I. Egyenes arányosság és a lineáris függvények kapcsolata

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "I. Egyenes arányosság és a lineáris függvények kapcsolata"

Átírás

1 6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE I. Egyenes arányosság és a lineáris függvények kapcsolata Mintapélda 1 A csapból percenként 5 l víz folyik a fürdőkádba, melynek befogadó képessége 80 liter. Mennyi idő alatt telik meg az eredetileg üres kád? Készíts táblázatot és ábrázold grafikonon a kádban levő vízmennyiséget az eltelt idő függvényében! Válasz a kérdésre: 16 perc alatt telik meg a kád, mert = Értéktáblázat készítése: T (perc) L (liter) Ábrázolás grafikonnal: 4. Hozzárendelési utasítás meghatározása: Az eltelt időt az x tengelyen, a térfogatot (literben) az y tengelyen ábrázoltuk, tehát: x a 5 x vagy f (x) = 5 x. Mintapélda Egy 0 cm hosszú gyertyát meggyújtunk. A gyertya 4 óra alatt ég el. Fél óra alatt hány centimétert csökken? Készíts táblázatot és ábrázold grafikonon a gyertya hosszának alakulását az eltelt időtől függően! 0 1. Válasz a kérdésre: A gyertya 1 óra alatt = 5 cm-t csökken, fél óra alatt,5 cm-rel 4 lesz alacsonyabb.

2 11. modul: LINEÁRIS FÜGGVÉNYEK 7. Értéktáblázat készítése: T (h) 0 0,5 1 1,5 4 M (cm) 0 17,5 15 1, Ábrázolás grafikonnal: 4. Hozzárendelési utasítás meghatározása: Az eltelt időt az x tengelyen, a gyertya magasságát az y tengelyen ábrázoltuk, tehát: x a 5 x + 0. vagy f (x) = 5 x + 0. Mintapélda Egy személygépkocsi az autópálya 50 km-es szakaszán 110 km/h sebességgel halad. Mennyi idő alatt teszi meg ezt az utat? Készíts táblázatot és ábrázold grafikonon a sebességet az út függvényében! v 1. Válasz a kérdésre: Az autó 0,45 óra alatt teszi meg az utat, mert t = = 50 = 0, 4 & 5 &. s 110. Értéktáblázat készítése: s (km) km v h Ábrázolás grafikonnal: 4. Hozzárendelési utasítás meghatározása: A megtett utat az x tengelyen, az autó sebességét az y tengelyen ábrázoltuk, így: x a 110, vagyis f (x) = 110.

3 8 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Feladatok 1. Egy csiga hajnalban útnak indul. A m széles járda egyik oldaláról szeretne átjutni a másikra. Óránként fél métert képes megtenni. Mennyi idő múlva ér át a túloldalra? Készíts táblázatot és ábrázold grafikonon a megtett utat az eltelt idő függvényében!. Egy autó lakott területhez közeledvén lassítani kezdett. 5 km-re volt a falu szélétől, amikor 110 km/h sebességét elkezdte egyenletesen csökkenteni. A falu határán belül 50 km/h a megengedett maximum. Hány km/h-val kellett csökkenteni a sebességét kilométerenként? Készíts táblázatot és ábrázold grafikonon az autó sebességének csökkenését a megtett út függvényében!. Egy macska felmászik a 4 m magas fa tetejére, miközben 15 N állandó erővel húzza felfelé magát. (s = 4 m, F = 15N.) Számold ki, mennyi munkát végez a macska, míg feljut a fa tetejére! (W = F s) Készíts táblázatot és ábrázold grafikonon az erő és a magasság kapcsolatát! 4. A Jánoshegyi libegő 1040 m hosszú kötélpályán mozog. Az utasokat 4 km/h sebességgel szállítja. Mennyi ideig (percig) tart egy utazás a libegővel? Készíts táblázatot és ábrázold grafikonon a megtett út hosszát az idő függvényében! 5. A Jánoshegyi libegő 1040 m hosszú kötélpályán mozog. Az utasokat 4 km/h sebességgel szállítja. Mennyi ideig (percig) tart egy utazás a libegővel? Készíts táblázatot és ábrázold grafikonon a visszafele vivő út hosszát az eltelt idő függvényében! 6. Egy gyerek az 100 Watt teljesítményű hajszárítójával 0,5 órán keresztül szárítja a haját. (P = 100 Watt.) Mennyi a hajszárító fogyasztása? (W = P t = kwh) Készíts táblázatot és ábrázold grafikonon a teljesítményt az idő függvényében! 7. Válaszolj az alábbi kérdésekre! 1. Milyen kapcsolat van a Mintapéldák táblázatainak értékpárjai között?. Hogyan helyezkednek el a koordináta-rendszerben az ezekhez az értékpárokhoz tartozó pontok? Milyen alakzatot alkotnak?. Milyen viszonyban van a végeredményül kapott pont ezzel az egyenessel? 4. Tudsz-e szabályt mondani, aminek alapján könnyedén folytatható a táblázat kitöltése?

