3. Lineáris egyenletrendszerek megoldása február 19.
|
|
- Rudolf Pál Molnár
- 6 évvel ezelőtt
- Látták:
Átírás
1 3. Lineáris egyenletrendszerek megoldása február 19.
2 Lineáris egyenletrendszer M darab egyenlet N változóval, az a ij és b j értékek ismertek: a 11 x 1 + a 12 x a 1N x N = b 1 a 21 x 1 + a 22 x a 2N x N = b 2 a M1 x 1 + a M2 x a MN x N = b M. Feĺırhatjuk indexes 1 és mátrix alakban is: a ij x j = b i A x = b Cél: az x i ismeretlenek meghatározása. 1 azonos indexekre automatikus Σ
3 Lineáris egyenletrendszer meghatározottsága M = N esetén Jó esély van konkrét megoldás megtalálására, kivéve ha van olyan sor, ami más sorok lineárkombinációjaként előáll ekkor a mátrix sorok szerint degenerált, vagy a mátrix két oszlopa megegyezik 2, ekkor a mátrix oszlopok szerint degenerált Négyzetes mátrix esetében: sorok szerint degenerált oszlopok szerint degenerált det(a) = 0 ekkor a mátrix szinguláris 2 pontosabban: ha az egyenletrendszer bizonyos változókat csak teljesen azonos lineárkombinációkban tartalmaz
4 Numerikusan szinguláris mátrixok A számítógép a valós számokat véges precizitással ábrázolja, emiatt kerekítési hibák adódnak. Ha két sor nem teljesen azonos, de nagyon hasonlóak (ɛ ) Ekkor a kerekítési hibák miatt előfordulhat 0-val osztás a mátrix numerikusan szinguláris Ilyen esetekben a 0-val való osztás miatt hibát kapunk 3. N 1 az egyenletrendszer megoldása sok műveletet igényel A kerekítési hibák összeadódnak A program lefut, de a végeredmény hibás lesz Behelyettesítéssel kell ellenőrizni 3 Újabb C implementációk hiba helyett Infinity vagy NaN értéket használnak.
5 Numerikusan szinguláris mátrixok kezelése Az előbbi két probléma kiküszöbölésére léteznek algoritmusok Speciális algoritmus alkalmazása nélkül Néhány 10 változós egyenlet még megoldható Néhány 100 egyenlethez duplapontosságú aritmetika kell: double típusú változók használata 1000 egyenlet fölött már biztosan jelentkeznek a problémák
6 Lineáris egyenletrendszerek megoldásának sebessége A feladat gépigénye: a memóriaigény N 2 -tel skálázik a számításigény N 3 -bel skálázik Egy megoldási lehetőség: a feladat párhuzamosítható Speciális alakú mátrixok esetében van gyorsabb megoldás. tridiagonális (ld. spline interpoláció) Vandermonde-típusú (ld. interpolált polinom együtthatói)
7 Gyakori megoldandó problémák Az A x = b lineáris egyenletrendszer megoldása Az A x k = b k egyenletrendszerek megoldása Egyszerre érdemes a k darab egyenletrendszert megoldani Az A mátrix invertálása, és bk beszorozgatása a kerekítési hibák miatt nem célszerű Az A mátrix inverzének meghatározása ez azonos az előzővel, ha b k a triviális bázisvektorok Az A mátrix determinánsának kiszámítása, stb.
8 Alulhatározott egyenletrendszerek Ha M < N, vagy M = N, de az egyenletrendszer degenerált, azaz kevesebb egyenlet van, mint ahány ismeretlen; az egyenletrendszer alulhatározott Egyáltalán nincsen megoldás, vagy A megoldás egy egész altér: x p egy lehetséges megoldás, és ehhez jön még N M vektor tetszőleges lineárkombinációja A megoldást ilyenkor ún. szingulárisérték-dekompozícióval keressük (singular value decomposition = SVD)
9 Túlhatározott egyenletrendszerek Ha M > N, akkor az egyenletrendszer túlhatározott Általában nincsen megoldás, de Van értelme egy lehetséges legjobb megoldásról beszélni. Például: Mi az a pont, ami a lehető legjobban kielégíti az egyenletrendszert olyan értelemben, hogy az egyenletek jobb és baloldalai közötti eltérések négyzetösszege minimális? arg min x j (b i a ij x j ) 2 i
10 Túlhatározott egyenletrendszer lehető legjobb megoldása
11 Házi feladat Lássuk be, hogy a szinguláris egyenletek legkisebb négyzetek alapján definiált lehető legjobb megoldása előáll a következő egyenletrendszer megoldásaként: A T A x = A T b, ahol A T az A mátrix transzponáltja! A fenti egyenletrendszert az eredeti egyenletrendszer normálegyenleteinek nevezzük. Általában ezeket is SVD-vel célszerű megoldani direkt megoldás helyett.
12 Programcsomagok lineáris egyenletek megoldására Nagyon általános probléma Sok ember dolgozik rajta Optimalizált programcsomagok léteznek Például: LINPACK, LAPACK stb. Párhuzamosított változat: ScaLAPACK Intel processzorokra optimalizált: MKL Támogatják speciális mátrixok optimális tárolását is, pl.: Szimmetrikus mátrix, háromszög-mátrix Sávmátrixok Ritka mátrixok (majdnem minden elem 0)
13 Gauss Jordan-elimináció Feladat: megoldani az alábbi egyenletrendszert: ahol A négyzetes mátrix. A x = b, A Gauss Jordan-elimináció tulajdonképpen az általános iskolában tanult módszer lineáris egyenletrendszerek megoldására. Egyszerre álĺıtja elő az egyenletrendszer megoldását, és adja meg az A mátrix inverzét. Numerikusan legalább annyira stabil, mint más eljárás, főleg teljes pivotolás 4 esetén 4 pivot = csuklópont, de a pivoting és pivot element szavaknak nincsen bevett fordítása
14 A Gauss Jordan-elimináció tulajdonságai Memóriaigény: tárolni kell a mátrixot, és a megoldásvektort: N 2 + N a mátrix inverzét elvileg lehet tárolni a bemeneti mátrix helyén Számítási igény: szükséges műveletek száma O(N 3 ) de ha olyan algoritmusokat nézünk, amik hasonlóan megoldják az egyenletrendszer, és ugyanakkor elő is álĺıtják a mátrix inverzét, akkor ez háromszor lassabb, mint a legjobb módszer
15 A megoldási módszer elemi lépései A következő műveletek nem változtatják meg egy lineáris egyenletrendszer megoldását: két sor felcserélése ez nyilvánvaló, hiszen az egyenletek sorrendje teljesen tetszőleges, feltéve persze, hogy a jobboldal megfelelő sorait is megcseréljük más sorok lineárkombinációjának hozzáadása bármely sorhoz ebbe belefér az is, hogy egy sort számmal szorzunk, ha az a szám nem nulla; természetesen mindkét oldalon el kell végezni a változók felcserélése ez lényegileg nem változtat az egyenleteken, ha emlékszünk, hogy a végén a változókat megfelelő permutáció szerint vissza kell cserélgetni; ez az A mátrix oszlopainak felcserélését jelenti.
16 Kiindulás: kibővített mátrix A megoldandó egyenletrendszer: x = Feĺırjuk a mátrixot és a jobb oldalt a következő alakban: Ha az inverz mátrixot keressük, akkor pedig: (A jobb oldalon tulajdonképpen akárhány oszlop állhat, amennyiben egyszerre több egyenletet akarunk megoldani.)
17 Az elimináció menete Cél: a korábban ismertetett elemi műveletek segítségével a baloldalt egységmátrix alakra hozzuk úgy, hogy közben a műveleteket a jobb oldalon is elvégezzük. Ekkor jobboldalt előáll az egyenletrendszer megoldása (illetve a mátrix inverze). Elindulunk a főátló első elemétől. 1. Ha az elem nem 1, akkor az egész sort elosztjuk a főátlóbeli elemmel, hogy a főátlóban 1 legyen
18 2. Minden alatta levő sorból kivonjuk az első sor valahányszorosát úgy, hogy a főátló alatt végig 0 legyen Ha főátlóbeli elem alatt mindent kinulláztunk, akkor folytatjuk a főátló következő elemével: Majd kivonjuk a sor valahányszorosát az összes többiből úgy, hogy a főátlót kivéve mindenütt 0 legyen:
19 5. Az eljárást tovább folytatjuk a főátló elemeire Az eljárás akkor ér végét, ha a baloldali részmátrix az egységmátrix alakját veszi fel. Ekkor jobboldalon vagy a megoldást kapjuk, vagy pedig a mátrix inverzét, attól függően miből indultunk ki
20 1. probléma: Zérus elem a főátlóban Képzeljük el a következő szituációt: Ilyenkor az adott sorral nem tudjuk az alatta és fölötte levő elemeket eliminálni. Megoldás: sorcsere! Keressünk a főátló aktuális eleme alatti oszlopban olyan elemet, ami nem nulla (ez lesz az ún. pivot-elem), cseréljük meg a két sort (a jobboldalt is!), majd folytassuk az eliminációt, mintha mi se történt volna. Az eljárás neve: részleges pivotolás.
21 2. probléma: Nagyon pici elem a főátlóban Ha ezzel próbálnánk eliminálni, akkor nagy szorzótényezők miatt nagyon nagy számok jelennének meg a mátrixban, ami numerikus instabilitási problémákhoz vezet. Megoldás: válasszuk az adott oszlop főátló alatti abszolút értékben legnagyobb elemét, a megfelelő sorokat cseréljük meg, és folytassuk így az eliminációt.
22 3. probléma: a mátrix sorai tetszőlegesen normálhatók A sorokat tetszőleges számmal szorozva végül is bármelyik aktuális oszlopbeli, főátló alatti elem lehet maximális. Megoldás: Úgy keressük a legnagyobb elemet, hogy a sorokat az eredeti mátrix sorainak legnagyobb elemével normáljuk. Ez a gyakorlatban azt jelenti, hogy a soronkénti legnagyobb elemet tárolni kell. Vagy a mátrix sorait a legelején leosztjuk minden sor abszolút értékben maximális elemével.
23 4. probléma: Az oszlop főátló alatti része csupa Ez könnyű: a mátrix szinguláris, megállunk.
24 További javítási lehetőség: oszlopcsere Ilyenkor a főátlóbeli aktuális elem alatti, és tőle jobbra levő almátrixban keressük az abszolút értékben legnagyobb elemet, ez lesz a pivot-elem. A megfelelő sorokat és oszlopokat megcseréljük (feljegyezve, hogy melyik két változót kell az eljárás végén visszacserélni!), majd a pivot-elemmel eliminálunk. Ezt nevezzük teljes pivotolásnak. Nem bizonyított álĺıtás, csak sejtés, hogy az algoritmus stabil, ha pivotnak mindig az almátrix abszolút értékben legnagyobb elemét választjuk.
25 Gauss-elimináció visszahelyettesítéssel Ez nagyjából azonos az előbbiekkel, de Elimináláskor csak a főátló alatti elemeket nullázuk le A főátlóban minden elemet 1-esre hozunk A felső háromszöget csak ezután, a jobb alsó sarokból kiindulva nullázzuk ki Ez némileg kevesebb műveletet igényel, ezért numerikusan stabilabb
26 Az algoritmus építőkövei Az implementálást sosem a fő algoritmussal kezdjük, hanem azonosítjuk a fő részalgortimusokat, amiket külön-külön könnyű megírni. Eldöntjük, hogy milyen formában tároljuk a mátrixokat (sorok vagy oszlopok szerint) Azonosítjuk az alapvető műveleteket: Legnagyobb abszolút értékű elem megtalálása sorban Sor szorzása számmal Legnagyobb abszolút értékű elem megtalálása oszlopban, főátló alatt Legnagyobb abszolút értékű elem megtalálása almátrixban Két sor cseréje Két oszlop cseréje (oszlopcsere könyvelése) Két sor különbségének képzése
27 Az algoritmus implementálása Az építőelemeket külön-külön megvalósítjuk és Külön-külön teszteljük! Soha ne írjunk úgy programot, hogy előbb nagyjából kész legyen, aztán majd javítgatjuk. Soha sem fog működni. Mindig alulról felfelé, az egyes függvényeket alaposan kipróbálva kell haladni! Ezek után jöhet a fő algoritmus leprogramozása Többfajta mátrixon teszteljük Direkt kell olyan mátrixokat gyártani, ami próbára teszi az algoritmust. Például: van a főátlóban 0 elem, szinguláris mátrix stb. A numerikus stabilitás tesztelése ugyanakkor nehéz feladat.
28 Alsó-felső háromszög dekompozíció Invertáláshoz a mátrixot gyakran érdemes faktorizálni, azaz kettő vagy több speciális tulajdonságú mátrix szorzataként előálĺıtani. A legegyszerűbb faktorizáció: LU-dekompozíció. Az A mátrixot A = L U alakban keressük, ahol L csak főátlóbeli, és főátló alatti elemeket tartalmaz U csak főátlóbeli, és főátló fölötti elemeket tartalmaz a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = l l 21 l 22 0 l 31 l 32 l 33 u 11 u 12 u 13 0 u 22 u u 33
29 Az LU-dekompozíció alapötlete Vegyük észre, hogy ha A = L U, akkor az A x = b egyenlet átírható A x = (L U) x = L (U x) = b alakra, azaz a probléma két lépésre bontható: L y = b U x = y A módszer előnye, hogy mivel L és U háromszög-mátrixok, a korábbi visszahelyettesítéses módszerrel közvetlenül meghatározhatók: L esetében a bal felső sarokból kell indulni U esetében a jobb alsóból
30 L és U meghatározása L és U összesen N 2 + N ismeretlen elemet tartalmaz az (L U) x = b egyenletrendszer viszont csak N 2 egyenletet ad: i < j : i = j : i > j : l i1 u 1j + l i2 u 2j l ii u ij = a ij l i1 u 1j + l i2 u 2j l ii u jj = a ij l i1 u 1j + l i2 u 2j l ij u jj = a ij Kössük, ki hogy az L mátrix főátlójában csupa 1-es szerepel, azaz l ii = 1. Ez az általánosság megszorítása nélkül megtehető. Ez további N egyenletet ad.
31 Az N 2 + N egyenlet megoldása Az egyenletrendszer a Crout-algoritmussal megoldható: for j = 1, 2,..., N do for i = 1, 2,..., j do az első két egyenlet felhasználásával: u ij = a ij i 1 k=1 l iku kj end for i = j + 1, j + 2,..., N do a harmadik egyenlet felhasználásával: l ij = (1/u jj )(a ij j 1 k=1 l iku kj end end Az algoritmus második belső ciklusában az u jj elem a nevezőben szerepel. Elkerülendő, hogy ez ne legyen 0, a Gauss-eliminációhoz hasonlóan itt is szükség lehet átrendezésre.
32 Az LU-dekompozíció előnyei Az A mátrix determinánsa előáll a következő alakban: det A = N j=1 u jj A dekompozíciót elegendő egyszer elvégezni, és utána már a visszahelyettesítéses módszerrel gyorsan megkapható az egyenletrendszer megoldása bármilyen jobb oldal esetére. Ugyanígy a mátrix inverze is könnyen számolható.
33 Iteratív módszerek Iteratív lépés Általában egy egyszerű műveletet ismételgetünk A művelet egy függvény, aminek bemenete x k, kimenete x k+1 A következő lépés bemenete az előző lépés kimenete Tekintsük a lépések által előálĺıtott x k értékek sorozatát Tart-e az x k sorozat valahova? Ha igen, akkor az iteráció konvergens A konvergenciát vagy elméletileg kell belátni, vagy Lehet programmal is vizsgálni: x k+1 x k? 0 Ha tudjuk, hogy konvergens, akkor megállhatunk, amikor x k+1 x k < ɛ, ahol ɛ elő van írva
34 Honnan induljon az iteráció? Természetesen valami x 0 értékből kell elindulni Ennek jó megválasztása gyakran kérdés Ha bárhonnan indulva konvergens az iteráció, akkor a konvergencia globális Ha csak bizonyos helyekről konvergens, akkor a konvergencia lokális Előfordul, hogy máshonnan indulva máshova konvergál az iteráció A lineáris iterációs módszerek, ha konvergensek, akkor globálisan konvergensek.
35 Iteratív módszerek egyenletrendszerek megoldására A megoldást iteratívan érdemes előálĺıtani, ha az egyenletrendszer nagyon nagy közel szinguláris, és numerikusan nehezen kezelhető Tegyük fel, hogy ismerünk egy x + δx közeĺıtő megoldást. (Csak az összeg ismert, de mi x értékét keressük.) Behelyettesítve az egyenletbe a jobb oldal el fog térni az eredetitől: A (x + δx) = b + δb Ebből kivonva az eredeti A x = b egyenletet: A δx = δb
36 Iterációs lépés Viszont az eredetit átrendezve: δb = A (x + δx) b, aminek a jobb oldalát ismerjük, tehát megoldhatjuk δx-re a egyenletet. A δx = A (x + δx) b Ha A LU-faktorizációját ismerjük, akkor csak behelyettesítgetni kell. Várhatóan pontosabb megoldást kapunk, és az eljárást ismételve egyre konvergálunk az egyenlet megoldásához.
37 Iterációs módszerek általánosabban Írjuk át az A x = b egyenletet: x = (I A) x + b, ahol I az egységmátrix. Itt x kivételével minden ismert, és ha ismerünk egy kellően jó x k megoldást, akkor képezhetjük a következő iterációt: x k+1 = (I A) x k + b Belátható, hogy ha I A mátrix-normája kisebb egynél, akkor az iteráció konvergens. Itt A-t nem kell invertálni (vagy faktorizálni)
Feladat: megoldani az alábbi egyenletrendszert: A x = b,
Gauss Jordan-elimináció Feladat: megoldani az alábbi egyenletrendszert: ahol A négyzetes mátrix. A x = b, A Gauss Jordan-elimináció tulajdonképpen az általános iskolában tanult módszer lineáris egyenletrendszerek
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK
Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, A. csoport, MEGOLDÁSOK. Feladat. Az a. választás mellett A /( a) értéke.486. Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Eddig csak a polinom x-ben felvett értékét kerestük
Interpolációs polinom együtthatói Eddig csak a polinom x-ben felvett értékét kerestük Ez jó, ha kevés x-re kell kiértékelni Ha sok ismeretlen f (x)-et keresünk, akkor jobb kiszámolni az együtthatókat,
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek
1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.
A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.
1. Mátrixösszeadás és skalárral szorzás
1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Saj at ert ek-probl em ak febru ar 22.
Sajátérték-problémák 2016. február 22. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre az egyenlet
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
1. A kétszer kettes determináns
1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Nemlineáris egyenletrendszerek megoldása április 15.
Nemlineáris egyenletrendszerek megoldása 2014. április 15. Nemlineáris egyenletrendszerek Az egyenletrendszer a következő formában adott: f i (x 1, x 2,..., x M ) = 0 i = 1...N az f i függvények az x j
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
Robotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
41. Szimmetrikus mátrixok Cholesky-féle felbontása
Benyújtja: Kaszaki Péter (KAPMAAT.SZE) 2005 november 21. 1.oldal Tartalomjegyzék 1. Bevezetés 4 2. A Gauss elimináció és az LU felbontás 4 2.1. Gauss elimináció 4 2.1.2. A Gauss elimináció mátrixos alakban
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1.
DETERMINÁNSSZÁMÍTÁS A (nxn) kvadratikus (négyzetes) mátrixhoz egyértelműen hozzárendelhetünk egy D R számot, ami a mátrix determinánsa. Már most megjegyezzük, hogy a mátrix determinánsa, illetve a determináns
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció
7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet
9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév
LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai
Numerikus módszerek 1.
Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
Line aris f uggv enyilleszt es m arcius 19.
Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal
11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Numerikus Analízis I.
Numerikus Analízis I. Sövegjártó András Jegyzet másodéves programozó és programtervező matematikus szakos hallgatóknak 2003. ,,A sikerhez és tudáshoz vezető út senki előtt sincs zárva, akiben van bátorság
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
A Szállítási feladat megoldása
A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation
1. Geometria a komplex számsíkon
1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma
Mátrixok Definíció Az m n típusú (méretű) valós A mátrixon valós a ij számok alábbi táblázatát értjük: a 11 a 12... a 1j... a 1n.......... A = a i1 a i2... a ij... a in........... a m1 a m2... a mj...
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény