Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK"

Átírás

1 Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, A. csoport, MEGOLDÁSOK. Feladat. Az a. választás mellett A /( a) értéke.486. Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás lebegőpontos számokat használó számítógépen! Javasoljunk numerikus szempontból jobb számolást A- ra és végezzük el úgy is a számolásokat! A kiszámolt érték (mindig hatjegyű mantisszára kerekítve): 3. A hiba a kiegyszerűsödés miatt lép fel, két közeli szám kivonása miatt. Ez elkerülhető közös nevezőre hozással és egyszerűsítéssel. Így A a a, melynek eredménye Feladat. Legyen A R n n egy tetszőleges négyzetes mátrix és A (k) az A mátrix k-adrendű bal felső főminormátrixa (A( : k, : k)). Igazoljuk, hogy A (k) A! Legyen y R k egy tetszőleges nemnulla vektor. Ekkor y Ax A A A sup sup (k) y x R n x y y sup A (k) y R y R n k 3. Feladat. Az alábbi mátrix egy A R 4 4 szimmetrikus mátrix LU-felbontását tartalmazza úgy, hogy a főátló alatti rész az L mátrix megfelelő főátló alatti részét tartalmazza, a többi elem pedig az U mátrix megfelelő eleme. Létezik-e az A mátrixnak Cholesky-felbontása? Ha igen, akkor adjuk meg a G mátrixot (A GG T )! Adjuk meg azt az x R 4 vektort, melyre Ax,,, T! 3 4 3/ 3/ 3 4/3 7/3 3 9/7 /7 Olvassuk ki a mátrixból az L és U mátrixokat. Mivel U főtlójának minden eleme pozitív, így az eredeti mátrix minden főminorja pozitív, azaz a mátrix szimmetrikus (ez a szövegből derül ki) és pozitív definit. Legyen D az U mátrix főátlómátrixa. Ekkor G L D ( D-t úgy kapjuk, hogy D minden eleméből gyököt vonunk), azaz G 3/ / 6 /3 6 /3 6 3/7 /7 7 Az adott egyenletrendszert úgy oldhatjuk meg a leggyorsabban, ha először megoldjuk az Ly,,, T egyenletrendszert, amely egyszerű visszahelyettesítéssel megoldható. y 3, 3/,, /7 adódik, majd pedig az Ux y egyenlet megoldásával (szintén egyszerű visszahelyettesítéssel) adódik az x 3,, 3, T megoldás..

2 4. Feladat. Az Ax b egyenletrendszer A mátrixának és b jobb oldali vektorának elemei mért mennyiségek, melyek relatív hibája.%, adjunk felső becslést a megoldásvektor relatív hibájára maximumnormában! A , b 3 A Mivel δa ij /a ij.% 4, azaz δa ij 4 a ij, ezért δa / A 4. Hasonlóan kapjuk, hogy δb / b 4. A mátrixokról leolvasható, hogy A 4 és A.9. Ebből a megoldás relatív hibájára levezettett képlet alapján kapjuk, hogy 4.9 δx / x ( ) Feladat. Az alábbi egyenletrendszert szeretnénk megoldani a Jacobi-módszer relaxálásával. Hogyan válasszuk meg ω értékét, hogy a leggyorsabban konvergáljon az eljárás? Számítsuk ki, hogy a nullvektorról indulva a leggyorsabb módszerrel mennyit kellene iterálni, hogy a megoldást 6 -nál jobban megközelítsük maximumnormában! (A relaxált Jacobi-iteráció: x (k+) (( ω)e + ωd (L + R))x (k) + ωd b) 4 x 3 Az adott egyenletrendszerre alkalmazva a fenti képletet, azt kapjuk, hogy ω ω/4 ω/4 x (k+) x (k) +. ω/3 ω ω/3 x Az iterációs mátrix sajátértékei: ω + ω/ 6, ω ω/ 6, így a spektrálsugár akkor a legkisebb, ha ω, azaz a Jacobi-módszerről van szó. Ezzel az iteráció x (k+) /4 /4 x (k) +, /3 /3 tehát az iterációs mátrix maximumnormája /3 és x () /4, /3 T. A (/3) k (/3) 3 6 feltételt kell garantálni, ami k esetén teljesül, azaz a 36. iterációtól már 6 -nál jobban megközelíti a sorozat maxiumnormában a megoldást. 6. Feladat. Végezzünk el egy lépést a gradiens módszerrel a nullvektorról indulva az előző feladat egyenletrendszeréből származtatott normálegyenletre! Az együtthatómátrix transzponáltjával balról szorozva az egyenletet kapjuk a normálegyenletet x 8. 7 Erre alkalmazva a gradiens módszert kapjuk, hogy 45/445 x (). 79/89 x

3 7. Feladat. Adjuk meg Householder-tükrözések segítségével az alábbi mátrix QRfelbontását! Legyen A az adott mátrix. Az első oszlophoz tartozó v vektor (+ jellel számolva) v,, T. Így a H mátrix, azaz H A. A második oszlop. és 3. eleméhez, mint kételemű vektorhoz tartozó v vektor, T (+ jellel számolva), így H. Így és R H H A Q H T H T Az v vektorok másfajta számolása esetén másfajta felbontást kapunk.. Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, B. csoport, MEGOLDÁSOK Összesen maximum 4 pont szerezhető a feladatsorral. Sikeres zárthelyihez legalább 6 pont szükséges. Az első kettő feladat 5, a többi 6 pontos.. Feladat. Legyen A R n n egy tetszőleges négyzetes mátrix és A (k) az A mátrix k-adrendű bal felső főminormátrixa (A( : k, : k)). Igazoljuk, hogy A (k) A! Ugyanaz, mint az A. csoport második feladata.. Feladat. Az a választás mellett A /( a + a) értéke Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás lebegőpontos számokat használó számítógépen! Javasoljunk numerikus szempontból jobb számolást A- ra és végezzük el úgy is a számolásokat! 63.9, a kiegyszerűsödés miatt. Szorozzunk a nevező konjugáltjával. Ebből kapjuk, hogy A a + + a, amire adódik. 3. Feladat. Az alábbi mátrix egy A R 4 4 szimmetrikus mátrix LU-felbontását tartalmazza úgy, hogy a főátló alatti rész az L mátrix megfelelő főátló alatti részét

4 tartalmazza, a többi elem pedig az U mátrix megfelelő eleme. Létezik-e az A mátrixnak Cholesky-felbontása? Ha igen, akkor adjuk meg a G mátrixot (A GG T )! Adjuk meg azt az x R 4 vektort, melyre Ax,,, T! / 3/ 3/ 7/ 3/ 4 3 3/ 7/3 3/4 / Hasonlóan az A. csoport feladatához, kapjuk, hogy 3/ / 6 G 3 / 6/ 3 / 7 6/6 3/ 3/6 x 4, 9, 9, T. 4. Feladat. Az Ax b egyenletrendszer A mátrixának és b jobb oldali vektorának elemei mért mennyiségek, melyek relatív hibája.%, adjunk felső becslést a megoldásvektor relatív hibájára maximumnormában! A , b 3 A Mivel δa ij /a ij.% 4, azaz δa ij 4 a ij, ezért δa / A 4. Hasonlóan kapjuk, hogy δb / b 4. A mátrixokról leolvasható, hogy A 6 és A.478. Ebből a megoldás relatív hibájára levezettett képlet alapján kapjuk, hogy δx / x ( ) Feladat. Az alábbi egyenletrendszert szeretnénk megoldani a Jacobi-módszer relaxálásával. Hogyan válasszuk meg ω értékét, hogy a leggyorsabban konvergáljon az eljárás? Számítsuk ki, hogy a nulvektorról indulva a leggyorsabb módszerrel mennyit kellene iterálni, hogy a megoldást 6 -nál jobban megközelítsük maximumnormában! (A relaxált Jacobi-iteráció: x (k+) (( ω)e + ωd (L + R))x (k) + ωd b) 3 x 4 x Hasonlóan az A. csoport feladatához, az iterációs mátrix sajátértékei: ω ± ω/ 6, azaz a spektrálsugár ω esetén a legkisebb. A megoldandó egyenlőtlenség: (/) k (/) 3 6, ami k.35 esetén teljesül, azaz a. iterációtól már 6 -nál jobban megközelítjük a megoldást maximumnormában.