4 11. modul: LINEÁRIS FÜGGVÉNYEK 9 5. Az előző szabályt próbáld meg általánosságban is megfogalmazni! 6. Ez a szabály egyben a lineáris függvény hozzárendelési szabálya is. A függvény grafikonjában milyen szerepet játszik m és b? 7. Milyen kapcsolatot fedezel fel az arányossági tényező és a grafikon meredeksége között? 8. A lineáris függvény grafikonjának meredeksége milyen értékeket vehet fel? Ennek az értékétől hogyan függ a grafikon? 9. A szöveges feladatok alapján többnyire csak a pozitív x értékeknek van értelme, a grafikont is ennek megfelelően ábrázoltuk. A szabály alapján folytatható lenne-e az egyenes negatív x-ek esetén? (Értelmezhetjük-e negatív számokra is?) 10. Mi az a legbővebb halmaz, ami a függvény értelmezési tartománya és értékkészlete lehet? 11. A koordináta-rendszerbe rajzoljunk egyeneseket. Igaz-e, hogy minden lineáris függvény grafikonja egyenes? 1. A koordináta-rendszerbe rajzoljunk egyeneseket. A koordináta-rendszer minden egyeneséhez tartozik lineáris függvény? 8. Döntsd el az alábbi állításokról, hogy melyik igaz, melyik hamis. Válaszodat indokold! 1. Az 1. és. feladat táblázatának értékpárjai közötti kapcsolat egyenes arányossággal jellemezhető.. Ezek az értékpárok szétszórva, rendszertelenül helyezkednek el a koordinátarendszerben.. A feladat végeredményét megadó értékpárnak megfelelő pont a koordináta-rendszerben mindig az egyenes alatti síkrészben található. 4. A hozzárendelési szabály mindig f (x) = m x + b alakú, amely egyben a lineáris függvény hozzárendelési utasítása is, ahol a hozzárendelési szabályban szereplő m és b értékek tetszőleges valós számok lehetnek. 5. A b érték a lineáris függvény grafikonjának meredekségét határozza meg. 6. Az arányossági tényező és a lineáris függvény meredeksége megegyezik. 7. Ha a lineáris függvény meredeksége 0, akkor képe párhuzamos az y tengellyel. 8. Ha a lineáris függvény meredeksége negatív, akkor a függvényt monoton csökkenőnek nevezzük. Ha pozitív, akkor monoton növekvőnek.

5 10 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE 9. A lineáris függvény legbővebb értékkészlete és értelmezési tartománya egyaránt a valós számok halmaza, vagy annak egy valódi részhalmaza lehet. 10. Minden lineáris függvény grafikonja egyenes. 11. A koordináta-rendszer minden egyeneséhez tartozik lineáris függvény.

6 11. modul: LINEÁRIS FÜGGVÉNYEK 11 II. Lineáris függvények f(x) = mx+b Azokat a függvényeket, amelyeknek grafikonja egyenes, lineáris függvényeknek nevezzük. A lineáris függvények megadhatók az f (x) = m x + b képlettel, ahol m és b valós számok. Jelentésük: m a függvény grafikonjának meredeksége, b pedig az y tengellyel való metszéspontjának. koordinátája. A lineáris függvények más lehetséges jelölései: x a mx + b, vagy y = mx + b. Ha m = 0, akkor az f (x) = b (vagy x a b, vagy y = b) hozzárendelést kapjuk, melyet konstans függvénynek nevezünk. f(x) = b Ekkor a függvény képe az x tengellyel párhuzamos egyenes. Ha m 0, akkor a függvény elsőfokú. f(x) = mx, ha m > 0 f(x) = mx, ha m < 0 Ha m > 0, akkor a lineáris függvény szigorúan monoton növő, vagyis növekvő x értékekhez növekvő függvényértékek tartoznak.

