Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1"

Átírás

1 Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0, F(x 0 )) pontbeli érintőjét, és jelölje x 1 az érintő x tengellyel vett metszéspontját. Ezután húzzuk meg az F(x) függvény (x 1, F(x 1 )) pontbeli érintőjét és jelölje x 2 az érintő x tengellyel vett metszéspontját Íly módon egy x 0, x 1, x 2, sorozatot nyerünk. X n+1 = x n F(x n )/F (x n ) (n = 0, 1, 2, ) Tétel: Tegyük fel, hogy x 0 és x* között F(x) kétszeresen differenciálható, F (x) 0, F (x) 0, valamint F(x 0 )*F (x 0 ) > 0. Ekkor a Newton módszer konvergens. Ha az x* gyököt a húr és a szelő-módszerekhez hasonlóan valamely intervallumba szorítjuk, akkor az intervallum azt a végpontját kell kezdeti közelítésnek választanunk, amelyre: F(x0)*F (x0)>0. A Taylor-formula alapján k>=0 esetén azt nyerjük, hogy: 0=F(x*)=F(xk)+F (xk)*(x*-xk)+(1/2)*f (ξ)*(x*-xk) 2 Valamint a: X k+1 = x k F(x k )/F (x k ) formulát átrendezve: 0=F(xk)+F (xk)*(xk+1-xk) adódik, amelyet kivonva a Taylor-formulából nyert egyenlőségből azt kapjuk hogy: 0=F (xk)*(x*-xk+1)+(1/2)*f (ξ)*(x*-xk) 2 formulát kapjuk. Feltéve, hogy az x* értékét és az (xk) sorozatot tartalmazó valamilyen intervallumba 0<m<= F (x) és M>= F (x),akkor az előbbi formula: ξk+1 <=M/2m* ξk 2 alakban írható fel. Mindkét oldalt megszorozva K=M/2m-el a dk=k*ξk mennyiségekre a dk+1<=dk 2 összefüggéshez jutunk. Feltéve, hogy x0 x* hoz olyan közel van, hogy d=d0<1, akkor teljes indukcióval könnyű belátni, hogy k>=0 esetén: dk+1<=d 2k+1

2 Ez az egyenlőtlenség a Newton Módszer hibabecslő formulája. Példaprogram: x*x*x-3*x*x-x+9 import math, os from abrazol import * rajzol(["(x*x*x)-3*(x*x)-x+9"],-5,5,60,20,["red"]) # a fuggveny def func1(x): return (x*x*x)-3*(x*x)-x+9; #elso derivalt def func2(x): return 3*x*x-6*x-1; #beolvasas x0=input("adja meg az intervallum kezdetet: ")*1.0 eps=input("adja meg a hibakorlatot: ")*1.0 nevezo=func2(x0) szamlalo=func1(x0) xe=x0-(szamlalo/nevezo) sz=1 while (abs(x0-xe)>eps): x0=xe szamlalo=func1(x0) nevezo=func2(x0) print sz print xe xe=x0-(szamlalo/nevezo) sz=sz+1 Hibabecslés: F(x)=x 3-3x 2 -x+9 F (x) = 3x 2-6x-1 >=8=m F (x) = 6x-6 <=18=M K=M/2m K=18/16=9/8 ξk=xk-x* dk=k*ξk d=(k*ξ0) 2k+1 x0=-2 x1=-1,609 ξ0=x0-x1= d0=(9/8)*-0,0391=-0, dk+1<=d 2k+1 d4<=(-0, ) 9 9/8* ξ5 <(-0, ) 9 Futási eredmény: x4-x* <8/9*(-0, ) 9 /usr/bin/python -u "/home/gajdosr/python/oldal/newton.py" Adja meg az intervallum kezdetet: -2 Adja meg a hibakorlatot:

3 Módosított Newton-módszer: A Newton-módszer esetében újabb közelítés számításakor f és f egy-egy függvényértékét kell kiszámolnunk! Az intervallum felezésnél, a húr- és a szelőmódszernél lépésenként csak f(xk) értékét kell számolnunk! Így a Newton-módszer műveletigénye nagyobb, mint a többi módszeré! Ha f a gyök környezetében alig változik, akkor nem vétünk hibát, ha a Newton formulába f (xk) helyett f (x0) értékét írjuk. Tehát e formulát írjuk át: Erre: Az így kapott formulát módosított Newton-módszernek nevezzük. Ezzel a módszer műveletigényét jelentősen lecsökkentjük, hiszen f értékét csak az iteráció megkezdésekor kell kiszámolnunk. Példa: Az x^3-3x^2-x+9 = 0 egyenlet valós gyökét a módosított Newton-módszerrel határozzuk meg. x0 = -2 választással f (x0) = lépést kell számolnunk a gyök 6 tizedesre való meghatározásához. A számítás eredményeit a táblázat ismerteti. import math, os from abrazol import * rajzol(["(x*x*x)-3*(x*x)-x+9"],-5,5,60,20,["red"]) def func1(x): return (x*x*x)-3*(x*x)-x+9; def func2(x): return 3*x*x-6*x-1; x0=input("kerem az intervallum kezdetet: ")*1.0 eps=input("kerem a hibakorlatot: ")*1.0 nevezo=func2(x0) szamlalo=func1(x0) xe=x0-(szamlalo/nevezo) lepessz=1 while (abs(x0-xe)>eps): x0=xe szamlalo=func1(x0) print lepessz print xe xe=x0-(szamlalo/nevezo) lepessz=lepessz+1 Forrás: Szidarovszky Ferenc Bevezetés a numerikus módszerekbe

4 Lagrange interpoláció: import math, os from abrazol import * n=input("adja meg az alappontok szamat:") xtomb=[ None ] * n ytomb=[ None ] * n tomb=[ None ]*(n+1) while(i<n): xtomb[i]=input("adja meg az x ertekkeszletet:")*1.0 ytomb[i]=input("adja meg az x-hez tartozo fv ertekeket:")*1.0 tomb[i]=xtomb[i],ytomb[i] print tomb x=input("hol kozelitse:") p= 0 s="" while(i<n): li=1 s+="+"+str(ytomb[i]) while(j<n): if i!=j: li=li*((x-xtomb[j])/(xtomb[i]-xtomb[j])) s+="*((x-"+str(xtomb[j])+")/("+str(xtomb[i])+"-"+str(xtomb[j] )+"))" p=p+ytomb[i]*li print "Az x-hez tartozo fuggvenyertek:",p #fv=raw_input("miyen fuggvenyt akar abrazolni:") eredmeny=x,p tomb[n]=eredmeny rajzol([s],1,150,1,5,["blue"],tomb)

5 Polinom interpoláció Függvényközelítések Azzal a kérdéssel foglalkozik, hogy a diszkrét pontokban adott függvényekhez hogyan lehet jól kezelhető, az adott pontokra minél jobban illeszkedő függvényeket konstruálni. A legkönnyebben kezelhető és a legkedvezőbb analitikus tulajdonságokat követő függvények a véges fokszámú polinomok, így a gyakorlati esetek nagy részében polinom közelítésekkel dolgozunk. Az adott pontokra való jó illeszkedésük szempontjából a polinomokkal való közelítések három típusát különböztetjük meg: 1. Interpoláció 2. A legkisebb négyzetek módszere 3. Csebisev-féle közelítés Az interpolációs polinomok az alappontokban ugyanazokat az értékeket veszik fel, mint az adott függvény, a legkisebb négyzetek és a Csebisev-féle közelítés módszerével nyert polinomok az alappontokban az adott függvényértékeknek csak közelítését adják. Interpoláció Az y=f(x) függvény értékkészlete legyen ismert az x 0, x 1,, x n pontsorozaton, azaz y 0 =f(x 0 ), y 1 =f(x 1 ),, y n =f(x n ) Az x 0, x 1,, x n pontsorozatot a továbbiakban interpolációs alappontoknak nevezzük. Az interpoláció célja, hogy olyan függvényt határozzunk meg, amely az [x 0 ; x n ] intervallumban közelítőleg megadja az alappontoktól eltérő helyeken is a függvényértékeket. Az eljárás lényege az, hogy az f(x) függvényt olyan F(x) függvénnyel közelítjük, amely az (x i ;y i ) (,1,, n) pontokban, az ún. kollokációs pontokban megegyezik f(x)-szel, azaz F(x i )=f(x i ) y i (,1,, n). Az F(x) függvény előállítására szolgáló eljárást interpolációnak, az F(x) függvényt pedig interpolációs függvénynek nevezzük. Az F(x) függvény p(x)-szel jelölt polinom. Polinom interpoláció A polinom interpoláció a lineáris interpoláció egy általános fajtája. Egy y=p(x) polinom meghatározását jelenti, mely keresztül megy a (x 1,y 1 ), (x 2,y 2 ),,(x n,y n ) pontokon. Tehát adott n db pont ahol az egyes x i értékek mind különbözők, minden p(x i )=y i, (i eleme 0..n) és a polinom fokszáma legfeljebb n-1 lesz. A keresett p(x) polinomra minden esetben teljesülni kell a következő feltételeknek: 1. x i!=0, i eleme 0..n, 2. x i =x j akkor i=j, 3. a következő mátrix determinánsa nem 0 1, x 0, x 02,, x 0 n-1 1, x 1, x 12,, x 1 n-1 1, x n, x n2,, x n n-1

6 Ha ezek teljesülnek a következő egyenletrendszert kell megoldani (ez az ún. Vandermonde mátrix): A keresett polinom a következő alakban írható fel az a i -k ismeretében: import math, sys def mxprint(m): for i in range(size): for j in range(size): print m[i][j], print "" def mkmatrix(rows, cols): mk = [ None ] * rows for i in range(rows): mk[i] = [0] * cols for j in range(cols): mk[i][j] = 0 return mk def delete(mx,sor,oszlop): m=mkmatrix(len(mx)-1,len(mx)-1) sorindex=-1 for i in range(len(mx)): if(i!=sor): sorindex+=1 oszlopindex=-1 for j in range(len(mx)): if(j!=oszlop): oszlopindex+=1 m[sorindex][oszlopindex]=mx[i][j] return m def mxdet(m): ejel=-1 ret=0 if (len(m)==2): ret=(m[0][0]*m[1][1])-(m[1][0]*m[0][1]) else: ret=ret+(-1)*ejel*m[0][i]*(mxdet(delete(m,0,i))); ejel=-ejel return ret def mod(m1,m2,el): mke=mkmatrix(len(m2),len(m2)) for i in range(len(mke)): for j in range(len(mke)): mke[i][j]=m1[i][j] mke[i][el]=m2[i] return mke def cramer(m1,m2): xi=mkmatrix(len(m2),len(m2)) for i in range(len(m2)): xi[i]=mxdet(mod(m1,m2,i))/(mxdet(m1)*1.0) return xi

7 def fuggveny(x): i=1 ertek=p[0] while(i<db): ertek=ertek+(p[i]*x**i) return ertek db=input( "Kerem a koordinatak szamat: ") i=1 tx=[] ty=[] p=[] while(i<=db): print "Kerem a(z) ",i,". koordinata x erteket: " x=input() tx.append(x) print "Kerem a(z) ",i,". koordinata y erteket: " y=input() ty.append(y) while(i<db): x=tx[i] if x==0: print "A polinom interpolacio nem alkalmazhato" sys.exit(0) while(j<i): if(tx[j]==x): print "A polinom interpolacio nem alkalmazhato, 2 koordinata x erteke megegyezik!" sys.exit(0) m=[] while(i<db): x=tx[i] seged=[] while(j<db): seged.append(x**j) m.append(seged) if mxdet(m)==0: print "A matrix determinansa 0, a polinom interpolacio nem alkalmazhato" sys.exit(0) p=cramer(m, ty) print p keresett=input( "Kerem a keresett pont x koordinatajat: ") print fuggveny(keresett)

8 Az intervallumfelezés módszere import math def f(a): return a*a*a*a*a+2*a*a-0.5 def intfel(a,b): c=(a+b)/2.0 if ((abs(a-b)>1e-11)and(f(c)!=0)): if (f(c)*f(b)<0): return intfel(c,b) elif (f(c)*f(a)<0): return intfel(a,c) else: return c def intfel1(a,b): d=0 c=(a+b)/2.0 while((abs(a-b)>1e-11) and (f(c)!=0)): c=(a+b)/2.0 if (f(c)*f(b)<0): a=c elif (f(c)*f(a)<0): b=c d+=1 return d a=0 b=2 if (f(a)*f(b)<0): print "a kozelito megoldas :",intfel(a,b) print intfel1(a,b),"lepesben oldotta meg" else: print "Nemjo a megadott intervallum"

9 A legkisebb négyzetek módszere Eddig már két függvényközelítési módszerrel foglalkoztunk, a Lagrange polinomokkal és a Taylor polinomokkal. A Lagrange polinomoknál minden alappontban egy mérési eredményünk van (ami lehet valódi mérés eredménye, de lehet kiszámított függvényérték is) és megköveteljük azt, hogy a függvényt közelít? polinom a megadott alappontban a megadott értéket vegye fel. A Taylor polinomok esetében egy pontban a deriváltak értékét adjuk meg (illetve mérjük, ha ilyen mérést meg tudunk valósítani) és olyan polinomot konstruálunk, amelynek deriváltjai az adott pontban a megadott derivált értékek. A legkisebb négyzetek módszere a fenti módszerek egy általánosítása, ugyanis a gyakorlatban meg kell engednünk azt is, hogy egy függvényérték meghatározására több mérést is végezhessünk. Ekkor azonban nem köthetjük ki, hogy a közelítő függvény milyen értéket vegyen fel, hiszen a mérési eredmények rendszerint nem azonosak, így nincs is megadott függvényérték. A másik általánosítás abban lehetséges, hogy nem kell ragaszkodni a polinomokhoz, szinte minden függvényfajta előfordulhat illesztő függvényként. A legkisebb négyzetek módszerének általános megfogalmazása Tegyük fel, hogy egy f ( x, a1, a2,..., am ) egyelőre ismeretlen függvény értékére az x, 1 x2,... xs alappontokban méréseket végzünk. Ennek eredményeként az y = f x, a, a,... a ) j = 1, 2,..., s értékekre kapjuk az j ( j 1 2 n,...,,,...,,...,...,, mérési eredményeket. ( s1, s2,.., sk ) nem feltétlenül egyenlőek, vagyis nem minden pontban kell ugyanannyi mérést végezni (de lehet). A fő feladat az f ( x, a1, a2,..., am ) függvényben, amelynek alakja 2 ( 1) adott (pl. egy polinom, f ( x, a1, a2,..., am ) = a 1 + a x 2 + a x m a x ) az m a 1, a2,... am határozatlan együtthatók értékének meghatározása úgy, hogy az így kapott f függvény értékének eltérése a mérési értékektől az alappontokban a lehető legkisebb legyen. Az eltérést a függvényérték és a mérési értékek különbségének négyzetével mérjük. Így a kapott feladat egy többváltozós függvény szélsőértékének meghatározása. A négyzetes eltérést megadó függvény a következő: f x, a, a,..., a ) = ( 1 2 m.

10 Keresendő tehát az f ( x, a1, a2,..., am ) függvény minimumhelye, ahol változók az a 1, a2,... am paraméterek. A többváltozós függvények elméletéből tudjuk, hogy ott lehetnek szélsőérték helyek, ahol a függvény első parciális deriváltjai eltűnnek. Esetünkben ez a következő egyenletek teljesülését jelenti: = =... = A szélsőérték létezésének elégséges feltételeivel ilyen általánosan nem foglalkozunk. Abban az esetben, ha a meghatározandó függvény polinom vagy olyan függvény, amelyben az ismeretlen a j, j = 1,..., m paraméterek lineárisan fordulnak elő, lineáris legkisebb négyzetek módszeréről beszélünk. Ennek speciális esete, amellyel külön is foglalkozunk az, amikor f alakja f ( x, a1, a2 ) = a1 + a2 x vagyis a lineáris függvény, amelyet a statisztikában lineáris regressziónak neveznek. De ugyanebben az értelemben beszélhetünk parabolikus, harmadfokú,... stb. regresszióról is, ha az illesztésre használt függvény parabola, harmadfokú polinom, stb. Minden ilyen esetben a fenti megoldandó egyenletrendszer lineáris egyenletrendszer lesz. Nemlineáris regresszióról akkor beszélünk, ha az illesztendő függvény a meghatározandó paramétereket nemlineárisan tartalmazza. Ekkor a szükséges feltételeket megfogalmazó egyenletrendszer nemlineáris egyenletrendszer lesz. ### lnm.py # -*- coding: iso *- import math, os, sys n=input("az alappontok szßma:") xtomb=[ None ] * n ytomb=[ None ] * n tomb=[ None ]* n while(i<n): xtomb[i]=input("adja az alappontokat:")*1.0 ytomb[i]=input("adja meg az az alappontokhoz tartozˇ fřggvúnyúrtúkeket:")*1.0 tomb[i]=xtomb[i],ytomb[i] print tomb f=input("hanyadfok legyen a poiinom:") t=[ None ] * n while(i<n): t[i]=1 s=[ None ] * f u=[ None ] * f s[0]=n u[0]=0

11 while(i<n): u[0]=u[0]+ytomb[i] i=1 while(i<f): s[i]=0 u[i]=0 while(j<n): t[j]=t[j]*xtomb[j] s[i]=s[i]+t[j] u[i]=u[i]+t[j]*ytomb[j] i=n+1 b=[ None ] * len(u) while(i<2*f): while (j<n): t[j]=t[j]*xtomb[j] s[i]=s[i]+t[j] a=[ [ None ] * n ] *n while(i<len(u)): b[i]=u[i] while(j<len(s)-1): print s[i+j] a[i][j]=s[i+j] print a[i][j] print b[i] ### lnm2.py # -*- coding: iso *- import math, os, sys n=input("az alappontok szßma:") xtomb=[ None ] * n ytomb=[ None ] * n tomb=[ None ]* n while(i<n): xtomb[i]=input("adja az alappontokat:")*1.0 ytomb[i]=input("adja meg az az alappontokhoz tartozˇ fřggvúnyúrtúkeket:")*1.0 tomb[i]=xtomb[i],ytomb[i] print tomb f=input("hanyadfok legyen a poiinom:") while(i<f): k=0 while(k<n): k=k+1 k=0 q=[ [ None ] * n] * n p=[ [ None ] * n] * n while(k<n): q[0][k]=p[0][k] k=k+1 k=0 l=0 c=[ [ None ] * n] * n c[k][l]=0 u=0

12 while(l<k-1): c[k][l]=0 u=0 while(j<n): c[k][l]=c[k][l]+p[k][j] * q[l][j] u=u+q[l][j] * q[l][j] c[k][l]= -c[k][l] / u l=l+1 while(j<n): q[k][j]=p[k][j] l=0 while(l<k-1): q[k][j]=q[k][j]+c[k][l]* q[l][j] l=l+1 c=[ None ] * n while(i<f): c[i]=0 u=0 while(j<n): c[i]=c[i]+q[i][j] * y[j] u=u+q[i][j] * q[i][j] c[i]=c[i] / u print c[i]

13 Deteminans: from random import randrange def mxprint(m): for j in range(len(m)): print m[i][j], print "" def mkmatrix(rows, cols): mk = [ None ] * rows for i in range(rows): mk[i] = [0] * cols for j in range(cols): mk[i][j] = 0 return mk def mkrandommatrix(rows,cols): mk = [ None ] * rows for i in range(rows): mk[i] = [0] * cols for j in range(cols): mk[i][j] = randrange(20) return mk def mxdet(m): ejel=-1 ret=0 if (len(m)==2): ret=(m[0][0]*m[1][1])-(m[1][0]*m[0][1]) else: ret=ret+(-1)*ejel*m[0][i]*(mxdet(delete(m,0,i))); ejel=-ejel return ret def delete(mx,sor,oszlop): m=mkmatrix(len(mx)-1,len(mx)-1) sorindex=-1 for i in range(len(mx)): if(i!=sor): sorindex+=1 oszlopindex=-1 for j in range(len(mx)): if(j!=oszlop): oszlopindex+=1 m[sorindex][oszlopindex]=mx[i][j] return m def main(): #matrix=([1,3,2,2],[-2,6,2,6],[3,6,2,5],[1,2,1,1]) #matrix=([-2,1,2,4,-1],[3,1,1,-4,5],[-6,6,7,6,11],[11,10,-13,-9,6],[3,- 5,5,3,-8]) matrix=([-2,1,2,4,-1,5],[3,1,1,-4,5,-6],[-6,6,7,6,11,7],[11,10,-13,-9,6,- 8],[3,-5,5,3,-8,9],[2,2,11,3,-4,3]) #matrix=mkrandommatrix(11,11) # print matrix print mxdet(matrix) main() #by:tgt

14 Inverz def mxprint(m): print "" for j in range(len(m)): print m[i][j] def mkmatrix(rows, cols): mk = [ None ] * rows for i in range(rows): mk[i] = [0] * cols for j in range(cols): mk[i][j] = 0 return mk def mxdet(m): ejel=-1 ret=0 if (len(m)==2): ret=(m[0][0]*m[1][1])-(m[1][0]*m[0][1]) else: ret=ret+(-1)*ejel*m[0][i]*(mxdet(delete(m,0,i))); ejel=-ejel return ret def delete(mx,sor,oszlop): m=mkmatrix(len(mx)-1,len(mx)-1) sorindex=-1 for i in range(len(mx)): if(i!=sor): sorindex+=1 oszlopindex=-1 for j in range(len(mx)): if(j!=oszlop): oszlopindex+=1 m[sorindex][oszlopindex]=mx[i][j] return m def invertal(m): m1=mkmatrix(len(m),len(m)) ejel=-1 for j in range(len(m)): m1[j][i]=(-1)*ejel*mxdet(delete(m,i,j)) ejel=-ejel for i in range(len(m1)): for j in range(len(m1)): m1[i][j]=m1[i][j]*1.00 m1[i][j]=m1[i][j]/mxdet(m) return m1 def main(): #matrix=([1,-1,2],[2,-1,3],[1,-2,4]) #matrix=([1,2,3],[1,4,0],[-1,1,-1]) matrix=([-2,1,2,4,-1],[3,1,1,-4,5],[-6,6,7,6,11],[11,10,-13,-9,6],[3,-5,5,3,- 8]) mxprint(invertal(matrix)) main() #by:tgt

15 Lineáris egyenletrendszer: def mxprint(m): print "" for j in range(len(m)): print m[i][j] def mkmatrix(rows, cols): mk = [ None ] * rows for i in range(rows): mk[i] = [0] * cols for j in range(cols): mk[i][j] = 0 return mk def mxdet(m): ejel=-1 ret=0 if (len(m)==2): ret=(m[0][0]*m[1][1])-(m[1][0]*m[0][1]) else: ret=ret+(-1)*ejel*m[0][i]*(mxdet(delete(m,0,i))); ejel=-ejel return ret def delete(mx,sor,oszlop): m=mkmatrix(len(mx)-1,len(mx)-1) sorindex=-1 for i in range(len(mx)): if(i!=sor): sorindex+=1 oszlopindex=-1 for j in range(len(mx)): if(j!=oszlop): oszlopindex+=1 m[sorindex][oszlopindex]=mx[i][j] return m def mod(m1,m2,el): mke=mkmatrix(len(m2),len(m2)) for i in range(len(mke)): for j in range(len(mke)): mke[i][j]=m1[i][j] mke[i][el]=m2[i] return mke def cramer(m1,m2): xi=mkmatrix(len(m2),len(m2)) for i in range(len(m2)): xi[i]=mxdet(mod(m1,m2,i))/(mxdet(m1)*1.0) return xi def main(): matrix1=([3,2,1],[5,0,3],[9,4,3]) matrix2=([1,2,3]) #matrix1=([1,3,2,2],[-2,6,2,6],[3,6,2,5],[1,2,1,1]) #matrix2=([1,2,3,4]) print cramer(matrix1,matrix2) main()

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14. Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ).

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ). Paláncz Béla - Numerikus Módszerek - 211-4. Optimalizálás 4 Optimalizálás Bevezetés Az optimalizáció, egy függvény szélsőértéke helyének meghatározása, talán a legfontosabb numerikus eljárások közé tartozik.

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16 Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Hiányos másodfokú egyenletek. x 8x 0 4. A másodfokú egyenlet megoldóképlete

Hiányos másodfokú egyenletek. x 8x 0 4. A másodfokú egyenlet megoldóképlete Hiányos másodfokú egyenletek Oldjuk meg a következő egyenleteket a valós számok halmazán! 1. = 0 /:. = 8 /:. 8 0 4. 4 4 0 A másodfokú egyenlet megoldóképlete A másodfokú egyenletek általános alakja: a

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

1. Sorozatok 2014.03.12.

1. Sorozatok 2014.03.12. 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke...

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke... Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 5 2.1. A függvény

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Matematikai programozás gyakorlatok

Matematikai programozás gyakorlatok VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Néhány közelítő megoldás geometriai szemléltetése

Néhány közelítő megoldás geometriai szemléltetése 5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom DIFFERENCIÁLSZÁMÍTÁS KÉZI CSABA GÁBOR 5. Taylor-polinom 5.. Feladat. Írjuk fel az f(x) = e x függvény x 0 = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével számoljuk ki e közelítő értékét!

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTEL NÉLKÜLI OPTIMALIZÁLÁS ALGORITMUSAI DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként

Részletesebben

Vektorszámítás Fizika tanárszak I. évfolyam

Vektorszámítás Fizika tanárszak I. évfolyam Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Nemzeti versenyek 11 12. évfolyam

Nemzeti versenyek 11 12. évfolyam Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató Szakdolgozat Miskolci Egyetem Nemlineáris programozás Készítette: Horváth Gábor Programtervező informatikus hallgató Témavezető: Dr. Nagy Tamás egyetemi docens, Alkalmazott Matematikai Tanszék Miskolc,

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1. Vizsgálat az időtartományban. 1.1. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját!

1. Vizsgálat az időtartományban. 1.1. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját! . Vizsgálat az időtartományban.. Határozza meg az ábrán vázolt diszkrét idejű hálózat állapotváltozós leírásának normál alakját! x x x xy x [ k ] x b( c eg x x gf u [ k ] x ( bd beh x x fh [ k ] bx( c

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben