Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató"

Átírás

1 Kalkulus (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDKE, INDKG Félév: 04/05-II. Előadó: Boros Zoltán Óraszám: + (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele: Kalkulus (INDK) előadás vagy vizsgakurzus sikeres teljesítése Az előadások részletes tematikája: Az előadás dátuma (05) időpont: hétfő , helyszín: IK-F0 tanterem február 6. február 3. március. március 9. március 6. március 3. március 30. április 6. április 3. április 0. április 7. május 4. május. május 8. Az előadás tartalmi vázlata Primitív függvény, határozatlan integrál, alapintegrálok, integrálási szabályok (parciális és helyettesítéses integrálás). Integrálási módszerek (az integrálási szabályok tipikus alkalmazásai, a helyettesítés speciális esetei), racionális törtek integrálása, racionalizáló helyettesítések. A Riemann-integrál fogalma. Közbeeső integrálközelítő összegek. Az integrál kiszámítása: Newton Leibniz-formula. Riemann-kritérium; a Riemann-integrálhatóság elegendő feltételei (folytonosság, monotonitás). Műveletek Riemannintegrálható függvényekkel (folytonos függvény módosítása egy [vég]pontban, intervallum-additivitás, linearitás). Az integrál, mint a felső határ függvénye. Integrálási szabályok Riemann-integrálra. Improprius integrálok értelmezése, létezése. Az integrál alkalmazásai. Az. zárthelyi gyakorlati dolgozat megírása. Tavaszi szünet (Szakmai Napok). Húsvét Hétfő: ezen a napon nincsenek tanórák. Szeparábilis differenciálegyenlet. Elsőrendű lineáris differenciálegyenlet. Másodrendű állandó együtthatós homogén lineáris differenciálegyenletek; inhomogén egyenlet megoldása próbafüggvénnyel. Távolság és topológiai alapfogalmak R n -ben. Többváltozós függvények folytonossága, határértéke. Derivált-fogalmak többváltozós függvényekre. Magasabb rendű parciális deriváltak. Magasabb rendben folytonosan differenciálható függvények. Young és Taylor tételei kétszer folytonosan differenciálható függvényekre. Többváltozós függvények lokális szélsőértékhelyei. A. zárthelyi gyakorlati dolgozat megírása. Riemann-integrál téglán és korlátos tartományokon. Integráltranszformáció; polárkoordináták alkalmazása.

2 A gyakorlatok órarendi időpontjai: A gyakorlatvezető neve: Nap Óra Tanterem Boros Zoltán hétfő 4 6 IK-F0 Szokol Patrícia kedd 4 6 IK-F0 Szokol Patrícia kedd 6 8 IK-0 Kosztur Judit kedd 6 8 IK-F0 Konkoly Ágnes csütörtök 6 8 IK-0 A táblázatban feltüntetett kétórás intervallumok tartalmazzák a -szer 50 perces gyakorlati óra és a -szer 0 perces szünet időtartamát. A gyakorlatvezető határozza meg (a gyakorlatra járó hallgatókkal szóban egyeztetve) a tényleges időbeosztást (például lehet az előadás mintájára szünet nélkül 00 perces gyakorlatot tartani vagy 50 perc gyakorlat után 0 perc szünet és újabb 50 perc gyakorlat). A gyakorlatok tematikája az előadást követi. Célszerű a mellékletben közzétett gyakorló feladatsorok használata otthoni felkészülésre és ugyanezen feladatsor feladatainak (vagy az ajánlott példatárakban található további hasonló feladatok) megoldása a gyakorlatokon. A dolgozatírást követő gyakorlatokon javasolt néhány érdekes, de nehezebb feladat bemutatása (például a kör kerülete; a gömb felszíne és térfogata), valamint a Húsvét utáni héten (amikor nincs előadás) el lehet kezdeni a következő témakör (differenciálegyenletek) feladatainak a megoldását. Alapvető feladat-típusok: Határozatlan és határozott integrálok kiszámítása (alapintegrálok, linearitás alkalmazása; a parciális és a helyettesítéses integrálás tipikus esetei; racionális törtfüggvények integrálása, egyszerűbb racionalizáló helyettesítések). Terület-számítás integrálással. Improprius-integrálok meghatározása definíció alapján. Elemi úton megoldható (szétválasztható változójú, elsőrendű lineáris) differenciálegyenletek és azokra vonatkozó kezdetiérték-feladatok megoldása. Másodrendű állandó együtthatós homogén lineáris differenciálegyenletek megoldása. Az inhomogén egyenlet partikuláris megoldásának keresése próbafüggvénnyel és az általános megoldás felírása. Pontok euklideszi távolságának meghatározása (síkban, térben). Többváltozós függvények parciális deriváltjainak meghatározása. Többváltozós függvények lokális szélsőérték-helyeinek meghatározása. Integrálás téglán, háromszög-tartományon, körlapon, félkörön és negyed-körön.

3 A gyakorlat számonkérése és teljesítése: A gyakorlat teljesítését a gyakorlatvezető aláírással igazolja. A gyakorlati aláírás feltétele a gyakorlatokon való részvétel és a gyakorlati számonkérés során elért legalább 50 %-os eredmény. A szorgalmi időszakban két zárthelyi gyakorlati dolgozatot kell írni. A felkészülést a gyakorló feladatsorok mellett a két mellékelt gyakorlati mintadolgozat is elősegíti. A dolgozatok feladatainak helyes megoldásával dolgozatonként maximum 5 pont, a gyakorlat során tehát összesen maximum 50 pont szerezhető. A gyakorlatokon aktív hallgatók szorgalmi pontokat szerezhetnek; egy-egy zárthelyi dolgozat előtt legfeljebb 5 pontot. Az így kapott szorgalmi pontszám (a NEPTUN-ban kiegészítő pontszámként rögzítve) hozzáadódik a soron következő dolgozatban elért pontszámhoz (de abban az esetben, ha ez az összeg meghaladná a 5 pontot, csak 5 pont vehető figyelembe az összeg helyett; tehát a szorgalmi pontok figyelembe vételével is összesen legfeljebb 50 gyakorlati pont szerezhető). Ha a hallgató összesített gyakorlati pontszáma (a továbbiakban: GyP) eléri vagy meghaladja a 5 pontot, a gyakorlatvezető aláírja a gyakorlat teljesítését, továbbá a (GyP-5)/5 (alsó) egész részét (tehát maximum 5-öt) vizsga többletpontként jóváír a hallgató számára. Egyéni tanrend engedélyezése esetén a hallgató nem köteles gyakorlatra járni, de a dolgozatok megírása (az eredeti vagy a pótlásra kijelölt időpontban) és legalább 5 gyakorlati pont elérése ilyen esetben is kötelező. Dolgozatok (és konzultációk) ütemezése: március 9. (csütörtök) 8:30, M 40: Konzultáció (az. dolgozathoz) március 3. (hétfő) :00, IK-F0:. gyakorlati dolgozat április 9. (csütörtök) 8:30, M 40:. javító ill. pót-dolgozat május 7. (csütörtök) 8:30, M 40: Konzultáció (a. dolgozathoz) május. (hétfő) :00, IK-F0:. gyakorlati dolgozat május. (csütörtök) 8:30, M 40: (. vagy). javító ill. pót-dolgozat Amennyiben egy hallgató javító dolgozatot ad be, a dolgozat eredeti pontszáma törlődik, és helyette a javító dolgozat pontszáma veendő figyelembe (akkor is, ha az kisebb). Pont-számítási minták: (VT = vizsga többletpont) Név Szorg. pont febr.-márc. Dolg. Pótdolg. Részpont Szorg. pont ápr.-máj. Dolg. Pótdolg. Részpont Példa Anita i 3 Példa Béla n Példa Csaba i 4 Példa Dóra i A gyakorlati aláírással már rendelkező hallgatóknak nem kell ismételten gyakorlati aláírást szerezniük. A vizsgára való felkészülés és a vizsga többletpontok szerzésének lehetősége érdekében ezek a hallgatók is bejárhatnak gyakorlatokra, ott szorgalmi pontokat is szerezhetnek, illetve a kijelölt időpontokban megírhatják a zárthelyi dolgozatokat. A gyakorlatokon részt vevő, de oda be nem osztott hallgatóknak jelezniük kell jelenlétüket a gyakorlatvezetőnek. Össz. pont Aláírás VT 3

4 A vizsga lebonyolítása és értékelése: A szorgalmi időszakban gyakorlati aláírást szerző (vagy azzal már korábban rendelkező) hallgatók az általuk az előadó által meghirdetett időpontok közül választott vizsganapon írásbeli vizsgát tehetnek. A vizsga rendjére vonatkozóan a Tanulmányi és Vizsgaszabályzat rendelkezései az irányadóak. A hallgatók csak fényképes igazolvánnyal vehetnek részt a vizsgán. A vizsga során tankönyv, jegyzet, telekommunikációs eszköz vagy adatolvasásra alkalmas berendezés nem használható. Számolásokhoz számológép igénybe vehető, bár általában nem szükséges; telefon vagy számítógép viszont számológép üzemmódban sem használható, mivel egyáltalán nem vehető elő bekapcsolt állapotban. Amennyiben megállapítást nyer, hogy a vizsgázó meg nem engedett segítséget (szomszéd dolgozatát, tiltott eszközt stb.) vett igénybe, ellene fegyelmi eljárás kezdeményezhető; az eljárás befejezéséig vizsgáit a kar felfüggeszti. A vizsga végén a vizsgáztató átveszi a hallgatóktól a megírt dolgozatokat. A dolgozatok kiértékelésére nem a vizsga helyén kerül sor, így azt a hallgatóknak nem kell a helyszínen megvárniuk (a vizsgázó hallgató a vizsgára szánt idő letelte előtt de legalább félórával a dolgozatírás kezdete után befejezheti a dolgozat-írást és dolgozata leadásával távozhat a vizsgáról). Vizsga közben a termet nem szabad elhagyni (tehát a vizsgázó távozása esetén a vizsgáját befejezettnek kell tekinteni). A hallgató saját vizsgadolgozatának értékelését a vizsganapot követő munkanapon 8:00-tól 9:30 óráig megtekintheti a Matematikai Épület M 36 irodájában. Értékelés után a vizsgadolgozatok pontszámai és az érdemjegyek rögzítésre kerülnek a Tanulmányi Rendszerben. A mellékelt mintához hasonló vizsgadolgozatban a vizsgázó legfeljebb 50 pontot szerezhet (de a bizonyításokért és a gyakorlati eredményért kapott többletpontokkal az összeg 50 pontnál több is lehet). A dolgozat részei: Megnevezés (leírás) Szerezhető pontszám Beugró (alapvető definíciók illetve alaptételek). min. 5 (!), max. 0 (+ bizonyítások) További elméleti kérdések (definíciók, tételek, formulák). A tételek bizonyítása nem elvárás, de egyes tételek bizonyításának a leírásával további többletpontok szerezhetők. max. 5 (+ bizonyításokért többletpontok) Alapvető feladatok (a gyakorlati dolgozatok feladataihoz hasonlók) max. 0 További feladatok (gyakorló feladatsorok vagy előadás alapján) max. 5 + Gyakorlati eredményért kapott többletpontszám beszámítása (csak az első vizsgán!) max. +5 Összesített vizsga-pontszám max. 50 (+ biz. + gyak.) Az így kialakított összesített vizsga pontszám alapján a következő táblázat szerint kerül beírásra a vizsgajegy (az egy sorba írt feltételek között és kapcsolat értendő): 4

5 Beugró pontszám (BP): Összesített vizsga pontszám (ÖVP): Vizsgajegy BP < 5 elégtelen () 5 BP 5 ÖVP 4 elégtelen () 5 BP 5 ÖVP 30 elégséges () 5 BP 3 ÖVP 37 közepes (3) 5 BP 38 ÖVP 44 jó (4) 5 BP 45 ÖVP 50 (+ többlet) jeles (5) A vizsgadolgozat beugró kérdései Alapvető definíciók: primitív függvény; korlátos függvény adott beosztáshoz tartozó alsó/felső integrálközelítő összege, alsó/felső Darboux-integrálja, Riemannintegrálhatósága (és integrálja); elsőrendű lineáris differenciálegyenlet; pontok euklideszi távolsága; halmaz belső pontja, határpontja; nyílt halmaz; (többváltozós, vektor értékű) függvény folytonossága, iránymenti deriváltja, parciális deriváltja, lokális minimum/maximum-helye. Alaptételek: Newton Leibniz-formula; a parciális integrálás tétele Riemann-integrálra, a helyettesítéses integrálás tétele Riemann-integrálra; a lokális szélsőérték szükséges feltétele (többváltozós függvényekre); Young tétele (a vegyes parciális deriváltakra); Fubini tétele (speciális eset: folytonos függvény integrálása téglalapon). A vizsgadolgozatban feltehető további elméleti kérdések (az előbbiek, valamint) Definíciók: beosztás finomítása, szelekciója, közbeeső integrálközelítő összeg; improprius-integrálok; másodrendű állandó együtthatós homogén lineáris differenciálegyenlet karakterisztikus polinomja; (többváltozós, vektor értékű) függvény határértéke, differenciálhatósága, deriváltja; kétszer folytonosan differenciálható (többváltozós) függvény; Riemann-integrál korlátos tartományon. Tételek: adott függvény primitív függvényeinek kapcsolata intervallumon; a Riemannintegrálhatóság Riemann-kritériuma és elegendő feltételei; linearitás és intervallumadditivitás Riemann-integrálra; az integrálfüggvény (mint a felső határ függvénye) differenciálhatósága; az integrál, mint terület; forgástest térfogata és felszíne; inhomogén és homogén lineáris differenciál-egyenletek megoldásainak kapcsolata; másodrendű állandó együtthatós homogén lineáris differenciálegyenlet általános megoldása; (többváltozós, vektor értékű) függvény differenciálhatóságának elegendő feltétele, a derivált-mátrix elemei; Taylor tétele (kétszer differenciálható többváltozós függvényekre); a lokális szélsőérték létezésének elegendő feltétele; integráltranszformáció és alkalmazása síkbeli polár-koordinátákra. 5

6 A felkészüléshez ajánlott irodalom Bárczy Barnabás, Integrálszámítás Példatár, Műszaki Könyvkiadó, 006. Fekete Zoltán, Zalay Miklós, Többváltozós függvények analízise Példatár, Műszaki Könyvkiadó, 008. B. P. Gyemidovics, Matematikai analízis feladatgyűjtemény, Tankönyvkiadó, 974. Lajkó Károly, Kalkulus II. (egyetemi jegyzet,. kötet), DE Matematikai és Informatikai Intézet, Debrecen, 00. Lajkó Károly, Kalkulus II. példatár (. kötet), DE Matematikai és Informatikai Intézet, Debrecen, 00. Rimán János, Matematikai analízis I., EKTF, Líceum Kiadó, Eger, 998. Rimán János, Matematikai analízis feladatgyűjtemény I.-II., EKTF, Líceum Kiadó, Eger, 998. W. Rudin, A matematikai analízis alapjai, Műszaki Könyvkiadó, Budapest, 978. Scharnitzky Viktor, Differenciálegyenletek Példatár, Műszaki Könyvkiadó, 008. Dr. Lajkó Károly jegyzete és példatára jelenleg a web-oldalról tölthető le (pdf formátumban). A példatárban a gyakorló feladatsorok előtt számos kidolgozott megoldás is található. Elérhetőségek Az előadó címe: honlapja: irodája: Matematikai Épület M 36 fogadóórái: szerda 4 5, csütörtök 5 6 A tájékoztató mellékletei 4 gyakorló feladatsor: Kalk-pa.pdf, Kalk-pa.pdf, Kalk-p3a.pdf, Kalk-p4a.pdf; gyakorlati dolgozat minta: Kalkzhm.pdf, Kalkzhm.pdf; vizsgadolgozat minta: Kalkvd-m.pdf. Debrecen, 05. május 8. Boros Zoltán 6

Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató

Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2016/2017-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:

Részletesebben

Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató

Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2015/2016-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:

Részletesebben

Kalkulus 1 (Informatika BSc PTI) tantárgyi tájékoztató

Kalkulus 1 (Informatika BSc PTI) tantárgyi tájékoztató Kalkulus 1 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK111E, INDK111G Félév: 2015/2016-I. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 2014/2015 tavaszi félév

Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 2014/2015 tavaszi félév Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 214/215 tavaszi félév Kurzus adatai: Tárgy előadója: Gyakorlatvezető: Kurzus neve: Kurzus típusa: Kurzus kódja: Bessenyei

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

PPKE ITK, 2015/2016tanév. I.félév. Tantárgyi adatok és követelmények

PPKE ITK, 2015/2016tanév. I.félév. Tantárgyi adatok és követelmények PPKE ITK, 2015/2016tanév I.félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Stratégiai és Üzleti Tervezés

Stratégiai és Üzleti Tervezés Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2013/2014.tanév I. félév 1 A tantárgy

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Stratégiai és Üzleti Tervezés

Stratégiai és Üzleti Tervezés Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2014/2015.tanév II. félév 1 A

Részletesebben

1. BEVEZETÉS ÉS TÁRGYKÖVETELMÉNYEK

1. BEVEZETÉS ÉS TÁRGYKÖVETELMÉNYEK Állománynév: aramkorok 01bevez kovetelmenyek23.pdf Tankönyvek: [1] R. J. Smith & R. C. Dorf, Circuits, Devices and Systems, Wiley, (5 th Edition). [2] Haizmann J., Varga S. és Zoltai J., Elektronikus áramkörök,

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

N Ö V É N Y É L E T T A N tantárgy programja az 2015/2016. tanév II. félévére nappali és levelező tagozatos hallgatók részére

N Ö V É N Y É L E T T A N tantárgy programja az 2015/2016. tanév II. félévére nappali és levelező tagozatos hallgatók részére N Ö V É N Y É L E T T A N tantárgy programja az 2015/2016. tanév II. félévére nappali és levelező tagozatos hallgatók részére NAPPALI TAGOZAT I. ÉVFOLYAM (NEPTUN tantárgykódok: MANABNN2723, MKNABNN2825,

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak III. évf. 2010/2011. tanév I. félév

TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak III. évf. 2010/2011. tanév I. félév TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak III. évf. 2010/2011. tanév I. félév 1. TANTÁRGY CÍME: ÉLELMISZERIPARI MŰVELETEK 3. TANTÁRGY KÓDJA: NEMAT205/1 ELMÉLET 3+0 NEMAT206/1-2 GYAKORLAT 0+2

Részletesebben

Statisztika 1. Tantárgyi útmutató

Statisztika 1. Tantárgyi útmutató Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

TANTÁRGYI KÖVETELMÉNYRENDSZER Mezőgazdasági és élelmiszeripari gépészmérnök szak III. évf. 2010/2011. tanév II. félév

TANTÁRGYI KÖVETELMÉNYRENDSZER Mezőgazdasági és élelmiszeripari gépészmérnök szak III. évf. 2010/2011. tanév II. félév TANTÁRGYI KÖVETELMÉNYRENDSZER Mezőgazdasági és élelmiszeripari gépészmérnök szak III. évf. 2010/2011. tanév II. félév 1. TANTÁRGY CÍME: ÉLELMISZERIPARI MŰVELETEK 2. TANTÁRGY KÓDJA, ÓRASZÁMA: NMGAG013 ELMÉLET

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

N Ö V É N Y É L E T T A N tantárgy programja az 2014/2015. tanév II. félévére nappali és levelező tagozatos hallgatók részére

N Ö V É N Y É L E T T A N tantárgy programja az 2014/2015. tanév II. félévére nappali és levelező tagozatos hallgatók részére N Ö V É N Y É L E T T A N tantárgy programja az 2014/2015. tanév II. félévére nappali és levelező tagozatos hallgatók részére NAPPALI TAGOZAT I. ÉVFOLYAM (NEPTUN tantárgykódok: MANABNN2723, MKNABNN2825,

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

Döntési módszerek Tantárgyi útmutató

Döntési módszerek Tantárgyi útmutató Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2015/16 tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:

Részletesebben

TANTÁRGY ADATLAP és tantárgykövetelmények Cím: Épületszerkezettan I.

TANTÁRGY ADATLAP és tantárgykövetelmények Cím: Épületszerkezettan I. TANTÁRGY ADATLAP és tantárgykövetelmények Cím: Épületszerkezettan I. Tárgykód: PMRESNE037B, PMRESNE037P Heti óraszám: 3/4/0, Kreditpont: 7 Szak(ok)/ típus: Tagozat: Követelmény: Meghirdetés féléve: Nyelve:

Részletesebben

TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz

TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz Nappali tagozat Pénzügy és számvitel szak Budapest, 2013. szeptember 1

Részletesebben

Az előadásokon ténylegesen elhangzottak rövid leírása

Az előadásokon ténylegesen elhangzottak rövid leírása TTK, Matematikus alapszak, Differenciálegyenletek (előadás, gyakorlat) Előadás BMETE93AM03; Gyakorlat BME TE93AM04. Követelmény: Előadás 4/0/0/v/4; Gyakorlat 0/020/f/2 Tananyag (általános megjegyzések).

Részletesebben

Információs technológiák 0. Ea: Infó Mátrix (2015)

Információs technológiák 0. Ea: Infó Mátrix (2015) Információs technológiák 0. Ea: Infó Mátrix (2015) 35/1 B IT v: 2015.09.14 MAN A tárgyról Tárgykódok, szakok, követelmények: GEIAL343B: Mechatronikai alapszak, 7. félév. 2e+1gy, aláírás + gyakorlati jegy,

Részletesebben

Számítástechnika I. 0. Ea: Infó Mátrix (2016)

Számítástechnika I. 0. Ea: Infó Mátrix (2016) Számítástechnika I. 0. Ea: Infó Mátrix (2016) 35/1 B ITv: MAN 2016.09.03 A tárgyról 35/2 Tárgykód: GEIAL664B Előfeltétel: nincs Szakok: MFK, BSc, 1. évfolyam A tárgy értéke: 4 kredit Lezárás: aláírás +

Részletesebben

KÖVETELMÉNYRENDSZER NÖVÉNYTERMESZTÉSTANBÓL 2013/2014. tanév 1. félévében

KÖVETELMÉNYRENDSZER NÖVÉNYTERMESZTÉSTANBÓL 2013/2014. tanév 1. félévében KÖVETELMÉNYRENDSZER NÖVÉNYTERMESZTÉSTANBÓL 201/2014. tanév 1. félévében Oktatott tantárgyak: kredit SMKNZ201AN Takarmánynövény termesztés 2+ óra 5 BSc Állattenyésztő Mérnöki Szak II. SMKNZ202XN Növénytermesztéstani

Részletesebben

ÚTMUTATÓ. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés. 2012/2013 I. félév

ÚTMUTATÓ. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés. 2012/2013 I. félév PÉNZÜGYI ÉS SZÁMVITELI KAR COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés ÚTMUTATÓ Számvitel

Részletesebben

Pénzügyi számvitel 1.

Pénzügyi számvitel 1. TANTÁRGYI ÚTMUTATÓ Pénzügyi számvitel 1. Pénzügyi és számviteli felsőoktatási szakképzés Államháztartási szakirány Nonprofit szakirány Pénzintézeti szakirány Vállalkozási szakirány Nappali tagozat 2015/2016.

Részletesebben

SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ. Komplex elemzés. Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II.

SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ. Komplex elemzés. Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II. TANTÁRGYI ÚTMUTATÓ Komplex elemzés Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II. félév A tantárgy rövid bemutatása: A Budapesti Gazdasági Egyetem Pénzügyi és Számviteli Karán meghatározó

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Teljesítmény és erőforrás elemzés

TANTÁRGYI ÚTMUTATÓ. Teljesítmény és erőforrás elemzés TEEL1K0MPZC BsC III. évfolyam Pénzügy és számvitel szak Számviteli szakirány TANTÁRGYI ÚTMUTATÓ Teljesítmény és erőforrás elemzés 2016/2017 I. félév A tantárgy oktatásának célja A Budapesti Gazdasági Egyetem

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény 1.2 Kar 1.3 Intézet 1.4 Szakterület 1.5 Képzési szint 1.6 Szak / Képesítés Babeș-Bolyai Tudományegyetem Matematika és Informatika

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Számvitel alapjai. című tárgy tanulmányozásához

TANTÁRGYI ÚTMUTATÓ. Számvitel alapjai. című tárgy tanulmányozásához SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Számvitel alapjai című tárgy tanulmányozásához Felsőoktatási szakképzés Pénzügy és számvitel; Emberi erőforrás; Gazdálkodási és menedzsment szakon Nappali

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

ÚTMUTATÓ. I. évfolyam. Felsőoktatási szakképzés Gazdaságinformatikus szakon. 2016/2017 I. félév

ÚTMUTATÓ. I. évfolyam. Felsőoktatási szakképzés Gazdaságinformatikus szakon. 2016/2017 I. félév PÉNZÜGYI ÉS SZÁMVITELI KAR COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Felsőoktatási szakképzés Gazdaságinformatikus szakon ÚTMUTATÓ Számvitel alapjai 2016/2017 I.

Részletesebben

PÉNZÜGYI ÉS SZÁMVITELI KAR ALKALMAZOTT TUDOMÁNYOK EGYETE SZÁMVITEL INTÉZETI TANSZÉK. MESTER PÉNZÜGY és SZÁMVITEL (VEZETŐI SZÁMVITEL) SZAK

PÉNZÜGYI ÉS SZÁMVITELI KAR ALKALMAZOTT TUDOMÁNYOK EGYETE SZÁMVITEL INTÉZETI TANSZÉK. MESTER PÉNZÜGY és SZÁMVITEL (VEZETŐI SZÁMVITEL) SZAK PÉNZÜGYI ÉS SZÁMVITELI KAR ALKALMAZOTT TUDOMÁNYOK EGYETE SZÁMVITEL INTÉZETI TANSZÉK MESTER PÉNZÜGY és SZÁMVITEL (VEZETŐI SZÁMVITEL) SZAK LEVELEZŐ TAGOZAT Tantárgyi útmutató 2016/2017. I. félév Tantárgyi

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. TANTÁRGYI ÚTMUTATÓ

PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. TANTÁRGYI ÚTMUTATÓ PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Pénzügyi és számviteli felsőoktatási szakképzés Államháztartási szakirány

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak (levelező tagozat) IV. évf. 2009/2010. tanév I. félév

TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak (levelező tagozat) IV. évf. 2009/2010. tanév I. félév TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak (levelező tagozat) IV. évf. 2009/2010. tanév I. félév 1. TANTÁRGY CÍME: ÉLELMISZERIPARI MŰVELETEK 3. TANTÁRGY KÓDJA: LEMAT205 ELMÉLET 9+0 GYAKORLAT 0+5

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

TANTÁRGY ADATLAP és tantárgykövetelmények tavasz. Környezeti jog

TANTÁRGY ADATLAP és tantárgykövetelmények tavasz. Környezeti jog Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Szabadon választható tárgy TANTÁRGY ADATLAP és tantárgykövetelmények 2016. tavasz Környezeti jog 2. Tantárgy kód Szemeszter

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

II. évf. 4. szemeszter 2015 II. félév A Semmelweis Egyetem Általános Orvostudományi Kara II. Belklinikájának OKTATÁSI RENDJE

II. évf. 4. szemeszter 2015 II. félév A Semmelweis Egyetem Általános Orvostudományi Kara II. Belklinikájának OKTATÁSI RENDJE II. évf. 4. szemeszter 2015 II. félév A Semmelweis Egyetem Általános Orvostudományi Kara II. Belklinikájának OKTATÁSI RENDJE A szorgalmi időszak: 2015 február 2 május 15 Oktatási szünet: február 11,12,

Részletesebben

1. A tantárgy neve, kódja Közművek I., BMEEOVKAT42 2. Az oktatás nyelve magyar, angol

1. A tantárgy neve, kódja Közművek I., BMEEOVKAT42 2. Az oktatás nyelve magyar, angol 1. A tantárgy neve, kódja Közművek I., BMEEOVKAT42 2. Az oktatás nyelve magyar, angol 3. A tantárgy célja, feladata A tárgy célja, hogy megismertesse a vezetékes közművek fontosabb jellemzőit, azok egymásra,

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

TANTÁRGYI ÚTMUTATÓ a

TANTÁRGYI ÚTMUTATÓ a Számvitel Intézeti Tanszék /fax: 383-8480 Budapest 72. Pf.: 35. 1426 III. évfolyam Pénzügy és Számvitel Szak, Számvitel szakirány TANTÁRGYI ÚTMUTATÓ a Számviteli sajátosságok tantárgy tanulmányozásához

Részletesebben

PÉNZÜGYI ÉS SZÁMVITELI KAR - FELSŐFOKÚ SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. TANTÁRGYI ÚTMUTATÓ

PÉNZÜGYI ÉS SZÁMVITELI KAR - FELSŐFOKÚ SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. TANTÁRGYI ÚTMUTATÓ PÉNZÜGYI ÉS SZÁMVITELI KAR - FELSŐFOKÚ SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. II. évfolyam Felsőfokú szakképzés Üzleti szakügyintéző szakképesítés Számviteli szakügyintéző

Részletesebben

Számvitel 1. c. tárgy tanulmányozásához TANTÁRGYI ÚTMUTATÓ. Gazdaságinformatikus alapszak Levelező tagozat 2016/2017. tanév I.

Számvitel 1. c. tárgy tanulmányozásához TANTÁRGYI ÚTMUTATÓ. Gazdaságinformatikus alapszak Levelező tagozat 2016/2017. tanév I. SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Számvitel 1 c. tárgy tanulmányozásához Gazdaságinformatikus alapszak Levelező tagozat 2016/2017. tanév I. félév SZÁMVITEL INTÉZETI TANSZÉK A tárgy oktatásának

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З МАТЕМАТИКИ Для вступників на ІІ курс навчання за освітньо-кваліфікаційним рівнем «Бакалавр»

ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З МАТЕМАТИКИ Для вступників на ІІ курс навчання за освітньо-кваліфікаційним рівнем «Бакалавр» ЗАКАРПАТСЬКИЙ УГОРСЬКИЙ ІНСТИТУТ ІМ. Ф. РАКОЦІ ІІ КАФЕДРА МАТЕМАТИКИ ТА ІНФОРМАТИКИ II. RÁKÓCZI FERENC KÁRPÁTALJAI MAGYAR FŐISKOLA MATEMATIKA ÉS INFORMATIKA TANSZÉK ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З МАТЕМАТИКИ

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Számvitel 2. Gazdaságinformatikus alapszak Nappali tagozat 2015/2016. tanév II. félév

TANTÁRGYI ÚTMUTATÓ. Számvitel 2. Gazdaságinformatikus alapszak Nappali tagozat 2015/2016. tanév II. félév TANTÁRGYI ÚTMUTATÓ Számvitel 2 Gazdaságinformatikus alapszak Nappali tagozat 2015/2016. tanév II. félév A tantárgy rövid bemutatása: A Budapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Karán

Részletesebben

KOMPLEX ELEMZÉS c. tárgy tanulmányozásához

KOMPLEX ELEMZÉS c. tárgy tanulmányozásához Számvitel Intézeti Tanszék /fax: 469-6683 Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT KOMPLEX ELEMZÉS c. tárgy tanulmányozásához PÉNZÜGY ÉS SZÁMVITEL szak hallgatói részére 2014/2015.tanév

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

TANTÁRGYI ÚTMUTATÓ HUMÁNGAZDÁLKODÁS ÉS MENEDZSMENT SZAK NAPPALI TAGOZAT

TANTÁRGYI ÚTMUTATÓ HUMÁNGAZDÁLKODÁS ÉS MENEDZSMENT SZAK NAPPALI TAGOZAT Számvitel Intézeti Tanszék /fax: 383-8480 Budapest 72. Pf.: 35. 1426 III. ÉVFOLYAM TANTÁRGYI ÚTMUTATÓ HUMÁNGAZDÁLKODÁS ÉS MENEDZSMENT SZAK NAPPALI TAGOZAT Humán kontrolling c. tárgy tanulmányozásához 2014/2015.tanév

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

MÉRLEG- ÉS EREDMÉNYELEMZÉS c. tárgy tanulmányozásához

MÉRLEG- ÉS EREDMÉNYELEMZÉS c. tárgy tanulmányozásához Számvitel Intézeti Tanszék /fax: 469-6798 Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT MÉRLEG- ÉS EREDMÉNYELEMZÉS c. tárgy tanulmányozásához Gazdálkodási és menedzsment szak Statisztikus

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Marketingstratégia. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Marketingstratégia. tanulmányokhoz IV. évfolyam Gazdálkodási és menedzsment BA TANTÁRGYI ÚTMUTATÓ Marketingstratégia tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Marketingstratégia Tanszék:

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti

Részletesebben

TANTÁRGYI ÚTMUTATÓ VEZETŐI SZÁMVITEL. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ VEZETŐI SZÁMVITEL. tanulmányokhoz III. ÉVFOLYAM PÉNZÜGY-SZÁMVITEL SZAK BA TANTÁRGYI ÚTMUTATÓ VEZETŐI SZÁMVITEL tanulmányokhoz TÁVOKTATÁS Tanév: 2014/2015. II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Vezetői számvitel Tanszék: Számvitel

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Statisztika 1.

TANTÁRGYI ÚTMUTATÓ. Statisztika 1. I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

TANTÁRGY ADATLAP és tantárgykövetelmények Cím:

TANTÁRGY ADATLAP és tantárgykövetelmények Cím: TANTÁRGY ADATLAP és tantárgykövetelmények Cím: ACÉLSZERKEZETEK Tárgykód: PMKSTNE050 Heti óraszám 1 : 2 ea, 2 / 1 gy, 0 lab Kreditpont: 4 / 4 / 3 / 2 Szak(ok)/ típus 2 : Építőmérnök BSc / Gépészmérnök BSc.,

Részletesebben

ACÉLMETALLURGIA ALAPJAI. Anyagmérnök BSc-képzés. Nappali tagozat FÉMELŐÁLLÍTÁSI ÉS ÖNTÉSZETI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ. Miskolc, 2014.

ACÉLMETALLURGIA ALAPJAI. Anyagmérnök BSc-képzés. Nappali tagozat FÉMELŐÁLLÍTÁSI ÉS ÖNTÉSZETI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ. Miskolc, 2014. MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR METALLURGIAI ÉS ÖNTÉSZETI INTÉZET ACÉLMETALLURGIA ALAPJAI Anyagmérnök BSc-képzés Nappali tagozat FÉMELŐÁLLÍTÁSI ÉS ÖNTÉSZETI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS

Részletesebben

Teljesítmény és erőforrás controlling

Teljesítmény és erőforrás controlling IV. évfolyam GM szak TANTÁRGYI ÚTMUTATÓ Teljesítmény és erőforrás controlling 2012/2013 2. félév Tantárgyi útmutató Tantárgy megnevezése Tantárgy kódja: Tantárgy jellege/típusa: Kontaktórák száma: Teljesítmény

Részletesebben