7 1 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Ha m < 0, akkor a lineáris függvény szigorúan monoton csökkenő, vagyis növekvő x értékekhez csökkenő függvényértékek tartoznak. Általában minden f (x) = m x függvény egyenes arányosságot fejez ki, ahol az arányosság tényezője m. Ábrázoláskor pedig azt mutatja meg, hogy egy egységnyi jobbra haladás esetén hány egységet megyünk az y tengely mentén pozitív m esetén felfelé, negatív m esetén lefelé. Mintapélda 4 A megrajzolt grafikon alapján állapítsuk meg a hozzárendelési szabályt és adjuk meg az értéktáblázat hiányzó adatait! Számítsuk ki a már ismert jelöléssel megadott helyeken a függvényértékeket! F (x) =? f ( ) = f ( 1) = f () = x f(x),8 0 1,4 1. A lineáris függvény általános hozzárendelési utasítása: f (x) = m x + b, ahol m a függvény meredeksége, b pedig az y tengellyel vett metszéspontja. Mivel a grafikonról leolvasva ez a metszéspont (+)-nél található, így b = +. A meredekséget megmutatja, hogy egy egységnyi jobbra haladásra hány egységet lépünk függőlegesen. A grafikonról leolvasva ez az érték A hozzárendelési utasítás: f (x) = x + +. Tehát m =.

8 11. modul: LINEÁRIS FÜGGVÉNYEK 1. Függvényértékek kiszámítása, értéktáblázat kitöltése: f ( ) =? A hozzárendelési utasításban x helyére behelyettesítjük a -t: f ( ) = ( ) 4 10 Hasonlóan : f ( 1) = ; f () =. Az értéktáblázat első 5 oszlopának kitöltése, melyekben az x érték adott, és f (x)-et keressük, szintén ehhez hasonló. Az eredmények: + = x f(x) 0 A oszlopokban f (x) értéke adott, és x-et keressük: 6. oszlop: f (x) = f (x) helyére írjuk a hozzárendelési utasítást: x + =. Ezt az egyenletet megoldva kapjuk: x = 7,5. A oszlopok kitöltése is hasonló. Az eredmények összefoglalva: x 7,5 7, 1,5,1 f(x),8 0 1,4 9. A megrajzolt grafikonok alapján állapítsd meg a hozzárendelési szabályt és add meg az értéktáblázat hiányzó adatait! Számítsd ki a már ismert jelöléssel megadott helyeken a függvényértékeket! a) g (x) =? g ( 1) = g () = g () = x g(x)

9 14 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE b) h (x) =? h ( 1 ) = h ( 5) = h (8) = x,5 1 5,5 1 h(x) 1 0,5 6 c) l (x) =? l (0) = l (10,6) = l ( 5,5) = x 4 1,5 8 9 l(x)

10 11. modul: LINEÁRIS FÜGGVÉNYEK 15 d) m (x) =? x m(x) e) n (x) =? 4 11 x,75 0 4,66 &,84 n(x) Mintapélda 5 Ábrázoljuk koordináta-rendszerben az f (x) = x + 7 hozzárendelési utasítással megadott függvény grafikonját! Mivel az adott függvény lineáris, ezért képe egyenes. Az egyenest két pontja egyértelműen meghatározza, tehát számítsuk ki a függvény két különböző helyen vett függvényértékét, hogy meghatározzuk a koordinátasík két pontját, P-t és Q-t, ami rajta van a függvény grafikonján.

