pontot szereznek a 2014-es Hajós György versenyen részt vevő azon diákok, akiket a Mat. és Inf. szakcsoport delegál a versenyre. Megajánlott jegy a következők szerint szerezhető: Az elért összpontszámot tekintve (a maximálisan szerezhető 100 pontból) ajánlott jegy a következőképp szerezhető: pont: elégséges (2), 66 ponttól: közepes (3). Aki nem szerezte meg a javító dolgozatokkal sem a megajánlott jegyet, vagy pedig nem fogadja el a megajánlott jegyet, az vizsgázhat az egész félév anyagából. A vizsga 60 perces. A vizsgán megszerzett eredmény alapján az érdemjegy a következő pont: elégséges (2), pont: közepes (3), pont: jó (4), pont: jeles (5). Tematika, ütemezés: ELŐADÁS hét A (65perc) B (70perc) 1 B: Függvények érintkezése, simulókör, Taylor polinom B: Mátrixok (speciális, inverz mátrix), determináns, adjungált mátrix inverz mátrix mátrix sajátértéke, sajátvektora 2 A: Tér koordinátageom., másodr. felületek; B: Lineáris algebra, vektorok, lineáris tér, lin. komb., függetlenség, rang, bázis, dimenzió. 3 A: Kétváltozós függvények: iránymenti derivált, totális diffhatóság, érintősík B: Véletlen események, műv. esem.- kel, Ω eseménytér, kombinatorika (gyak->!), valószínűség fogalma A: Integrálszámítás: improprius integrál B: Valószínűség, valószínűségi axiómák, tulajdonságok, feltételes vsz, függetlenség, teljes vsz.tétele, Bayes-tétel 5 A: Közelítő integrálás B: Valószínűségi változók, eloszlásfüggvény, sűrűségfüggvény
3 6 A: Integrálszámítás alkalm: ívhossz B: Valószínűségi változók számjellemzői, várható érték,szórás, medián, kvantilis 7 A: Integrálszámítás alkalm: felszín, súlypont B: Csebisev egy. Nevezetes eloszlások (binomiális, Poisson, egyenletes) A: Integrálszámítás alkalmazásai: súlypont, inercia B: Nevezetes eloszlások (exponenciális, normális, egyenletes) A: Szétválasztható változójú és erre visszavezethető B:Numerikus bevezető; függvényközelítés: Lagrange interpoláció A: Elsőrendű lineáris diffegyenletek B: Numerikus bevezető; függvényközelítés: Lagrange interpoláció A: Másodrendű lineáris diffegyenletek. B: Függvényillesztés: lin.regresszió 12 máj. 05. A: Hiányos másodrendű. B: Nemlineáris egyenletek megoldása (húr, Newton) 13 máj. 12. A: csúszás, félévi összefoglaló, vizsgafelkészülés B: csúszás, félévi összefoglaló, vizsgafelkészülés GYAKORLAT hét A (90perc) B (90perc) 1 Differenciálszám.(logaritmikus deriválás, paraméteres és implicit függvények magasabb rendű deriváltjai) Mátrixok, mátrixműveletek, determináns, inverz mátrix 2 Függvények érintkezése, Taylor polinom, simulókör Lineáris algebra: vektorműveletek, lineáris függetlenség, bázis, koordináták 3 Cramer szabály sajátérték, sajátvektor Lineáris egyenletrendszer alakjai, Gauss elimináció
4 ZH (45 perc, 30 pont, 1-3. hét Koordináta geometria; sík megadása, egyenlete; másodrendű felületek Műveletek véletlen eseményekkel, kombinatorika 5 Kétváltozós függvények: parciális derivált, gradiens, iránymenti derivált Valószínűségi tulajdonságok, klasszikus valószínűség számítása 6 Integrálszámítás: impropius integrál feltételes valószínűség, teljes valószínűség tétele, Bayes tétel, függetlenség, valószínűségi változók bevezetése 7 Közelítő integrálás Valószínűségi változók (eloszlás, eloszlásfüggvény, sűrűségfüggvény.) valószínűség kiszámítása ZH (45 perc, 35 pont, 4-7. hét Integrálszámítás alkalmazásai: ívhossz, felszín Valószínűségi változó (várható érték, szórás) Integrálszámítás alkalmazása: súlypont, inercia, Pappus-Guldin tételek Nevezetes diszkrét eloszlások Differenciálegyenletekkel kapcsolatos alapfogalmak (általános, partikuláris megoldás), Szétválasztható változójú lineáris Nevezetes folytonos eloszlások Csebisev egyenlőtlenség Szétválasztható változójú, valamint erre visszavezethető. Lineáris Elsőrendű lineáris 12 máj ZH (45 perc, 35 pont, hét Másodrendű lineáris Nemlineáris egyenletek közelítő megoldása 13 máj. 12. Lagrange interpoláció, Hermite interpoláció. Lineáris regresszió (az előadás képletének alkalmazása) Javító zh Nemlineáris egyenletek megoldása (húr módszer, Newton módszer) Javító ZH: az utolsó gyakorlaton, minden zh külön javítható. (1db zh ideje 45 perc, 2db zh ideje 2x45=90 perc, 3db zh ideje 2x45=90 perc) Dolgozatokban grafikus számológépet nem lehet használni, és olyat sem, amely tud szimbolikus műveletekkel (x-et tartalmazó kifejezésekkel) számolni határértéket, deriváltat, határozatlan integrált vagy határozott integrált.
5 Ütemezés levelezőknek: Előadás és gyakorlat 1. Lineáris algebra elemei 1. Lineáris egyenletrendszerek megoldása (Gauss elimináció), n komponensű vektorok, műveletek vektorokkal, lineáris tér, az R n tér, vektorok lineáris kombinációja, vektorok lineáris függetlensége, összefüggő vektorok. Vektorrendszer rangja, lineáris tér dimenziója. Bázis. Reprezentációs tétel. Bázisra vonatkozó koordináták. Mátrixok. Műveletek mátrixokkal. Speciális mátrixok. Inverz mátrix. Determináns. Cramer - szabály. Mátrix sajátértéke, sajátvektora ZH (45 perc, 30 pont, 1. foglalkozás A tér analitikus geometriája. Az egyenes és sík egyenletei. Kétváltozós függvények 2. A totális derivált és geometriai jelentése. P0-ban totálisan deriválható függvények tulajdonságai, érintősík felírása. Iránymenti derivált, gradiens vektor és jelentése, szélsőértékszámítás. Analízis 1. Differenciálszámítás alkalmazásai: síkgörbék érintkezése. Taylor - polinom, Taylor - formula. A Taylor formula felhasználása függvények közelítő értékeinek meghatározására. Simulókör. Görbület. 3. Analízis 2. Határozatlan integrál. Határozott integrál. Improprius integrál. A határozott integrál alkalmazásai: ívhossz, felszín. Valószínűség-számítás 1. Kombinatorika. Véletlen esemény, eseményalgebra, valószínűség fogalma, axiómái, tulajdonságai. Klasszikus valószínűség-számítási feladatok. Feltételes valószínűség, teljes valószínűség tétele, Bayestétel. Események függetlensége ZH (45 perc, 35 pont, 2-3. foglalkozás Analízis 3. Integrálszámítás alkalmazása: Homogén síklemez súlypontja és inercia-nyomaték számítása. Forgástestek térfogatának számítása Pappus-Guldin tételek segítségével. Közelítő integrálás: Trapéz-formula, Simpson- formula. Valószínűség-számítás 2. Valószínűségi változók, eloszlás, eloszlásfüggvény, sűrűségfüggvény. Várható érték, szórás. 5. Analízis 4. Differenciálegyenletek fogalma, típusai. Általános és partikuláris megoldás. Kezdeti érték feladat. Szétválasztható változójú és arra visszavezethető. Elsőrendű lineáris. Valószínűség-számítás 3. Nevezetes eloszlások: binomiális, egyenletes, exponenciális, normális eloszlás. Csebisev egyenlőtlenség ZH (45 perc, 35 pont, 4-5. foglalkozás 1. illetve 2. zh javítása. Analízis 5. Másodrendű lieáris megoldása. Numerikus módszerek. Alapfogalmak, a numerikus módszerek típusai, alkalmazásának szükségessége. Függvényközelítés interpolációval: Lagrange-interpoláció. Regresszió-számítás. Nem lineáris egyenletek megoldása: érintőmódszer, húrmódszer. Mintafeladatok. Dolgozatokban grafikus számológépet nem lehet használni, és olyat sem, amely tud szimbolikus műveletekkel (x-et tartalmazó kifejezésekkel) számolni határértéket, deriváltat, határozatlan integrált vagy határozott integrált.
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. címe:
Tantárgy rövid neve (Matematika II.) Tantárgy teljes neve (Matematika II.) Tantárgy neve angolul (Mathematics II.) Neptun kódja (SGYMMAT2012XA) Szak (Építőmérnöki szak, Menedzser szak) Tagozat (Nappali
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika III. KMEMA31TND Kreditérték:
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Kód: BMETE90AX00; Követelmény: 4/2/0/V/6; Félév: 2016/17/2; Nyelv: magyar; Előadó: Dr. Fülöp Ottilia Gyakorlatvezető: Dr. Fülöp
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Tárgykódok: BMETE93BG01, BMETE94BG01, BMETE90AX00 Kurzuskódok: G00, G01, G02, H0, H1, HV Követelmény: 4/2/0/V/6;
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:
MATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 2. 1.2 Azonosító (tantárgykód) GKNB_MSTM008 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 2 gyakorlat
Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék
Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
Gazdasági matematika
ALKALMAZOTT KVANTITATÍV MÓDSZERTAN TANSZÉK Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy
2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.
Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév
Gazdasági matematika
Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Gazdasági matematika 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése
Matematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
Matematikai alapok 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
Alkalmazott matematika és módszerei I Tantárgy kódja
Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve
Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Oeconomicus Napocensis Verseny Március 24 és május IV. szekció Tantárgy: MATEMATIKA I
Str. Teodor Mihali nr. 58-6 Cluj-Napoca, RO-495 Tel.: 64-4.86.5-5 Fa: 64-4.5.7 Március 4 és május 5 8 IV. szekció Tantárgy: MATEMATIKA I TEMATIKA: Valós számok; komple számok; számtani és mértani sorozatok;
A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.
ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.
Csomós Petra. Loránd Tudományegyetem, Budapest. függvénytan, valós és komplex vonalintegrál)
Oktatási és témavezetői tevékenység Csomós Petra 1. Oktatás 2001.09 12. 2003.09 12. 2001.02 06. 2003.02 06. 2002.09 12. 2004.09 12. 2003.02 06. 2005.02 06. Analízis I. gyakorlat meteorológus és geofizikus
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
17.2. Az egyenes egyenletei síkbeli koordinátarendszerben
Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.
Kurzusinformáció. Analízis II, PMB1106
Kurzusinformáció Analízis II, PMB1106 2013 Tantárgy neve: Analízis II Tantárgy kódja: PMB1106 Kreditpont: 4 Heti kontakt óraszám (elm.+gyak.): 2+2 Előfeltétel: PMB1105 Félévi követelmény: kollokvium Előadás
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
MATEMATIKA 1. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 1. 1.2 Azonosító (tantárgykód) GKNB_MSTM001 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 4 gyakorlat
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDKE, INDKG Félév: 04/05-II. Előadó: Boros Zoltán Óraszám: + (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele: Kalkulus
A gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
Csomós Petra. Loránd Tudományegyetem, Budapest. függvénytan, valós és komplex vonalintegrál)
Oktatási és témavezetői tevékenység Csomós Petra 1. Oktatás 2001.09 12. 2003.09 12. 2001.02 06. 2003.02 06. 2002.09 12. 2004.09 12. 2003.02 06. 2005.02 06. Analízis I. gyakorlat meteorológus és geofizikus
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor Bodrogné Réffy Júlia, Horváth Róbert 2018/19. II. félévtől Tantárgykód: BMETE90AX20 Félév: 2018/19. tavasz Nyelv: magyar
ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)
Tantárgy: MATEMATIKA Készítette: KRISTÓF GÁBOR, KÁDÁR JUTKA Osztály: 12. évfolyam, fakultációs csoport Vetési Albert Gimnázium, Veszprém Heti óraszám: 6 Éves óraszám: 180 Tankönyv: MATEMATIKA 11 és MATEMATIKA
Matematika 11. évfolyam
Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)
Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)
Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR Budapest, 2018 Szerző: SZENTELEKINÉ DR. PÁLES ILONA főiskolai docens 978-963-638-542-2 Kiadja a SALDO Pénzügyi
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Tartalomjegyzék. 1. Előszó 1
Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............
cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2016/2017-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél
Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Matematika tanmenet 11. évfolyam (középszintű csoport)
Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2015/2016-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz
II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
I. Fejezetek a klasszikus analízisből 3
Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9
Tantárgyi útmutató. Gazdasági matematika II.
Módszertani Intézeti Tanszék Tantárgyi útmutató Gazdasági matematika II. Nappali Tagozat 2015/16 tanév II. félév 1/5 Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági matematika
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
Gyakorlo feladatok a szobeli vizsgahoz
Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Gazdasági matematika II.
Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2007/8 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2007/8 tanév, II. félév 1 / 186 Félévközi
Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév
1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához
ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Matematika tanmenet 12. osztály (heti 4 óra)
Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény
Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0
Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
TANMENET. a matematika tantárgy tanításához 11.E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 11.E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos
Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Osztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
Biomatematikai Tanszék
BIOSTATISZTIKA DENTISTRY Biomatematikai Tanszék Tantárgy: BIOSTATISZTIKA Év, szemeszter: 1. évfolyam - 1. félév Óraszám: Szeminárium: 28 Kód: FOBST03F1 ECTS Kredit: 2 A tárgyat oktató intézet: Biofizikai
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
TARTALOM. Előszó 9 HALMAZOK
TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási
Többváltozós, valós értékű függvények
TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.
Elhangzott tananyag óránkénti bontásban
TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
Gazdasági matematika II.
Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar 2014. február 16. Losonczi László, Pap Gyula (DE, KTK) Gazdasági matematika II. 2014. február