5 6. Feladat. Végezzünk el egy lépést a gradiens módszerrel a nullvektorról indulva az előző feladat egyenletrendszeréből származtatott normálegyenletre! A normálegyenlet: 3 x x és x () 8/5, 6/5 T. 7. Feladat. Adjuk meg Householder-tükrözések segítségével az alábbi mátrix QRfelbontását! Hasonlóan eljárva, mint az A. csoportnál: R és Q / / / /.

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A

Részletesebben

Numerikus módszerek példatár

Numerikus módszerek példatár Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. július 5. Tartalomjegyzék Előszó 2 Feladatok 4 1. Előismeretek 4 1.1. Képletek, összefüggések............................ 4

Részletesebben

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes

Részletesebben

Gauss-eliminációval, Cholesky felbontás, QR felbontás

Gauss-eliminációval, Cholesky felbontás, QR felbontás Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei

Részletesebben

Numerikus módszerek beugró kérdések

Numerikus módszerek beugró kérdések 1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Numerikus módszerek példatár

Numerikus módszerek példatár Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. június Tartalomjegyzék El szó 5 Feladatok 9 1. El ismeretek 9 1.1. Képletek, összefüggések............................ 9 1.2.

Részletesebben

Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4

Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4 Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek

Részletesebben

Gauss-Seidel iteráció

Gauss-Seidel iteráció Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS

Részletesebben

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!

Részletesebben

NUMERIKUS MÓDSZEREK I. TÉTELEK

NUMERIKUS MÓDSZEREK I. TÉTELEK NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz

9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz 9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Táblán. Numerikus módszerek 1. előadás (estis), 2017/2018 ősz. Lócsi Levente. Frissült: december 1.

Táblán. Numerikus módszerek 1. előadás (estis), 2017/2018 ősz. Lócsi Levente. Frissült: december 1. Táblán Numerikus módszerek 1. előadás (estis), 2017/2018 ősz Lócsi Levente Frissült: 2017. december 1. Ebben az írásban a 2017/2018 őszi félév estis Numerikus módszerek 1. előadásának a diasorban nem szereplő,

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK

LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK DIREKT ÉS ITERATÍV MEGOLDÁSI MÓDSZEREI BSc szakdolgozat Készítette: Várhegyi Bence Matematika BSc Matematikai elemző

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

Lineáris algebra. (közgazdászoknak)

Lineáris algebra. (közgazdászoknak) Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

1 Lebegőpontos számábrázolás

1 Lebegőpontos számábrázolás Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs

Részletesebben

Feladat: megoldani az alábbi egyenletrendszert: A x = b,

Feladat: megoldani az alábbi egyenletrendszert: A x = b, Gauss Jordan-elimináció Feladat: megoldani az alábbi egyenletrendszert: ahol A négyzetes mátrix. A x = b, A Gauss Jordan-elimináció tulajdonképpen az általános iskolában tanult módszer lineáris egyenletrendszerek

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei

Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei Eötvös Loránd Tudományegyetem Természettudományi Kar Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei BSc Szakdolgozat Készítette: Laki Annamária Matematika BSc Matematikai

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ VEKTOR- ÉS MÁTRIXNORMÁK,

Részletesebben

Numerikus Analízis I.

Numerikus Analízis I. Numerikus Analízis I. Sövegjártó András Jegyzet másodéves programozó és programtervező matematikus szakos hallgatóknak 2003. ,,A sikerhez és tudáshoz vezető út senki előtt sincs zárva, akiben van bátorság

Részletesebben

alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:

alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz: 1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Legkisebb négyzetek módszere, Spline interpoláció

Legkisebb négyzetek módszere, Spline interpoláció Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján

Részletesebben

3. Lineáris egyenletrendszerek megoldása február 19.

3. Lineáris egyenletrendszerek megoldása február 19. 3. Lineáris egyenletrendszerek megoldása 2018. február 19. Lineáris egyenletrendszer M darab egyenlet N változóval, az a ij és b j értékek ismertek: a 11 x 1 + a 12 x 2 +... + a 1N x N = b 1 a 21 x 1 +

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

rank(a) == rank([a b])

rank(a) == rank([a b]) Lineáris algebrai egyenletrendszerek megoldása a Matlabban Lineáris algebrai egyenletrendszerek a Matlabban igen egyszer en oldhatók meg. Legyen A az egyenletrendszer m-szer n-es együtthatómátrixa, és

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

Numerikus Analízis. Király Balázs 2014.

Numerikus Analízis. Király Balázs 2014. Numerikus Analízis Király Balázs 2014. 2 Tartalomjegyzék 1. A hibaszámítás elemei 7 1.1. A matematika modellezés folyamata és a hibaforrások megjelenése.. 7 1.2. Lebegőpontos számábrázolás.......................

Részletesebben

Tartalomjegyzék 1 BEVEZETÉS 2

Tartalomjegyzék 1 BEVEZETÉS 2 Tartalomjegyzék BEVEZETÉS FELADATOK. Lebegőpontos számok.............................. Normák, kondíciószámok........................... 5. Lineáris egyenletredszerek megoldása, mátrixok felbontása........

Részletesebben

Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei

Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei Szakdolgozat Készítette: Kis Ágnes Matematika Bsc. Matematikai elemző szakirány Témavezető:

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Lineáris algebra és mátrixok alkalmazásai

Lineáris algebra és mátrixok alkalmazásai EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Lineáris algebra és mátrixok alkalmazásai Szakdolgozat Készítette: Ruzsányi Orsolya Matematika BSc, matematikai elemző szakirány Témavezető: Fialowski

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Tétel: Ha,, akkor az ábrázolt szám hibája:

Tétel: Ha,, akkor az ábrázolt szám hibája: 1. A lebegpontos számábrázolás egy modellje. A normalizált lebegpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl) fogalma,

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Szinguláris érték felbontás Singular Value Decomposition

Szinguláris érték felbontás Singular Value Decomposition Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák

Részletesebben

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: 1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet

Részletesebben

Ipari matematika 2. gyakorlófeladatok

Ipari matematika 2. gyakorlófeladatok Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,

Részletesebben

5. Előadás. Megyesi László: Lineáris algebra, 29. 36. oldal. 5. előadás Lineáris függetlenség

5. Előadás. Megyesi László: Lineáris algebra, 29. 36. oldal. 5. előadás Lineáris függetlenség 5. Előadás Megyesi László: Lineáris algebra, 29. 36. oldal. Gondolkodnivalók Vektortér 1. Gondolkodnivaló Alteret alkotnak-e az R n n (valós n n-es mátrixok) vektortérben az alábbi részhalmazok? U 1 =

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

4. feladatsor Mátrixok

4. feladatsor Mátrixok 4 feladatsor Mátrixok 41 Feladat Döntse el, hogy igazak-e az alábbi állítások, és döntését röviden indokolja: (a) n i=1 i = 1 i n i (b) 1 i>n 1 = 1 minden n pozitív egészre; (c) n i i=1 j=1 (i j) = n j

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

41. Szimmetrikus mátrixok Cholesky-féle felbontása

41. Szimmetrikus mátrixok Cholesky-féle felbontása Benyújtja: Kaszaki Péter (KAPMAAT.SZE) 2005 november 21. 1.oldal Tartalomjegyzék 1. Bevezetés 4 2. A Gauss elimináció és az LU felbontás 4 2.1. Gauss elimináció 4 2.1.2. A Gauss elimináció mátrixos alakban

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Normák, kondíciószám

Normák, kondíciószám Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus

Részletesebben

Problémás regressziók

Problémás regressziók Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer

Részletesebben

A CSOPORT 4 PONTOS: 1. A

A CSOPORT 4 PONTOS: 1. A A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik 1. Bevezetés A félév anyaga. Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad-

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Mátrixfelbontások BSc szakdolgozat

Mátrixfelbontások BSc szakdolgozat Eötvös Loránd Tudományegyetem Természettudományi Kar Radnai Georgina Mátrixfelbontások BSc szakdolgozat Témavezető: Ágoston István Algebra és Számelmélet tanszék Budapest, 6 Tartalomjegyzék Bevezetés 4.

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Vektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Octave: alapok Az octave mint számológép: octave:##> 2+2 ans = 4 Válasz elrejtése octave:##> 2+2; octave:##> + - / * () Hatványozás:

Részletesebben