11 16 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE A legegyszerűbb, ha először kiszámoljuk a függvényértéket a 0 helyen. Ez legyen a P pont, ez rajta van az y tengelyen. A P pont második, y koordinátája: f (0) = = 7, ebből következik, hogy a pont koordinátái: P (0; 7) A Q pont pedig legyen az egyenesnek az a pontja, amely rajta van az x tengelyen, vagyis ahol a függvényérték 0. Itt x + 7 = 0, azaz x = 7, ebből következik: Q (7; 0) A P és Q pontokat összekötő egyenes lesz a függvény grafikonja. Mintapélda 6 Ábrázoljuk koordináta-rendszerben a f (x) = 1 x + 4 hozzárendelési utasítással megadott függvény grafikonját! A hozzárendelési utasítás általános alakja 1 f (x) = m x + b. Ebben az esetben b = 4, m =. A b a koordinátasík azon pontjának. koordinátája, ahol a grafikon az y tengelyt metszi. Ez a P (0; 4) pont. m ismerete segít a függvény képének megrajzolásában: m az egyenes meredeksége, egy. egységnyi jobbra haladásra m egységet lépünk az y tengellyel párhuzamosan, m előjelétől függően lefelé vagy felfelé. Jelen esetben egy egységnyi jobbra haladás után 0,5 egységet haladunk lefelé a előjel miatt. A kapott pontot a P-vel összekötő egyenes lesz a keresett grafikon.

12 11. modul: LINEÁRIS FÜGGVÉNYEK 17 Mintapélda 7 Ábrázoljuk koordináta-rendszerben az f (x) = függvény grafikonját! x 5 x 5 hozzárendelési utasítással megadott Egyszerűsítsük a törtet! x 5 f (x) = = ( x + 5 ) ( x 5 ) = x + 5 x 5 x 5 ( x 5) Az előző két módszer valamelyikével ábrázoljuk f grafikonját. Figyeljünk arra, hogy a függvény az x = 5 helyen nincs értelmezve. Ezt a szakadási pontot üres karikával jelöljük. Mintapélda 8 x, Ábrázoljuk koordináta-rendszerben az f (x) = x 8, megadott függvény grafikonját! ha ha x 5 x > 5 hozzárendelési utasítással Ábrázoljuk először az f 1 (x) = x függvény grafikonját a ] ; 5] intervallumon, majd folytassuk az f (x) = x 8 függvény grafikonjával az ] 5; [ intervallumon.

13 18 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Közben észrevehetjük, hogy az x = 5 helyen ugyanazt az értéket veszik-e fel a függvények: f 1 (5) = 5 = f (5) = 5 8 = 10. Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! a) f (x) = x; 1 b) f (x) = x; c) f (x) = x; d) f (x) = x; e) f (x) = x + ; f) f (x) = x 4; g) f (x) = x + 4; h) f (x) = x ; i) f (x) = ; j) f (x) =. 11. Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! a) f (x) = 1 x + 5; b) f (x) = x 5; c) f (x) = 5 x + 1; x + 4x 1 d) f (x) = x 1,5; e) f (x) = ; f) f (x) = ; 6 5 x +1 x g) f (x) = ; h) f (x) = ; i) f (x) = ( x + 4 ); +1 j) f (x) = ( x 1 ); k) f (x) = x 7 ; l) f (x) = ( 1 x ) Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! + 1 a) f (x)) = ( x 1 + 1) ; b) f (x) = x ( x 5) ; c) f (x) = ( x + 4) x + ; 4 d) f (x) = 1 ( 1) x x 16 x x + ; e) f (x) = ; f) f (x) = ( x ) ; x + 4 x x + 6x + 9 x x +, ha x g) f (x) = ; h) f (x) = ; i) f (x) = ; x + x x 4, ha x <

14 11. modul: LINEÁRIS FÜGGVÉNYEK 19 x, j) f (x) = 6, ha ha x x, ; k) f (x) = x > x 4, ha ha x > 1. x 1 1. Keresd meg az összetartozó négyeseket! (Egy összetartozó négyest alkot a függvény hozzárendelési utasítása, a grafikonja, és a rá illeszkedő két pontja.) x 8 f (x) = x + 5; g (x) = x 1; h (x) = 4 1 P ; 6 ; Q(;1); R(; 5 ); S(10;); T(;1); U( x ; i (x) = ; ;1); V(4;0); Z 1 ;. 7 I. II. III. IV. Mintapélda 9 Adjuk meg a lineáris függvény hozzárendelési utasítását, ha grafikonja a) átmegy a P( ; 5) ponton és az y tengelyt a 10 helyen metszi! b) átmegy a P( ; 1) ponton és párhuzamos az f ( x ) = x + 6 hozzárendelési utasítással megadott függvény grafikonjával! a) A lineáris függvény hozzárendelési utasításának általános alakja: f ( x ) = m x + b. Adott: P( ; 5), valamint b = 10. f ( x ) az x helyen felvett függvényérték. Mivel a P pont rajta van a grafikonon, így x = és f ( ) = 5 Ezeket behelyettesítve az általános egyenletbe, kapjuk: 5 = m 10. Ebből: m = 5 A keresett hozzárendelési utasítás: f ( x ) = 5 x 10.

15 0 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE b) A lineáris függvény hozzárendelési utasításának általános alakja: f ( x ) = m x + b. Adott: P ( ; 1). Az előző példához hasonlóan x = és f ( ) = 1. Ha a keresett függvény grafikonja párhuzamos az f ( x ) = x + 6, akkor az azt jelenti, hogy a meredekségük megegyezik. Vagyis a keresett hozzárendelési szabályban is a meredekség. Ezeket behelyettesítve az általános képletbe, kapjuk: 1 = ( ) + b, ebből b = 5. A keresett hozzárendelési utasítás: g ( x ) = x Add meg a lineáris függvény hozzárendelési utasítását, ha grafikonja a) átmegy a P ( 7; 4) ponton, és a meredeksége ½! b) átmegy a P ( ; ) ponton és az x tengelyt a 6 pontban metszi! c) átmegy a P ( 1; 4) és a Q ( 4; 1) pontokon! 1 d) átmegy a P ( 5; ) ponton és merőleges az f (x) = x hozzárendelési utasítással megadott függvény grafikonjára! e) átmegy a P ( ; 6) ponton, és meredeksége 0! f) átmegy a P (100; 1) ponton és párhuzamos az x tengellyel! 14. Állapítsd meg, hogy az alábbiak közül mely geometriai transzformációkat, milyen sorrendben kell alkalmazni, hogy az f (x) = x függvény grafikonjából kiindulva az a) f (x) = x; b) f (x) = x 4; c) f (x) = x + 4; d) f (x) =. függvény grafikonját kapjad? Geometriai transzformációk: tükrözés, eltolás, nyújtás.

16 11. modul: LINEÁRIS FÜGGVÉNYEK 1 III. Kétismeretlenes lineáris egyenletrendszerek és lineáris egyenlőtlenségek grafikus megoldása 1. Kétismeretlenes lineáris egyenletrendszerek Mintapélda 10 Jancsi bankszámlát szeretne nyitni. Az egyik bank éves számlafenntartási díja 000 Ft, de havonta tranzakció (pénz felvétele, egyenleg lekérdezése, utalás stb.) ingyenes, minden további tranzakció 70 Ft-ba kerül. A másik banknál az éves számlafenntartási díj 100 Ft, de minden tranzakció 170 Ft. Melyik bankot érdemes választania, ha az első hónapban 5 tranzakció történik? Az első hónapban hány tranzakció esetén éri meg, hogy az első, illetve a második bankot válassza? Az első hónapban hány tranzakció esetén fizet ugyanannyit a bankoknak? Válaszaidat indokold! Értéktáblázat készítése: Egyik bank tranzakciók száma díj (Ft) Másik bank tranzakciók száma díj (Ft) Hozzárendelési szabályok: Grafikon készítése: Egyik bank: e ( x ) = 000 ( x ) Másik bank: m ( x ) = x 70, x, x { 1;}

17 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Szöveges válasz: Az első hónapban 5 tranzakció esetén a. bankot célszerű választani, mert itt csak 150 Ft-ot kell fizetnie, míg az első banknál 10 Ft-ot. Az első hónapban 15,6 tranzakció esetén kellene ugyanakkora díjat fizetnünk mindkét banknál. A tranzakciók száma csak természetes szám lehet, ezért 15 ill. annál kevesebb tranzakció esetén a. bankot érdemes választani, 16 vagy annál több tranzakció esetén pedig az elsőt. Útmutató a feladatok megoldásához: Oldd meg a szöveges feladatokat! Töltsd ki az értéktáblázatokat, határozd meg minden feladatnál a két értéktáblázat értékpárjai közötti hozzárendelési utasítást! Ábrázold az ezek által meghatározott függvények grafikonjait közös koordináta-rendszerben! 15. Egy új autó Ft-ban kerül, de 6 évig garantáltan nem hibásodik meg, azaz a ráfordított költségek elhanyagolhatóak. Utána minden évben Ft-ot kell ráköltenünk. Egy 8 éves használt autó csak Ft, de az éves szerviz díja Ft. Hosszú távon melyiket érdemes megvenni? Melyik az a legkésőbbi időpont, amikor még megéri a használt autót fenntartani? Válaszaidat indokold! Kitöltendő értéktáblázatok: Új autó év költség Használt autó év költség

18 11. modul: LINEÁRIS FÜGGVÉNYEK 16. Mónika a munkahelyére villamossal és busszal egyaránt mehet. A villamos azonnal indul, a buszra még várni kell 8 percet. Ha villamossal megy, akkor a 4 km-es út 5 percbe telik, a busszal csak 17 perc. Melyikkel menjen, hogy minél hamarabb beérjen? Mennyi idő alatt tesz meg a busz, ill. a villamos 1 km utat? Válaszaidat indokold! Kitöltendő értéktáblázatok: Villamos s(km) 0 0, t(min) Busz s(km) 0 0, t(min) 17. A soltvadkerti nyári táborba a csoport néhány tagja biciklivel megy, a többiek autóbusszal. A táv 100 km, a biciklisták 5 km/h óra sebességgel képesek haladni, és reggel 7 órakor indulnak az iskola elől. A busz 9-kor indul ugyanerről a helyről, de 80 km-t tesz meg óránként. Melyik csapat ér le hamarabb? Hány órával később ér le a másik? Hány km megtétele után és hány órakor éri utol az egyik a másikat? Válaszaidat indokold! Kitöltendő értéktáblázatok: Bicikli s(km) t(h; perc) Autóbusz s(km) t(h; perc)

19 4 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE 18. Kati könyvtárba szeretne beiratkozni. Az egyik könyvtárban 500 Ft az éves tagsági díj, és minden kölcsönzés 150 Ft. A másik könyvtárban 100 Ft a tagsági díj, de a kölcsönzési díj 50 Ft. Ha egy éven keresztül havonta 8 könyvet szeretne kikölcsönözni, akkor melyik könyvtárba érdemes beiratkoznia? Egy évben hány könyvet kölcsönözzön ki, hogy ugyanannyit fizessen? Hány könyv kölcsönzése esetén érdemes az első, illetve a második könyvtárat választania? Válaszaidat indokold! Kitöltendő értéktáblázatok: Egyik könyvtár Könyv(db) Összeg(Ft) Másik könyvtár Könyv(db) Összeg(Ft). Lineáris egyenlőtlenségek Mintapélda 11 Határozzuk meg a P( ; ) és Q( ; ), illetve az R(; ) és S(; ). koordinátáit úgy, hogy 1 az így kapott pont az f(x) = x hozzárendelési utasítással megadott függvények grafikonjai felett illetve alatt legyenek! Több megoldás van, az ábra mutat egy lehetőséget.

20 11. modul: LINEÁRIS FÜGGVÉNYEK Határozd meg a pontok y koordinátáit úgy, hogy az így kapott pont az alábbi hozzárendelési utasításokkal megadott függvények grafikonjai felett illetve alatt legyenek! Hozzárendelési utasítások: 1 f (x) = x 4 1 g (x) = x + h (x) = x + 4 i (x) = x Pontok: P( 1; ) Q(5; ) 1 R( ; ) S(1; ) T( 6; ) U(0; ) V(,5 ; ) Mintapélda 1 Ábrázoljuk koordináta-rendszerben az alábbi lineáris egyenlőtlenségeket! a) x + 6 b) x + 6 > 8 a) x b) x > 8 Megjegyzés: A 0. feladat a) és c) példáihoz valamint a. és. feladatokhoz idézd fel az Összefüggések, képletek, grafikonok, tájékozódás a koordináta-rendszerben modulban szerzett ismereteidet. Ha a határvonal fekete, akkor az < illetve >, ha a határvonal színe megegyezik a kitöltési színnel, akkor az illetve relációs jelet jelent. 0. Ábrázold koordináta-rendszerben az alábbi lineáris egyenlőtlenségeket! Színezd ki a megoldási halmazt! a) y ; b) 1 x + 4 > 0,5, c) 1 y < 5, d) x Ábrázold koordináta-rendszerben az alábbi lineáris egyenlőtlenségeket! Színezd ki a megoldási halmazt! a) x + 4 > x ; b) x x + 5; c) 5 x 7 < 5 x + 1; d) x 1 x.

21 6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE. Ábrázold koordináta-rendszerben az alábbi lineáris egyenlőtlenségeket! Színezd ki a megoldási halmazt! a) y > x 1; b) y és x < 1; c) y < x + 1 és 1 < x < 5.. Jellemezd az adott ponthalmazokat! a) b)

22 11. modul: LINEÁRIS FÜGGVÉNYEK 7 Kislexikon Lineáris függvény: a konstans (nulladfokú) és az elsőfokú függvények összessége. Grafikonja egyenes. Lineáris függvény hozzárendelési utasítása (képlete): f (x) = mx + b, ahol m a függvény grafikonjának meredeksége, b pedig az y tengellyel vett metszéspont. koordinátája. (b = 0 esetén a grafikon átmegy az origón, m = 0 esetén konstans függvény, párhuzamos az x tengellyel.) Lineáris függvény grafikonjának meredeksége: megmutatja, hogy egy egységnyi jobbra haladás esetén hány egységet kell az y tengely mentén lépünk pozitív m esetén felfelé, negatív m esetén lefelé. Lineáris függvény monotonitása: ha m > 0, akkor a függvény szigorúan monoton növő, vagyis növekvő x értékekhez növekvő függvényértékek tartoznak. ha m < 0, akkor a függvény szigorúan monoton csökkenő, vagyis növekvő x értékekhez csökkenő függvényértékek tartoznak. Pont és egyenes illeszkedése: A P(x 0 ;y 0 ) pont rajta van az f (x) = mx + b hozzárendelési utasítással megadott lineáris függvény grafikonján, ha x helyébe x 0 -at; f (x) helyébe y 0 -at helyettesítve az egyenlőség teljesül. (Ha y 0 > mx 0 + b, akkor a P pont az egyenes felett helyezkedik el. Ha y 0 < mx 0 + b, akkor pedig alatta van) Egyenes arányosság: Ha két változó mennyiség összetartozó értékeinek hányadosa állandó, akkor azok egyenesen arányosak. Az egyenes arányosságot az f (x) = mx, m 0 lineáris függvény írja le, ahol m az arányossági tényező.

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. szakiskolai évfolyam 1. félév ESZKÖZÖK Matematika A 9. szakiskolai évfolyam Betűkészlet csoportalakításhoz A D G B E H C F G H I J Matematika A 9. szakiskolai

Részletesebben

I. Egyenes arányosság és a lineáris függvények kapcsolata

I. Egyenes arányosság és a lineáris függvények kapcsolata . modul: LINEÁRIS FÜGGVÉNYEK 7 I. Egyenes arányosság és a lineáris függvények kapcsolata Az óra első néhány percében idézzük fel az egyenes arányosságról és a lineáris függvényről az általános iskolában

Részletesebben

I. Egyenes arányosság és a lineáris függvények kapcsolata

I. Egyenes arányosság és a lineáris függvények kapcsolata 6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI ÚTMUTATÓ I. Egyenes arányosság és a lineáris függvények kapcsolata Csoportok kialakítása: A tanár minden asztalra kitesz egy hozzárendelési szabályt a 7. kártyakészletből

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

11. MODUL LINEÁRIS FÜGGVÉNYEK. Készítette: Csákvári Ágnes

11. MODUL LINEÁRIS FÜGGVÉNYEK. Készítette: Csákvári Ágnes . MODUL LINEÁRIS FÜGGVÉNYEK Készítette: Csákvári Ágnes 6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE I. Egyenes arányosság és a lineáris függvények kapcsolata Mintapélda A csapból percenként 5 l víz folyik

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Hozzárendelés, lineáris függvény

Hozzárendelés, lineáris függvény Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam TANULÓK KÖNYVE. FÉLÉV A kiadvány KHF/46-/009. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

A függvényekről tanultak összefoglalása /9. évfolyam/

A függvényekről tanultak összefoglalása /9. évfolyam/ A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

FÜGGVÉNYEK x C: 2

FÜGGVÉNYEK x C: 2 FÜGGVÉNYEK 2005-2014 1. 2005/0511/2 Az ábrán egy [ 2; 2] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 2 2 B: x 2 2 x x

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára 8. témakör: FÜGGVÉNYEK A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Függvények: 6-30. oldal. Ábrázold a koordinátasíkon azokat a pontokat, amelyek koordinátái kielégítik a következő

Részletesebben

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A

Részletesebben

Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak?

Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak? Hozzárendelési szabályok.doc 1 / 6 Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak? Mintapélda2 Karcsi nyáron 435 Ft-os órabérért dolgozott.

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul: Az abszolútérték-függvény és más nemlineáris függvények

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Függvények. Fogalom. Jelölés

Függvények. Fogalom. Jelölés Függvények Fogalom Ha egy A halmaz minden eleméhez egyértelműen hozzárendeljük egy B halmaz valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük. Az A halmaz a függvény értelmezési tartománya,

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. május 9. KÖZÉPSZINT I. 1) Egy háromszög belső szögeinek aránya :5:11. Hány fokos a legkisebb szög? A legkisebb szög o 0. Összesen: pont ) Egy számtani sorozat első eleme 8, differenciája.

Részletesebben

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY MATEMATIK A 9. évfolyam 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

EGYENLETEK, EGYENLŐTLENSÉGEK

EGYENLETEK, EGYENLŐTLENSÉGEK EGYENLETEK, EGYENLŐTLENSÉGEK Elsőfokú egyenletek megoldása mérleg elvvel Az egyenletek megoldása során a következő lépéseket hajtjuk végre: a kijelölt műveletek elvégzésével, az egynemű kifejezések összevonásával

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Matematika 9. matematika és fizika szakos középiskolai tanár. III. fejezet - Függvények (kb. 15 tanóra) > o < december 19.

Matematika 9. matematika és fizika szakos középiskolai tanár. III. fejezet - Függvények (kb. 15 tanóra) > o < december 19. Matematika 9 Tankönyv és feladatgyűjtemény Juhász László matematika és fizika szakos középiskolai tanár III. fejezet - Függvények (kb. 15 tanóra) > o < 2015. december 19. copyright: c Juhász László Ennek

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2015. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. . tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 11. évfolyam 2. félév ESZKÖZÖK Matematika A 11. évfolyam 6. modul 6.1 kártyakészlet 6.1 kártyakészlet leírása A kártyákon pontok koordinátáit találjuk. A tanulók

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI

EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI I.Feladat: Egyváltozós függvény grafikonjához húzható érintőkkel kapcsolatos feladatok. 1.feladat: Határozza meg az függvény x = 1 abszcisszájú pontjába

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

7. Egyenletek, egyenlőtlenségek, egyenletrendszerek I.

7. Egyenletek, egyenlőtlenségek, egyenletrendszerek I. 7. Egyenletek, egyenlőtlenségek, egyenletrendszerek I. I. Elméleti összefoglaló Egyenlet Az egyenlet két oldalát függvénynek tekintjük: f(x) = g(x). Az f és g függvények értelmezési tartományának közös

Részletesebben

Elemi függvények, függvénytranszformációk

Elemi függvények, függvénytranszformációk Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :

Részletesebben

HOZZÁRENDELÉSEK, FÜGGVÉNYEK

HOZZÁRENDELÉSEK, FÜGGVÉNYEK 086. MODUL HOZZÁRENDELÉSEK, FÜGGVÉNYEK Függvények grafikus ábrázolása, egyenletek, egyenlőtlenségek grafikus megoldása KÉSZÍTETTE: BIRLONI SZILVIA ÉS HARSÁNYI ZSUZSA 086. Hozzárendelések, függvények Függvények

Részletesebben

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11. Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonan szolgálhatnak fontos információval

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben