normális eloszlások jelennek meg, mint határeloszlások. Annak érdekében, hogy ezeket

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "normális eloszlások jelennek meg, mint határeloszlások. Annak érdekében, hogy ezeket"

Átírás

1 A TÖBBVÁLTOZÓS CENTRÁLIS HATÁRELOSZLÁSTÉTEL A centrális határeloszlás so független valószínűségi változó összegéne az aszimptotius eloszlását írja le. Bizonyos érdése vizsgálatában szüségün van enne az eredményne egy olyan általánosabb változatára, amely független, vetor értéű valószínűségi változó összegéne az aszimptotius eloszlását adja meg. A centrális határeloszlástételne létezi ilyen általánosítása, és ezt hívjá többváltozós centrális határeloszlástételne. Követező témán enne az eredményne a tárgyalása. A többváltozós centrális határeloszlástétel megértése érdeében először meg ell ismernün a több-dimenziós normális eloszlás definicióját és anna néhány fontos tulajdonságát. Ugyanis a többváltozós centrális határeloszlástételeben a több-dimenziós normális eloszláso jelenne meg, mint határeloszláso. Anna érdeében, hogy ezeet az eloszlásoat jól megértsü, be ell vezetni a valószínűségi változó várható értééne és szórásnégyzeténe természetes megfelelőjét vetor értéű valószínűségi változó esetében. Ez a a vetor értéű valószínűségi változó várható értééne és ovariancia mátrixána a bevezetését jelenti. Ezenívül fel ell eleveníteni a lineáris algebra néhány eredményéne az ismeretét. Mielőtt a többváltozós centrális határeloszlástétel tárgyalását elezdenén, lássun ét olyan problémát, amelye vizsgálatában ez az eredmény hasznosna bizonyult. a. Teintsün egy dobóocát. Feldobju soszor, felírju a dobáso eredményét, és enne alapján aarju eldönteni, hogy a dobóoca szabályos-e. Természetes azt várni, hogy a dobóoca aor szabályos, ha mindegyi dobáseredmény előfordulásána a száma a dobásszámo egyhatoda plusz egy is eltérés. De meora eltéréseet teinthetün icsine? Ha csa azt nézzü, hogy mennyi anna a valószínűsége, hogy például a hatos dobáso számána eltérése a dobáso számána egyhatodától isebb mint egy adott szám, aor a centrális határeloszlástétel pontos leírást ad erre a problémára. De ha a ülönböző dobáseredménye együttes viseledésére vagyun iváncsia, aor új eredményre van szüségün. b. Legyene ξ,...,ξ n független, a [ 2, 2] intervallumban egyenletes eloszlású valószínűségi változó. Eor a n ξ j összeg normalizáltjána az eloszlására jó leírást ad a centrális határeloszlástétel. Hasonló állítást mondhatun a n ξj 2 összeg nor- malizáltjána az eloszlására. De tudun-e hasonló eredményt adni a n ξ j és n összege normalizáltjána az együttes eloszlására? ξj 2 Anna érdeében, hogy lássu, hogyan lehet ezeet a érdéseet vizsgálni a centrális határeloszlástétel alalmas több-dimenziós megfelelőjéne, azaz a többváltozós centrális határeloszlástételne a segítségével bevezete be néhány jelölést. ( Legyene ξ (j = ξ (j,...,ξ(j, j =,2,..., független, egyforma eloszlású - dimenziós valószínűségi változó, (véletlen vetoro, ahol rögzített j indexre semmilyen (függetlenség jellegű feltételt nem teszün fel az ξ (j,..., ξ(j valószínűségi változó

2 együttes eloszlására. Tegyü fel továbbá, hogy Eξ s (j 2 ( < minden s indexre. Teintsü az S n = (S n,,...,s n, = n n ξ (j = ξ (j,..., n, n =,2,..., véletlen összegeet. Be aarju látni, hogy az S n véletlen vetoro alalmas normalizáltjána létezi határeloszlása, és a határeloszlást pontosan le aarju írni. Látni fogju, hogy ez lehetséges. A határeloszlástételben megjelenő határeloszlásoat fogju több-dimenziós normális eloszlásona nevezni. A teljesség edvéért fölidézem, hogy itt és a továbbiaban vetor értéű valószínűségi változó függetlenségéne alábbi, a bevezető valószínűségszámítás előadásban bevezetett definicióját használju. Vetorértéű ( valószínűségi változó ( függetlenségéne a definiciója. Legyene ξ ( = ξ (,...,ξ(,..., ξ (n = ξ (n,...,ξ (n, értéeiet az R -dimenziós Eulideszi térben felvevő valószínűségi változó (vetoro egy (Ω, A, P valószínűségi mezőn. Azt mondju, hogy eze a valószínűségi vetoro függetlene, ha minden x ( = (x (,...,x(,..., x(n = (x (n,...,x(n -dimenziós vetorra P ( ξ ( < x ( = P,...,ξ( < x (,..., ξ(n < x (n,...,ξ(n ( ξ ( < x (,...,ξ( < x ( P ξ (j < x (n ( ξ (n < x (n,...,ξ(n < x (n. Lássu, hogyan lehet tárgyalni az előbb megfogalmazott ét problémát egy független, vetor értéű valószínűségi változó normalizált összegeine határeloszlását leíró eredmény segítségével. Az a feladat vizsgálatána érdeében vezessü be a övetező vetor értéű ξ (j valószínűségi változóat: Ha a dobóocát n alalommal dobju fel, aor legyen ξ (j, j n, a övetező 6-dimenziós valószínűségi változó: A ξ (j valószínűségi változó l-i oordinátája, ha a j-i dobás értée l, l 6, és legyen a ξ (j véletlen vetor összes többi oordinátája nulla. Eor a ξ (j valószínűségi változó függetlene. (Az egyes ξ (j valószínűségi változó oordinátái ebben a példában nem függetlene. Továbbá az S n = n ξ (j összeg l-i oordinátája egyenlő az l értéű dobáso számával minden l 6 index esetén. Ezért egy az S n véletlen összeg aszimptotius viseledését nagy n számora leíró határeloszlástétel hasznos lehet a számunra. Egy ilyen eredményből övetezi, hogy az S n véletlen összege alalmas normalizáltjai eloszlásban onvergálna egy explicit módon megadott eloszlásfüggvényhez. Megjegyzem, hogy a többváltozós centrális határeloszlástétel tárgyalása érdeében az eloszlásban való onvergenciána egy a többdimenziós valószínűségi változó esetében is érvényes definicóját vezettü be. Bár a többváltozós határeloszlás fogalmát tanultu, mégis érdemes néhány e fogalommal apcsolatos eddig nem tárgyalt érdést megvizsgálni. Természetes az a feladat megoldásában a véletlen S n vetorból az ( n 6,..., n 6 vetort ivonni, és enne a 6-változós ülönbségvetorna a hosszát teinteni (az Eulideszi távolságfogalom szerint. Ha a dobóoca szabályos volt, aor azt várju, hogy e véletlen vetor 2

3 hossza viszonylag icsi. Felmerül a érdés, hogy van-e e véletlen vetor alalmas normalizáltjána határeloszlása, és övetezi-e egy ilyen eredmény a több-dimenziós centrális határeloszlástételből. Be fogju látni, hogy erre a érdésre igenlő a válasz. De ez az állítás indolásra szorul. Ugyanis a több-dimenziós eloszláso onvergenciájana a definiciója anna eredeti alajában csa nagyon speciális halmazo valószínűségéne a onvergenciáját írja elő. A b példában megfogalmazott érdést hasonlóan tárgyalhatju az a példához. Itt olyan η j = (ξ j,ξj 2, j n, ét-dimenziós független vetoro S n = n η j összegét vizsgálju, amelyere ξ,...,ξ n független, a [ 2, 2] intervallumban egyenletes eloszlású valószínűségi változó. A többváltozós centrális határeloszlástétel segítségével leírható az ilyen véletlen vetoro normalizáltjaina a határeloszlása. Ismertetni fogom a centrális határeloszlástétel természetes megfelelőjét abban az esetben, ha független és egyforma eloszlású véletlen vetoro alalmasan normalizált összegéne a viseledését vizsgálju. Enne érdeében bevezetem a határeloszlásban megjelenő normális eloszlás több-dimenziós megfelelőjét, amit több-dimenziós normális eloszlásna fogo nevezni. De ehhez előbb definiálni ell a várható érté és szórásnégyzet fogalmána a több-dimenziós megfelelőjét. Ezenívül meg ell érteni, hogy a várható érté és szórásnégyzet tulajdonságai hogyan örölődne a több-dimenziós esetben. Az egy-dimenziós esetben definiált várható érténe megfelelő több-dimenziós várható érté (vetor fogalmána és tulajdonságaina a megértése viszonylag egyszerű, de a szórásnégyzetne megfelelő ovariancia mátrix tulajdonságaina jó megértése szüségessé teszi néhány a lineáris algebrában tanult fogalom és eredmény felelevenítését. Megjegyzem, hogy most és a továbbiaban is a több-dimenziós vetoroat mint sorvetoroat teintem. Valójában mind a sor mind az oszlopvetor jelölés lehetséges. Egyi jelölés sem jobb a másinál, és az irodalomban nem egységes a jelölés. A fontos az, hogy övetezetes jelölést alalmazzun. Több-dimenziós valószínűségi változó várható értééne és ovariancia mátrixána a definiciója. Legyen Z = (Z,...,Z -dimenziós véletlen vetor, amelyne minden oordinátája teljesíti az EZ 2 j <, j, feltételt. E véletlen vetor várható értée az EZ = (EZ,...,EZ -dimenziós vetor, ovariancia mátrixa pedig az a D = (d j,l, j,l, méretű mátrix, mely mátrix j-i sorában és l-i oszlopában lévő elem a d j,l = Cov (Z j,z l = E(Z j EZ j (Z l EZ l = EZ j Z l EZ j EZ l szám. Megfogalmazom a vetorértéű valószínűségi változó várható értééne és ovariancia mátrixána néhány fontos tulajdonságát. Eze egyszerű övetezményei a valós szám értéű valószínűségi változó már tárgyalt tulajdonságaina, ezért bizonyításuat elhagyom. Tétel vetor értéű valószínűségi változó várható ( értééne és ovariancia mátrixána tulajdonságairól. Legyene Z (j = Z (j,...,z(j, j n, véletlen -dimenziós vetoro ugyanazon az (Ω, A,P valószínűségi mezőn. Eor a Z ( + + Z (n összeg várható értée megegyezi a Z (j vetoro várható értéeine az összegével, 3

4 azaz E(Z ( + + Z (n = EZ ( + + EZ (n. Ha a Z (j, j n, véletlen vetoro függetlene, aor a ovariancia mátrix is additív, azaz, ha a Z (j mátrix ovariancia mátrixa a D j mátrix, j n, aor a Z ( + +Z (n véletlen összeg ovariancia mátrixa a D + +D n mátrix. Ha egy Z = (Z,...,Z, véletlen vetor várható értée M = (M,...,M, ovariancia mátrixa a D méretű mátrix, a tetszőleges valós szám, aor az az = (az,...,az, véletlen vetor várható értée am, ovariancia mátrixa pedig az a 2 D ovariancia mátrix. Legyen továbbá x = (x,...,x tetszőleges -dimenziós vetor. Eor E(Z + x = EZ + x, a Z + x vetor ovariancia mátrixa pedig megegyezi a Z vetor ovariancia mátrixával. A övetező eredmény célja anna jellemzése, hogy milyen mátrix jelenhet meg, mint egy alalmas véletlen vetor ovariancia mátrixa. Enne az eredményne az ismertetésében és bizonyításában fel ell használnun a lineáris algebra néhány alapvető fogalmát és eredményét. Igyeszem az állításoat önmaguban is érthető módon leírni. Először felidézem a övetező lineáris algebrai fogalmat. Szimmetrius és pozitív (szemidefinit mátrixo definiciója. Legyen D = (d j,l egy méretű mátrix. Azt mondju, hogy a D mátrix szimmetrius, ha minden j,l indexre d j,l = d l,j. Pontosabban azt öveteljü meg, (ha nemcsa valós, hanem általános omplex értéű elemeel rendelező mátrixoat is teintün, hogy d j,l = d l,j, ahol z a z omplex szám onjugáltja, azaz, ha z = a + ib, aor z = a ib. (De ebben az előadásban csa valós elemű mátrixoal fogun dolgozni. Egy méretű szimmetrius D = (d j,l mátrix pozitív (szemidefinit, ha minden x = (x,...,x - dimenziós vetorra xdx = x j d j,l x l 0. (Ebben a formulában x jelöli az x vetor transzponáltját, azaz azt az oszlopvetort, amelyne fölülről számíva l-i eleme megegyezi az x vetor balról számított l-i eleméne a omplex onjugáltjával. Eor xdx a szoásos vetor-mátrix szorzást jelöli. A D = (d i,j szimmetrius mátrixot (szigorúan pozitív definitne nevezün, ha pozitív szemidefinit, és ráadásul az xdx = triviális esetben teljesül, ha x = x 2 = = x = 0. x j d j,l x l = 0 reláció csa abban a Az eredménye és fogalma jobb megértése érdeében érdemes megadni a fenti oordinátarendszerfüggő definició oordinátarendszertől független,,absztrat definicióját is, és megérteni a ét definició apcsolatát. Enne leírását (a bizonyításo többségéne elhagyásával tartalmazza egy a honlapomon is megtalálható lineáris algebrai összefoglaló. Röviden megfogalmazom a legfontosabb fogalmaat és eredményeet. A mátrixo úgy jelenne meg, mint lineáris transzformáció megadásai egy lineárisan független vetoroból álló oordinátarendszerben. Ha Eulideszi tereben, tehát olyan lineáris tereben dolgozun, ahol van salárszorzat, és ezért beszélhetün egy vetor hosszáról és ét vetor által bezárt szögről, aor a lineáris transzformációat egy ortonormált bázisban adju meg. Természetes az előbb bevezetett fogalmaat először lineáris transzformációra definiálni, (ezt nevezem oordinátamentes definicióna, és 4

5 utána megvizsgálni azt, hogy eze a fogalma mit jelentene a transzformációt megadó mátrixo nyelvén. Az első definiálandó fogalom egy Eulideszi térben definiált A transzformáció adjungáltja. Egy valamely Eulideszi térben megadott A lineáris transzformáció adjungáltja az az A lineáris transzformáció, amelyre teljesül az (xa,y = (x,ya azonosság az Eulideszi tér minden x és y vetorára, ahol (, salárszorzatot jelöl. Be lehet látni, hogy minden A lineáris transzformáció esetén egy és csa egy olyan A lineáris transzformáció van, amely teljesíti ezt a feltételt. Ez azt jelenti, hogy a lineáris transzformáció, illetve a nei megfelelő mátrix adjungáltjána a definiciója értelmes. Megjegyzem, hogy egy mátrix adjungáltját csa Eulideszi (tehát nem tetszőleges lineáris térben definiáltu, mert e fogalom definiciójában felhasználtu a salárszorzat fogalmát. Ezután az önadjungált transzformáció fogalmána a megadása egyszerű. Egy A lineáris transzformáció (vagy a nei megfelelő mátrix aor és csa aor önadjungált, ha A = A. Egy A önadjungált mátrixot aor nevezün pozitív szemidefinitne, ha (x, xa 0 ez Eulideszi tér minden x vetorára, és aor nevezün (szigorúan pozitív definitne, ha egyrészt teljesül a fenti egyenlőtlenség, másrészt az (x, xa = 0 azonosság csa a triviális x = 0 esetben áll fenn. Be lehet látni, hogy ha egy A transzformáció mátrixát felírju egy tetszőleges ortonormált bázisban, aor a transzformáció adjungáltjána a mátrixát a Szimmetrius és pozitív (szemidefinit mátrixo definiciójában megadott módon számíthatju i. Fontos megérteni, hogy ez az állítás azt is jelenti, hogy ha egy A lineáris transzformáció mátrixána az adjungáltját a lineáris transzformáció mátrixána az adjungáltja segítségével számolju i, aor az így apott A adjungált transzformáció értée nem függ attól, hogy melyi ortonormált bázisban dolgozun. Azt, hogy egy önadjungált A lineáris transzormáció pozitív szemidefinit a transzformáció (egy ortonormált bázisban felírt A mátrixával úgy jellemezhető, hogy xax 0, ahol x tetszőleges szám-n-es, és x anna transzponáltja. Felírom egy transzformáció adjungáltjána legfontosabb tulajdonságait: (A + B = A + B, (ca = ca, (A = A, (AB = B A. A lineáris transzformáció és mátrixo legfontosabb tulajdonságaina felsorolása után megfogalmazo egy fontos eredményt, amely megadja a ovariancia mátrixo jellemzését. Enne bizonyításában felhasználo egy nem triviális lineáris algebrai eredményt is. Tétel ovariancia mátrixo jellemzéséről. Legyen Z = (Z,...,Z egy -dimenziós véletlen vetor. Eor a Z vetor ovariancia mátrixa szimmetrius és pozitív szemidefinit mátrix. Megfordítva, tetszőleges D szimmetrius, pozitív szemidefinit mátrixhoz létezi olyan Z = (Z,...,Z véletlen vetor, amelyne ez a D mátrix a ovariancia mátrixa. Sőt igaz a övetező tartalmasabb állítás is: Legyen Y = (Y,...,Y olyan véletlen vetor, amelyne a ovariancia mátrixa az identitás mátrix, azaz Var Y j =, j, Cov (Y j,y l = 0, ha j,l, és j l. (Ez a helyzet például aor, ha az Y j, j valószínűségi változó függetlene, és Var Y j =. Eor létezi olyan A ( = (a j,l méretű mátrix, amelyre igaz, hogy a Z = (Z,...,Z = (Y,...,Y A = a,p Y p,..., a,p Y p véletlen vetor ovariancia mátrixa a D mátrix. p= p= 5

6 Igaz továbbá a övetező állítás is. Egy Z = (Z,...,Z véletlen vetor ovariancia mátrixa aor és csa aor (szigorúan pozitív definit, ha e vetor oordinátái özött nincs lineáris összefüggés, azaz ha x,...,x valós számora x j Z j = K valamilyen K (determinisztius valós számra egy valószínűséggel, aor x = = x = 0. Megjegyzés: Ez az állítás anna a valószínűségi változóról szóló egyszerű eredményne több-dimenziós megfelelője, amely szerint egy valószínűségi változó szórásnégyzete nem negatív szám. Továbbá egy valószínűségi változó szórásnégyzete aor és csa aor szigorúan pozitív, ha ez a valószínűségi változó nem egyenlő egy onstanssal egy valószínűséggel. Enne a tényne a megfelelője a tétel végén imondott állítás, amely szerint egy véletlen vetor ovariancia mátrixa pozitív definit, ha nincs a véletlen vetor oordinátáina olyan lineáris ombinációja, amelyi egy valószínűséggel megegyezi egy számmal. Ugyanis a nem negatív számona a pozitív szemidefinit mátrixo, a pozitív számona pedig a pozitív definit mátrixo a természetes megfelelői az Eulideszi tereben. A tétel bizonyítása egy alább megfogalmazandó nem triviális lineáris algebrai eredményen alapul, amely szerint minden pozitív szemidefinit mátrix felírható, mint egy alalmas mátrix négyzete. Ez az állítás annna a tényne a megfelelője Eulideszi tereben, amely szerint pozitív számoból lehet négyzetgyööt vonni. Megjegyzem, hogy a pozitív szemidefinit mátrixoból vont négyzetgyö nem egyértelműen meghatározott, mint ahogy a valós számo özött is csa aor egyértelmű a gyövonás, ha csa a pozitív gyööt teintjü. Tétel a lineáris algebrából. Legyen D pozitív szemidefinit mátrix. Eor létezi olyan A mátrix, amelyre érvényes a D = A A azonosság, ahol A az A mátrix transzponáltját jelöli. Sőt, olyan A mátrixot is választhatun, amelyre az A mátrix önadjungált, pozitív szemidefinit, és D = A 2. Eme megszorítás esetén az D = A A = A 2 egyenlet megoldása egyértelmű. (Egy A = (a j,l méretű mátrix transzponáltja az A = (a l,j, illetve az általános omplex számoat is tartalmazó mátrixo esetében az A = (ā l,j méretű mátrix, ahol z a z omplex szám onjugáltja. A ovariancia mátrixo jellemzéséről szóló tétel bizonyítása a lineáris algebráról imondott tétel segítségével. Teintsün először egy Z = (Z,...,Z egy -dimenziós véletlen vetort és anna D = (d j,l, d j,l = Cov (Z j,z l, j,l, ovariancia mátrixát. Eor D szimmetrius mátrix, mert d j,l = d l,j, azaz Cov (Z j,z l = Cov (Z l,z j. Másrészt tetszőleges x = (x,...,x -dimenziós vetorra Var x j Z j = E (x j x l (Z j Z l EZ j EZ l = x j x l Cov (Z j,z l és Var ( = x j x l d j,l = xdx, x j Z j 0. Innen övetezi, hogy xdx 0 tetszőleges x = (x,...,x -dimenziós vetorra, azaz D szimmetrius, pozitív szemidefinit mátrix. 6

7 Megfordítva, legyen D pozitív szemidefinit mátrix, és Y = (Y,...,Y olyan véletlen vetor, amelyne a ovariancia mátrixa az identitás mátrix, azaz Var Y j =, j, Cov (Y j,y l = 0, ha j,l, és j l. A imondott lineáris algebrai eredmény szerint létezi olyan A = (a j,l, j,l méretű mátrix, amelyre D = A A. Azt állítom, hogy a Z = (Z,...,Z = Y A, azaz a Z = (Z,...,Z, Z j = a p,j Y p, j, véletlen vetor ovariancia mátrixa a D mátrix. Innen p= övetezi a tétel másodi állítása is. Valóban, ( Cov (Z j,z l = Cov a p,j Y p, p= a q,l Y q = q= p= q= a p,j a q,l Cov (Y p,y q, ahonnan, mivel Cov (Y p,y q = 0, ha p q, és Cov (Y p,y p =, Cov (Z j,z l = a p,j a p,l = d j,l, ahol d j,l a D = A A mátrix j-i sorában és l-i oszlopában szereplő p= onstans. Végül a D ovariancia ( mátrix aor és csa aor (szigorúan pozitív definit, ha xdx > 0, azaz Var x j ξ j > 0, azaz x j ξ j K valószínűséggel valamilyen K onstanssal minden nem azonosan nulla (x,...,x 0 vetorra. Ezután be tudju vezetni a több-dimenziós normális eloszlásfüggvénye fogalmát, és meg tudju fogalmazni a több-dimenziós centrális határeloszlástételt. Több-dimenziós normális eloszláso definiciója. Definiálju először a több-dimenziós standard normális eloszlást. Azt mondju, hogy egy (ξ,...,ξ véletlen vetor eloszlása a -dimenziós standard normális eloszlás, ha a ξ,...,ξ valószínűségi változó függetlene, és mindegyi ξ j valószínűségi változó, j, standard normális eloszlású. Evivalens megfogalmazásban azt mondhatju, hogy egy (ξ,...,ξ véletlen vetor eloszlása a -dimenziós standard normális eloszlás, { ha e véletlen } vetorna létezi sűrűségfüggvénye, és az az f(u,...,u = (2π /2 exp 2 u 2 j függvény. Egy (η,...,η dimenziós véletlen vetor dimenziós normális eloszlású vetor nulla várható értéel, ha e véletlen vetor eloszlása megegyezi valamely ( η,..., η = (ξ,...,ξ A -dimenziós vetor eloszlásával, ahol A egy méretű mátrix, továbbá (ξ,...,ξ egy -dimenziós standard normális eloszlású véletlen vetor. Egy (ζ,...,ζ véletlen vetor -dimenziós normális eloszlású vetor, ha eloszlása megegyezi egy (η,...,η +(m,...,m véletlen vetor eloszlásával, ahol (η,...,η egy -dimenziós normális eloszlású véletlen vetor, amelyne a várható értée nulla, és (m,...,m -dimenziós determinisztius vetor. Megjegyzés: Független (egy-dimenziós normális eloszlású valószínűségi változó összege szintén normális eloszlású. Innen, és a több-dimenziós normális eloszlás definiciójából 7

8 övetezi, hogy egy több-változós normális eloszlású valószínűségi változó minden oordinátája normális eloszlású. Az állítás megfordítása nem igaz. Később látni fogun példát olyan étváltozós valószínűségi változóra, amelyne mind a ét oordinátája normális eloszlású, ő maga mégsem étváltozós normális eloszlású véletlen vetor. Bebizonyíto még egy eredményt, amely szüséges a többváltozós centrális határeloszlástétel imondásához. Tétel a több-dimenziós normális eloszlás tulajdonságairól. Teintsün egy - dimenziós (η,...,η = (ξ,...,ξ A + (m,...,m normális eloszlású valószínűségi változót, ahol A egy méretű mátrix, m = (m,...,m -dimenziós (véletlentől nem függő vetor és (ξ,...,ξ egy -dimenziós standard normális eloszlású véletlen vetor. Aor (η,...,η m = (m,...,m várható értéű és D = A A ovariancia mátrixú véletlen vetor. Egy normális eloszlású véletlen vetor ovariancia mátrixa pozitív (szemidefinit, és megfordítva, minden méretű pozitív (szemidefinit mátrixhoz és dimenziós vetorhoz létezi olyan -változós normális eloszlású véletlen vetor, amelyne ez a ovariancia mátrixa és várható érté vetora. Továbbá egy -dimenziós normális eloszlású valószínűségi változó eloszlását meghatározza anna m várható érté vetora és D ovariancia mátrixa. Megjegyzem, hogy egy rögzített D (szimmetrius és pozitív szemidefinit mátrixra az A A = D egyenletne nem egyértelmű a megoldása. Teintsün ét ülönböző A és B mátrixot, amelyre A A = B B. A fenti tétel szerint, ha teintün egy - dimenziós standard normális eloszlású (ξ,...,ξ vetort, illetve a segítségével definiált (ξ,...,ξ A és (ξ,...,ξ B véletlen vetoroat, aor bár ez az utóbbi ét véletlen vetor ülönböző, eloszlásu megegyezi. Ugyanis mind a ét (normális eloszlású vetor nulla várható értéű és A A = B B ovariancia mátrixú. Ez a tulajdonság erősen ihasználja azt, hogy normális eloszlású valószínűségi változóról van szó. Anna, hogy egy több-dimenzós normális eloszlást egyértelműen meghatároz anna várható érté vetora és ovariancia mátrixa fontos övetezményei vanna. Ehhez a érdéshez ésőbb visszatére. A tétel bizonyítása. Az, hogy csa pozitív szemidefinit mátrixo lehetne egy többdimenziós normális eloszlású valószínűségi változó ovariancia mátrixai, azo viszont lehetne ilyen ovariancia mátrixo övetezi a ovariancia mátrixo jellemzéséről szóló tételből. (Az, hogy egy normális eloszlású vetor várható értée tetszőleges vetor lehet nyilvánvaló. Az az állítás szorul még indolásra, hogy egy többdimenziós normális eloszlású valószínűségi változó eloszlását meghatározza anna ovariancia mátrixa és várható érté vetora. Ezt az állítást is reduálni lehet arra az állításra, hogy egy nulla várható értéű normális eloszlású véletlen vetor eloszlását meghatározza a ovariancia mátrixa. Később látni fogju, hogy ez az eredmény övetezi a többváltozós normális eloszlásfüggvénye araterisztius függvényéne az alajából, de itt egy mási bizonyítást ismertete, amely a lineáris algebra egy önmagában is érdees állításából, egy Eulideszi tér lineáris transzformációina úgynevezett polár oordinátás felbontásából övetezi. E tétel megfogalmazása előtt felidézem az unitér transzformáció definicióját. Egy Eulideszi tér valamely lineáris transzformációját unitérne nevezün, ha teljesíti az 8

9 UU = I és U U = I azonosságot. Valójában elég e ét azonosság özül csa az egyiet megövetelni, mert aor a mási azonosság is szüségszerűen teljesül. Az unitér transzformáció geometriai tartalma az, hogy eze és csa eze az Eulideszi tér távolságtartó transzformációi. A övetező lineáris algebrai eredményre lesz szüségün. Tétel egy mátrix polár felbontásáról. Legyen A egy Eulideszi tér lineáris transzformációjána a mátrixa. Létezi az A mátrixna A = UK (és A = LV alaú polár felbontása, ahol U (illetve V unitér, K (illetve L pozitív szemidefinit szimmetrius mátrix. A K mátrix az A A pozitív definit, szimmetrius mátrix egyértelműen meghatározott pozitív négyzetgyöe. (Az L mátrix az AA mátrix pozitív négyzetgyöe. Megjegyzés. Ezen eredmény elnevezéséne az az oa, hogy a pozitív szemidefinit mátrixo a nem negatív valós számona, az unitér transzformáció pedig az egy abszolút értéű omplex számona (a omplex tér forgatásaina a természetes megfelelői, ha a omplex számo terét egy Eulideszi tér operátoraina a terével helyettesítjü. Ahogy egy tetszőleges z omplex szám felírható z = Re iϕ polároordinátás alaban, úgy tetszőleges A mátrix felírható a tételben megadott A = U K alaban. Mivel a mátrixszorzás nem ommutatív, ezért az A = UK és A = LV előállításoban ülönböző mátrixo szerepelne az általános esetben. A K mátrix alaja övetezi az azonosságból. A A = (UK (UK = K (U UK = K K = K 2 ezért K = (A A /2 A több-dimenziós normális eloszlás tulajdonságairól szóló tétel bizonyításána a befejezése. Teintsü először azt az esetet, amior egy nulla várható értéű normális eloszlású Z vetor ovariancia mátrixa az I identitás mátrix. Eor tudju, hogy Z előállítható Z = XU alaban, ahol X -dimenziós standard normális eloszlású vetor, és I = U U, azaz U unitér transzformáció. Viszont tudju, hogy egy -dimenziós standard normális eloszlású X vetor sűrűségfüggvénye az f(x,...,x = e x2 j /2 = (2π /2 exp 2π 2 függvény, ahonnan látható, hogy az f(x,...,x sűrűségfüggvény az x = (x,...,x pontban csa az x = (x,...,x vetor hosszától függ. Mivel egy U unitér transzformáció távolságtartó, innen látható, hogy az X és Z = XU véletlen vetoro sűrűségfüggvényei megegyezne. Legyen Y = XA egy tetszőleges nulla várható értéű, normális eloszlású véletlen vetor, ahol X standard normális eloszlású véletlen vetor. Véve az A mátrix A = KU polárfelbontását felírhatju az Y = XA = XUK = ZK azonosságot, ahol Z = XU standard normális eloszlású véletlen vetor. Másrészt K az A A, azaz az Y véletlen vetor ovarianciamátrixána az (egyértelműen meghatározott pozitív négyzetgyöe. Innen övetezi, hogy az Y = ZK véletlen vetor eloszlását meghatározza a ovariancia mátrixa. 9 x 2 j

10 Ezután megfogalmazom a többváltozós centrális határeloszlástételt. ( A többváltozós centrális határeloszlástétel. Legyene ξ (j = ξ (j,...,ξ(j, j =, 2,..., független, egyforma eloszlású -dimenziós valószínűségi változó, amelyere teljesül az Eξ ( l lim P n 2 <, l, feltétel. Legyen a ξ ( = (ξ ( ( Eξ (,...,Eξ(,...,ξ( vetor várható értée Eξ ( =, ovariancia mátrixa pedig egy D méretű ( ( mátrix. Definiálju az S (n = S (n,...,s (n = n n ξ (j = ξ (j,..., n ξ (j ( összegeet, n =,2,... Eze az S (n = S (n,...,s (n vetoro eloszlásban onvergálna a Φ D (x,...,x -dimenziós nulla várható értéű D ovariancia mátrixú normális eloszlásfüggvényhez, ha n, azaz érvényes a ( ( n S (n ES (n ( < x,..., S (n n ES (n < x = Φ D (x,...,x ( minden olyan (x,...,x pontban, amely folytonossági pontja a Φ D (x,...,x eloszlásfüggvényne.. megjegyzés. Ahhoz, hogy lássu, hogy a fenti többváltozós centrális határeloszlástétel értelmes, tudnun ell a övetező ét állítást: i Tetszőleges (véges ovariancia mátrix-szal rendelező véletlen vetorhoz létezi egy vele megegyező ovariancia mátrixú (és nulla várható értéű normális eloszlású vetor. ii A tételben szereplő határeloszlást egyételműen megadtu, azaz egy nulla várható érté vetorral rendelező normális eloszlású véletlen vetor eloszlását egyértelműen meghatározza anna ovariancia mátrixa. Ez a ét tulajdonság azonban övetezi a több-dimenziós normális eloszlás tulajdonságairól szóló tételből. 2. megjegyzés. Az egy és többváltozós centrális határeloszlástétel megfogalmazásában másfajta normalizálást használtun. Az egyváltozós esetben az összeg szórásával, azaz nσ osztottun, ahol σ 2 = Varξ, míg a többváltozós esetben n-nel. Az egyváltozós esetben is oszthattun volna n-nel, és aor a határeloszlás egy nulla várható értéű és σ 2 szórásnégyzetű normális eloszlású valószínűségi változó eloszlása lett volna. A többváltozós esetben az egyváltozós esethez hasonló normalizálás az n /2 Σ mátrix-szal való szorzás lenne, ahol Σ 2 a teintett véletlen vetoro ovariancia mátrixa, Σ enne pozitív négyzetgyöe, azaz az az egyértelműen meghatározott pozitív definit Σ mátrix, amelyne négyzete a Σ 2 ovariancia mátrix, Σ pedig enne a mátrixna az inverze. Ilyen normalizálást aor választhatun, ha a Σ 2 mátrix invertálható. Ez aor teljesül, ha Σ 2 szigorúan pozitív definit. Eor a limesz egy standard normális eloszlású véletlen vetor. De bizonyos fontos eseteben ez a feltétel nem teljesül. Például, ha az előadás elején teintett (szabályos oca véletlen dobásait teintjü, aor, mint a gyaorlaton megtárgyalju, nem invertálható ovariancia mátrix jeleni meg a határeloszlásban. 0

11 Ez azzal függ össze, hogy a ülönböző eredményű dobáso számána az összege (nem véletlen onstans. Ez a onstans egyenlő az összes dobás számával. 3. megjegyzés. A többváltozós centrális határeloszlástétel megfogalmazásában nem állítottu, hogy az ( reláció minden (x,...,x pontban érvényes, hanem csa azoban a pontoban, amelye folytonossági pontjai a Φ D (x,...,x (határeloszlásfüggvényne. Ez nem üres megszorítás, mert az egyváltozós esettől eltérően a Φ D (x,...,x függvényne lehetne olyan pontjai, ahol az nem folytonos. Ez az eset áll elő például aor, ha Φ D (x,...,x egy olyan (elfajuló (ξ,...,ξ n nulla várható értéű normális vetorna az eloszlásfüggvénye, amelyre Var ξ = 0. Ebben az esetben a Φ D által generált Stieltjes mérté az x = 0 altérbe van oncentrálva, és a Φ D (x,...,x függvény nem folytonos az x = 0 hipersí pontjaiban. A tételt ebben a formában fogom bizonyítani, és az gyaorlati alalmazásoban ebben a formában is ielégítő. Viszont, mint a iegészítésben megmutatom, az ( formula valójában minden (x,...,x pontban érvényes a tételben szereplő valószínűségi változó bizonyos tulajdonságai miatt. Megjegyzem továbbá, hogy az egyváltozós esethez hasonlóan a többváltozós centrális határeloszlástételne is létezi általánosítása független, nem feltétlenül egyforma eloszlású véletlen vetoro normalizált összegeine határeloszlására nagyon általános feltétele mellett. Ezzel a érdéssel azonban itt nem foglalozun. Lássu, hogyan tudju vizsgálni a többváltozós centrális határeloszlástétel segítségével az előadás elején megfogalmazott a problémát dobóoca szabályosságána a vizsgálatáról. Teintsü az ott bevezetetett ξ (j, j n, valószínűségi változóat, azo S n = (S ( n,...,s (6 n összegeit, illetve ezen összege ( S n = n (S n ( ES n (,..., (S (6 n n ES n (6 normalizáltjait. Emléezzün arra, hogy az S n (l, l 6, valószínűségi változó az l eredményű dobáso számával egyenlő. Ezenívül tudju, hogy ES l = n 6, l 6, és i tudju számolni anna a normális eloszlású valószínűségi változó ovariancia mátrixát, amelyhez az S n normalizált összege eloszlásban tartana. Ez a D ovariancia mátrix egyenlő a ξ (j véletlen vetoro ovariancia mátrixával, és D = (d l,m, l,m 6, d l,m = Eξ (j l ξ m (j Eξ (j l Eξ m (j = Eξ (j l Eξ m (j = 36, ha l m, és d l,l = 6 ( 6 2 = Ilyen módon az S n normalizált összeg eloszlására jogun van alalmazni az ( aszimptotius azonosságot. De természetesebb az S n normalizált összeg n oordinátáina a négyzetösszegét, azaz a T n = n (S n (l n 6 2 ifejezést vizsgálni. Felmerül a érdés, létezi-e a T n valószínűségi változóna (ismert határeloszlása. E érdés jobb megértése érdeében felidézem a többváltozós eloszláso onvergenciájána a definicióját, illetve egy olyan eredményt, amely e onvergenciána egy evivalens jellemzését adja orlátos, folytonos függvénye integráljaina a segítségével. Eloszlásfüggvénye onvergenciájána definiciója. Legyen F n (x,...,x, n =,2,..., -dimenziós,, eloszlásfüggvénye sorozata. Azt mondju, hogy az F n, n =

12 , 2,..., eloszlásfüggvénye eloszlásban onvergálna egy F eloszlásfüggvényhez n esetén, ha lim n F n(x,...,x = F(x,...,x az F(x,...,x eloszlásfüggvény minden folytonossági pontjában. Azt mondju, hogy véletlen vetoro (ξ (n,...,ξ (n, n =,2,..., sorozata eloszlásban onvergál egy (ξ,...,ξ véletlen vetorhoz, ha azo F n (x,...,x, n =,2,... eloszlásfüggvényei eloszlásban onvergálna a (ξ,...,ξ véletlen vetor F(x,...,x eloszlásfüggvényéhez. Tétel eloszláso onvergenciájána jellemzéséről. Legyen F n (x,...,x, n =,2,..., -változós eloszlásfüggvénye sorozata. Ez a sorozat aor és csa aor onvergál eloszlásban egy -változós F(x,...,x eloszlásfüggvényhez, ha minden a - dimenziós térben folytonos és orlátos f(x,...,x függvényre f(x,...,x df n (x,...,x f(x,...,x df(x,...,x, ha n. Megjegyzés. Az előbb megfogalmazott definició és eredmény részletesebb tárgyalása (a bizonyítással együtt megtalálható például a tanév első félévében tartott Valószínűségszámítás II. előadássorozat másodi témájána elején (Fourier analízis és határeloszástátele vizsgálata. Érdemes megjegyezni, hogy eloszláso onvergenciájána a fenti tételben imondott folytonos, orlátos függvénye integrájaival való jellemzése nem ötődi az Eulideszi tér geometriájához. Ez lehetővé teszi, hogy valószínűségi mértée eloszlásban való onvergenciájána a definicióját olyan esetere is általánosítsu, ahol a valószínűségi mértée egy általános metrius téren vanna definiálva. Enne a lehetőségne fontos szerepe lesz ésőbb például a Wiener folyamato tulajdonságaina a vizsgálatában. A övetező ét eredmény célja anna megmutatása, hogy az előbb megfogalmazott onvergens vetoro függvényeine viseledésŕől szóló érdésre, illetve e érdés hasonló problémában megjelenő természetes megfelelőire a válasz igenlő.. tétel az eloszlásbeli onvergencia tulajdonságairól. Legyen adva -dimenziós véletlen vetoro ξ (n = (ξ (n,...,ξ (n, n =,2,..., sorozata, amelye eloszlásban onvergálna egy ξ = (ξ,...,ξ -dimenziós véletlen vetorhoz. Legyen ezenívül adva egy u(x = u(x,...,x a -dimenziós téren értelmezett folytonos függvény. (Az egyszerűség érdeében teintsün valós értéű függvényeet, de valójában teinthetün tetszőleges l-dimenziós vetor értéű u( függvényt. Eor az η n = u(ξ (n, n =,2,..., valószínűségi változó eloszlásban onvergálna az η = u(ξ valószínűségi változóhoz. A tétel bizonyítása. Használju az eloszlásban való onvergencia folytonos függvénye integráljaina a segítségével megadott jellemzését. Eor azt ell belátni, hogy tetszőleges folytonos és orlátos g(x függvényre lim Eg(η n = Eg(η. Viszont g(η n = n 2

13 g(u(ξ (n = v(ξ (n, és g(η = g(u(ξ = v(ξ, ahol v(x = g((ux. Továbbá a v(x függvény is folytonos és orlátos a tétel feltételei miatt. Ezért, a tétel feltételei alapján, A tételt bebizonyítottu. lim Eg(η n = lim n n Ev(ξ(n = Ev(ξ = Eg(η. 2. tétel az eloszlásbeli onvergencia tulajdonságairól. Legyen F n, n =,2,..., -dimenziós eloszláso sorozata, amelye eloszlásban onvergálna egy F -dimenziós eloszláshoz. Jelölje µ Fn az F n eloszlás szerint induált Stieltjes mértéet. Ha A olyan halmaz a -dimenziós téren, amelyne A határa teljesíti a µ F ( A = 0 azonosságot az F határeloszlásmérté szerinti µ F Stieltes mérté szerint, aor lim µ F n (A = µ F (A. n Mivel számunra elegendő az első tétel is, a másodi tétel bizonyítását csa vázlatosan ismertetem. n A tétel bizonyítása. Be lehet látni, hogy az A halmaz indiátor függvényét jól lehet özelíteni, mind alulról mind felülről alalmas folytonos függvényeel. Részletesebben ifejtve, tetszőleges ε > 0 számhoz létezne olyan f ε (x és g ε (x folytonos függvénye, amelyere 0 f ε (x,g ε (x minden x vetorra a -dimenziós térben, f ε (x =, ha x Ā, ahol Ā az A halmaz lezártja, f ε (x = 0, ha ρ(x,a ε, ahol ρ(, az Eulideszi metria a -dimenziós térben, g ε (x = 0, ha x / A, g ε (x =, ha ρ(x,a c ε, ahol A c az A halmaz omplementere. Felhasználva a lim fε (xf n ( dx = f ε (xf( dx és n lim gε (xf n ( dx = g ε (xf( dx relációat, majd elvégezve az ε 0 határátmenetet megapju a tétel állítását. A részlete idolgozását elhagyom. Térjün vissza a szabályos dobóocával apcsolatos feladat tárgyalásához. Alalmazva az. tételt az eloszlásbeli onvergencia tulajdonságairól a = 6 dimenziós eulideszi térben az u(x = 6 x 2 l függvénnyel azt apju, hogy az ott bevezetett T n valószínűségi változó eloszlásban onvergálna egy ismert ovarianciájú, nulla várható értéű normális eloszlású vetor oordinátáina a négyzetösszegéhez. Ilyen eredményre volt szüségün. Felmerül még a érdés, hogy nem lehet-e a határeloszlást egyszerűbb módon jellemezni. Ehhez a érdéshez ésőbb még visszatére. A övetező feladat célja anna megmutatása, hogy az előadás elején említett b feladatot hogyan tudju megoldani a többváltozós centrális határeloszlástétel segítségével. Feladat: Legyene ξ,...,ξ n független, a [ 2, 2] intervallumban egyenletes eloszlású valószínűségi változó. Mutassu meg, hogy a n ξ j és n összege normalizáltjaina, azaz a 2 n n ξ j és 80 n n ξj 2 ( ξ 2 j 2 valószínűségi változóna az együttes eloszlása a ét-dimenziós standard normális eloszláshoz onvergál, ha n. 3

14 Megoldás: Eξ = 0, Eξ 2 = 2, Varξ = 2, Varξ2 = Eξ 4 (Eξ 2 2 = = 80. Továbbá Cov (ξ,ξ2 = Eξ 3 EξEξ 2 = 0. Ezért a ( 2ξ j, 80 ( ξ 2 j 2, j =,2,..., véletlen vetoro függetlene, nulla várható értéel és az identitás ovariancia mátrix-szal. Innen, és a több-dimenziós centrális határeloszlástételből övetezi a feladat állítása. Be aarju látni a több-dimenziós centrális határeloszlástételt. Tudju eddigi eredményein alapján, hogy ehhez elegendő megmutatni azt, hogy a normalizált összege araterisztius függvényei onvergálna egy megfelelő ovarianciájú és nulla várható értéű normális eloszlású vetor araterisztius függvényéhez. Enne bizonyításához először i ell számolni a több-dimenziós normális eloszláso araterisztius függvényeit. Erről szól a övetező tétel. Tétel a több-dimenziós normális eloszású valószínűségi változó araterisztius függvényéről. Legyen η = (η,...,η = (ξ,...,ξ A + (m,...,m egy -dimenziós normális eloszlású valószínűségi változó, ahol m = (m,...,m - dimenziós (determinisztius vetor, A = (a j,l, j,l, méretű mátrix, továbbá ξ = (ξ,...,ξ -dimenziós standard normális eloszlású véletlen vetor. Eor az (η,...,η véletlen vetor araterisztius függvénye az Ee i(t,η = Ee i(t η + +t η = e i(t,m ta At /2 = exp i t j m j d j,l t j t l 2 függvény, ahol (x,y jelöli az x = (x,...,x és y = (y,...,y vetoro (x,y = x j y j salárszorzatát, t = (t,...,t, d j,l az A A ovariancia mátrixána j-i sorában, és l-i oszlopában szereplő onstans. A D = A A mátrix megegyezi az η = (η,...,η véletlen vetor ovariancia mátrixával. Bizonyítás: Ee i(t,η = Ee i(t,ξa+m = e i(t,m Ee i(ta,ξ = e i(t,m e (ta,ta /2 = e i(t,m ta At /2, mert, ha ta = t = ( t,..., t, aor Ee i(ta,ξ = Ee i( t ξ + + t ξ = e t 2 j /2 = e ( t, t/2 = e (ta,ta /2. Ee i t j ξ j = Az η véletlen vetor ( D = (d j,l ovariancia mátrixában a j-i sor l-i eleme d j,l = Cov (η j,η l = Cov a p,j ξ p, a q,l ξ q = a p,j a p,l Eξp 2 = a p,j a p,l, és ez az A A p= q= mátrix j-i sorában és l-i oszlopában álló elem. Ezért az η véletlen vetor ovariancia mátrixa a D = A A mátrix. Az nyílvánvaló, hogy az η véletlen vetor várható értée m. Követezmény. Egy több-dimenziós normális eloszlású véletlen vetor eloszlását egyértelműen meghatározza anna várható érté vetora és ovariancia mátrixa. 4 p= p=

15 Megjegyzés. Ezen állítás bizonyítását már láttu lineáris algebrai módszereel. Most azt mutatju meg, hogy az egyszerűen övetezi a araterisztius függvénye tulajdonságaiból is. A övetezmény bizonyítása. Az előző tétel alapján egy normális eloszlású véletlen vetor araterisztius függvényét egyértelműen meghatározza anna várható érté vetora és ovariancia mátrixa. Viszont egy eloszlást meghatároz anna araterisztius függvénye. A többváltozós centrális határeloszlástétel bizonyításában azt ell megmutatni, hogy a teintett véletlen normalizált összege araterisztius függvényei onvergálna a határeloszlás araterisztius függvényéhez. Enne bizonyítása nem nehezebb, mint a megfelelő egyváltozós állítás bizonyítása. Sőt, az állítás igazolását vissza lehet vezetni az egyváltozós esetre az alábbi egyszerű, de tanulságos eredmény segítségével. Lemma többváltozós véletlen vetoro eloszlásána onvergenciájána a jellemzéséről. Legyen adva -változós ξ (n = (ξ (n,...,ξ (n, n =,2,..., véletlen vetoro egy sorozata. Eze a véletlen vetoro aor és csa aor onvergálna eloszlásban egy ξ (0 = (ξ (0,...,ξ(0 véletlen vetorhoz, ha oordinátái bármely a r ξ r (n lineáris r= ombinációi eloszlásban onvergálna a a r ξ r (0 valószínűségi változóhoz. r= A lemma bizonyítása. Azt ell megérteni, hogy mit jelentene a lemmában megfogalmazott eloszlásban való onvergenciá a araterisztius függvénye nyelvén. Jelölje ϕ n (t,...,t = Ee i(t ξ (n + +t ξ (n a ξ (n = (ξ (n,...,ξ (n, n = 0,,2,..., véletlen vetor és ϕ n (t a,...,a = Ee it(a ξ (n + +a ξ (n a n a j ξ (n j lineáris ombináció araterisztius függvényét. A fenti jelöléseel, felhasználva azt a tényt, hogy eloszláso onvergenciája evivalens azo araterisztius függvényeine onvergenciájával, a lemma állítását úgy fogalmazhatju át, hogy az alábbi a és b tulajdonságo evivalense. a lim n ϕ n(t a,...,a = ϕ 0 (t a,...,a minden t valós számra és a,...,a paraméterre. b lim n ϕ n(t,...,t = ϕ 0 (t,...,t minden t,...,t szám -asra. Viszont a b tulajdonság övetezi az a tulajdonságból t =, a r = t r, r, választással, az a tulajdonság pedig övetezi a b tulajdonságból t r = ta r, r, választással. A lemmát bebizonyítottu. A többváltozós centrális határeloszlástétel bizonyítása. Az előző lemma alapján elég azt bebizonyítani, hogy tetszőleges a,...,a szám -asra az S n (a,...,a = a r (S n (r ES n (r ifejezése eloszlásban onvergálna a ζ(a,...,a = a r ζ r n r= véletlen vetorhoz, ahol (ζ,...,ζ nulla várható értéű és D ovariancia mátrixú 5 r=

16 normális eloszlású véletlen vetor. Vezessü be az η j = η j (a,...,a = r= a r ξ (j r, j n, valószínűségi változóat. Eor η,...,η n független, egyforma eloszlású valószínűségi változó, és S n = n (η j Eη j. Ezért a bizonyítandó állítás övetezi az egyváltozós centrális határeloszlástételből független, egyforma eloszlású valószínűségi változó összegére és abból az észrevételből, hogy ζ(a,...,a nulla várható értéű normális eloszlású valószínűségi változó, és Var ζ(a,...,a = Var η j. Követező témán a többváltozós normális eloszláso néhány fontos tulajdonsága. Láttu, hogy egy több-dimenziós normális eloszlást meghatároz anna várható értée és ovariancia mátrixa. Enne egyi övetezményét anna fontossága miatt tétel formájában mondom i. Tétel normális eloszlású véletlen vetoro orrelálatlan oordinátáina függetlenségéről. Legyene egy (ξ,...,ξ normális eloszlású vetor oordinátái orrelátlano. Aor e oordinátá független, normális eloszlású valószínűségi változó. Bizonyítás. A (ξ Eξ,...,ξ Eξ normális eloszlású vetor várható értée nulla, ovariancia mátrixa pedig e véletlen vetor oordinátáina orrelátlansága miatt diagonális. Legyene a diagonálisban álló eleme σ 2 j, j. Teintsün η,...,η független, standard normális eloszlású valószínűségi változóat, és vezessü be segítségüel a (σ η,...,σ η véletlen vetort. Ez több-dimenziós normális eloszlású vetor, amelyne várható értée és ovariancia mátrixa megegyezi a (ξ Eξ,...,ξ Eξ normális eloszlású vetor várható értéével és ovariancia mátrixával. Ezért e ét véletlen vetor eloszlása megegyezi. Így a σ η,...,σ η valószínűségi változó függetlenségéből övetezi, hogy a ξ Eξ,...,ξ Eξ, illetve a ξ,...,ξ valószínűségi változó is függetlene és normális eloszlásúa. Tudju, hogy független valószínűségi változó orrelálatlano. A teljesség edvéért mutato egy példát orrelálatlan, de nem független valószínűségi változóra. Ez a példa mutatja, hogy a fenti eredményben nagyon fontos volt, hogy egy normális eloszlású véletlen vetor oordinátáit teintettü. Példa orrelálatlan, de nem független valószínűségi változóra. Legyen ξ egyenletes eloszlású valószínűségi változó a [ 2, 2] intervallumban, Eor a ξ és η = ξ 2 valószínűségi változó orrelálatlano, de nem függetlene. Valóban, Eξ = 0, Eη = Eξ 2 = 2, Eξη = Eξ 3 = 0, Cov (ξ,η = Eξη EξEη = 0. Másrészt ξ és η nem függetlene, sőt az η valószínűségi változó a ξ valószínűségi változó determinisztius függvénye. Egy lehetséges formális indolása anna, hogy ξ és η nem független a övetező: Legyen 0 < a < tetszőleges szám. Eor {ω: η < a 2 } = {ω: ξ < a}. Ezért P(ξ < a,η < a 2 = P(ξ < a, tehát P(ξ < a,η < a 2 P(ξ < ap(η < a 2. 6

17 Kiegészítés A. A övetező állítást, amely szintén azzal apcsolatos, hogy normális eloszlású véletlen vetor oordinátáina függetlensége övetezi azo orrelálatlanságából feladat formájában fogalmazom meg, és a gyaorlaton fogju tárgyalni. Enne az eredményne fontos övetezménye van néhány valószínűségszámítási és statisztiai vizsgálatban. Feladat: Legyen (ξ,η normális eloszlású vetor m = (m,m 2 = (Eξ,Eη várható értéel és ( ( σ,, σ,2 Eξ = 2 (Eξ 2, Eξη EξEη σ 2,, σ, Eξη EξEη, Eη 2 (Eη 2 ovarianciamátrix-szal. Eor létezi a ξ valószínűségi változóna ξ = aη + ζ alaú előállítása alalmas a onstanssal, és az η valószínűségi változótól független ζ normális eloszlású valószínűségi változóval. Ez azt jelenti, hogy ha (ξ, η ét-dimenziós normális eloszlású valószínűségi változó, aor az első oordináta ifejezhető, mint a másodi ooordináta onstansszorosána és egy a másodi oordinátától független normális eloszlású valószínűségi változó összege. A ívánt a onstanst explicit módon megadhatju az a = σ,2 σ 2,2 éplet segítségével. Hogy általánosítható a fenti állítás abban az esetben, ha ξ és η vetorváltozó is lehetne? Megoldás: A ζ = ξ σ,2 σ, η valószínűségi változó független az η valószínűségi változótól. Ehhez a több-dimenziós normális eloszlás tulajdonságai alapján elég azt ellenőrizni, hogy Cov (ζ,η = 0. Innen övetezi a feladat állítása. Az az eset, amior ξ = (ξ,...,ξ s, η = (η,...,η p, és (ξ,...,ξ s,η,...,η p egy s + p dimenziós normális eloszlású valószínűségi változó hasonlóan tárgyalható. Be lehet látni, hogy létezi olyan A mátrix, amelyre η és ξ ηa függetlene. Enne érdeében először azt érdemes megmutatni, hogy létezi olyan U unitér mátrix amelyre ηu = ( η,..., η p = η vetor oordinátái függetlene. Ez abból látható, hogy ha az η véletlen vetor D ovarianciamátrixát D = U ΛU alaban írju fel, ahol U unitér Λ pedig diagonális mátrix, aor az η = ηu véletlen normális eloszlású vetor ovarianciamátrixa Λ, ahonnan övetezi, hogy az η mátrix oordinátái függetlene. Legyen ξ r = ξ r p = Eξ r η E η 2 η, r =,...,s. Ezt mátrixje löléssel ξ = ξ ηb formában írhatju. Eor (ξ ηb, η olyan p + s dimenziós, normális eloszlású valószínűségi változó, amelyne első s és utolsó p oordinátája orrelálatlan, ezért független. Mivel a ξ ηb és η vetoro függetlene, ezért ζ = ξ ηb = ξ ηub független az η = ηu vetortól. Megjegyzés: A valószínűségszámítás illetve statisztia finomabb érdéseine vizsgálatában bevezetté a feltételes valószínűség és feltételes eloszlás fogalmát olyan eseteben is, amior a feltétel nulla valószínűséggel övetezi be. Bizonyos vizsgálatoban fontos iszámolni, hogy mi a feltételes eloszlása egy több-dimenziós normális vetor bizonyos oordinátáina azon feltétel mellett, hogy a többi oordináta értéét rögzítjü. E feladat 7

18 megoldásána ulcslépése a fent tárgyalt feladat megoldása. E érdésre visszatére aor, amior a feltételes valószínűségeet fogju tanulni. Láttu, hogy egy normális eloszlású véletlen vetor oordinátái is normális eloszlásúa. Ez az állítás nem megfordítható. Enne megértése érdeében példát mutato olyan ét-dimenziós (ξ, η véletlen vetorra, amelyne mind a ét oordinátája, azaz mind a ξ mind az η valószínűségi változó normális eloszlású, viszont a (ξ,η vetor (mint ét-dimenziós véletlen vetor nem normális eloszlású. Példa véletlen vetorra, amely nem normális eloszlású, noha oordinátái normális eloszlásúa. Definiálju a övetező (Ω, B, P valószínűségi mezőt: Ω = [0,], B a Borel σ-algebra [0,]-en, és P a Lebesgue mérté. Definiálju a övetező ξ és η valószínűségi változóat ezen a mezőn: ξ(x = Φ (x, { ξ( x ha 0 x < 2 η(x = ξ ( x 2 ha 2 x. Az ebben a példában definiált ξ és η valószínűségi változó normális eloszlásúa, de a (ξ,η véletlen vetor nem normális eloszlású. Indolás: A ξ és η valószínűségi változó azonos eloszlásúa. Továbbá, P(ξ > x = λ(φ(x,] = Φ(x. Az, hogy a (ξ,η véletlen vetor nem normális eloszlású övetezi például a P(ξ +η = 0 = 2 azonosságból. Ugyanis, ha (ξ,η normális eloszlású lenne, aor az lenne a ξ +η valószínűségi változó is. Enne viszont ellentmond a P(ξ + η = 0 = 2 reláció. Kiszámolom egy több-dimenziós normális eloszlású vetor sűrűségfüggvényét is, (feltéve, hogy az létezi. Tétel a több-dimenziós normális eloszlású vetor sűrűségfüggvényéne az alajáról. Legyen adva egy η = (η,...,η -dimenziós normális eloszlású valószínűségi változó, amelyne m = (m,...,m = (Eη,...,Eη a várható érté vetora és D = (d j,l, d j,l = Cov (η j,η l, j,l, a ovariancia mátrixa. Az η -dimenziós valószínűségi változóna aor és csa aor van sűrűségfüggvénye, ha a D ovariancia mátrix invertálható. Ha a D ovariancia mátrix invertálható, aor az η = (η,...,η véletlen vetor sűrűségfüggvénye a övetező alaú: f(x = f(x,...,x = ahol x = (x,...,x R -dimenziós vetor. (2π /2 det D /2 exp{ (x md (x m /2 }, Bizonyítás: Az η = (η,...,η véletlen vetor eloszlása megegyezi egy olyan η = ( η,..., η = (ξ,...,ξ A+(m,...,m véletlen vetorna az eloszlásával, amelyire ξ j, j, független standard normális eloszlású valószínűségi változó, és D = A A. Jegyezzü meg, hogy a lineáris algebra standard eredményei szerint az A és A mátrixo 8

19 egyszerre invertálhatóa vagy nem invertálhatóa, és a D = A A mátrix aor és csa aor invertálható, ha az A mátrix invertálható. Ezért, ha a D mátrix nem invertálható, aor az η vetorna nincs sűrűségfüggvénye, ha pedig a D mátrix invertálható, aor a övetező módon számolhatun: Alalmazva az x = ya + m transzformációt ξ = (ξ,...,ξ, x = (x,...,x, y = (y,...,y és ϕ(y = ϕ(y,...,y = (2π /2 e (y2 + +y2 /2 jelöléssel apju, hogy tetszőleges mérhető B R halmazra P(η B = P( η B = P ( ξ (B ma = ϕ(y dy (y,...,y (B ma = ϕ ( (x ma dx det A (x,...,x B alaú, ahol det A az x = ya + m leépezés Jacobian-ja. E formulából iolvasható, hogy a vizsgált normális eloszlású valószínűségi változó sűrűségfüggvénye a det A ϕ ( (x ma függvény. Anna érdeében, hogy bebizonyítsu a tételt vegyü észre, hogy mivel D = A A, ezért det D = det A det A = (deta 2, és det A = detd /2. Továbbá, ϕ ( (x ma { = exp ((x ma,(x ma } (2π /2 2 { = exp (x ( ma A } (x m (2π /2 2 = exp { (x m(a A (x m } (2π /2 2 = exp { (x md (x m }, (2π /2 2 mert A ( A = A (A = (A A. Innen övetezi a Tétel állítása. Megjegyzés: Egy több-dimenziós normális eloszlású valószínűségi változó araterisztius függvényét megadó épletben a ovariancia mátrix szerepel, míg a sűrűségfüggvényét megadó épletben a ovariancia mátrix inverze. Mivel a araterisztius függvény iszámolásában nem ell invertálni a ovariancia mátrixot, ezért a araterisztius függvény segítségével önnyebb vizsgálni a normális eloszlásfüggvénye tulajdonságait. Visszatére az előadás elején megfogalmazott a problémához. Megfogalmazom anna egy természetes általánosítását, amely fontos szerepet játszi a matematiai statisztiában. Az itt megfogalmazott feladat megoldására idolgozott módszert hívjá az irodalomban χ-négyzet próbána. Megmutatom, hogy a χ-négyzet próba alapjául szolgáló eredmény a több-dimenziós centrális határeloszlástétel és bizonyos lineáris algebrai eredménye övetezménye. A övetező feladattal fogo foglalozni. 9

20 Legyen adva urna, és ellenőrizzü azt a feltevést, amely szerint ha egy golyót véletlenül bedobun ezen urná valamelyiébe, aor az p j, p j > 0, valószínűséggel esi a j- i urnába, p j =. Ezen feltevés ellenőrzéséne az érdeében dobjun egymástól függetlenül n golyót ezebe az urnába, és jelölje ν n (j a j-i urnába eső golyó számát. Döntsü el a apott eredmény alapján, hogy feltevésün helyes volt-es. Be fogju látni, hogy feltevésün teljesülése esetén a (ν n (j np j 2 np j valószínűségi változóna létezi határeloszlásu n esetén, és ez a határeloszlás az úgynevezett szabadságfoú χ 2 (szóban hi négyzet eloszlás. Megfogalmazom ezt az eredményt pontosabban is. Először bevezetem a χ 2 eloszláso definicióját. A szabadságfoú χ 2 eloszlás definiciója. Legyen ξ,...,ξ darab független standard normális eloszlású valószínűségi változó. Eor a valószínűségi változó eloszlását nevezzü szabadságfoú χ 2 ( eloszlásna. ξj 2 Megjegyzés: Láttu a gyaorlaton, hogy a 2 szabadságfoú χ 2 (2 eloszlás a λ = 2 paraméterű exponenciális eloszlás, azaz az az eloszlás, amelyne sűrűségfüggvénye az f(x = 2 e x/2, ha x 0, és f(x = 0, ha x < 0. Ezután megfogalmazom a χ 2 próba alapjául szolgáló eredményt. Tétel urnadobás eredményéne aszimptotius viseledéséről. Legyen adva darab urna, amelyebe bedobun egymástól függetlenül golyóat úgy, hogy mindegyi golyó p j valószínűséggel esi a j-i urnába, j, p j =. Jelölje ν n (j a j-i urnába eső golyó számát n dobás után. Eor a T n = (ν n (j np j 2, n =,2,..., np j valószínűségi változó eloszlásban onvergálna a szabadságfoú χ 2 ( eloszláshoz, ha n. (Az urná száma rögzített. Megjegyzem, hogy a fenti tételben megjelenő határeloszlás csa az urná számától függ, de nem függ a p j, j, valószínűségetől. Ez jelzi azt, hogy természetes statisztiát vezettün be, olyat amelyben a ülönböző urnában levő golyó számána az eltérése anna várható értéétől egyforma fontos szerepet játszi. Az, hogy a határeloszlás a szabadságfogú χ 2 ( eloszlás, azzal függ össze, hogy bár véletlen szám súlyozott négyzetösszegét teintettü, (az egyes urnába eső golyó számána eltérését teintettü azo várható értéétől, de eze özött van egy determinisztius összefüggés. Nevezetesen az, hogy az összes urnába eső golyó száma minusz azo várható értée nullával egyenlő. Ezt informálisan úgy szotá interpretálni, hogy 20

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Áttekintés a felhasznált lineáris algebrai ismeretekről.

Áttekintés a felhasznált lineáris algebrai ismeretekről. Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3

BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Balogh Zsuzsanna Hana László BAYES-ANALÍZIS A KOCKÁZATELEMZÉSBEN, DISZKRÉT VALÓSZÍNŰSÉG ELOSZLÁSOK ALKALMAZÁSA 3 Ebben a dolgozatban a Bayes-féle módszer alalmazási lehetőségét mutatju be a ocázatelemzés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása

Diszkrét matematika I. középszint Alapfogalmakhoz tartozó feladatok kidolgozása Diszrét matematia I. özépszint Alapfogalmahoz tartozó feladato idolgozása A doumentum a övetező címen elérhető alapfogalmahoz tartozó példafeladato lehetséges megoldásait tartalmazza: http://compalg.inf.elte.hu/~merai/edu/dm1/alapfogalma.pdf

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. A valószínűségszámítás egyik nagyon fontos fogalma a Wiener-folyamat, amelyet Brownmozgásnak is hívnak. Az első elnevezés e fogalom

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Szindbád mellett, egyszerre csak egy háremhölgy jelenik meg. Szindbád. hogy a kalifának hány háremhölgye van, viszont semmit nem tud arról,

Szindbád mellett, egyszerre csak egy háremhölgy jelenik meg. Szindbád. hogy a kalifának hány háremhölgye van, viszont semmit nem tud arról, A Szindbád probléma. Optimális választás megtalálása. Rendkívül népszerű és egyben tanulságos a következő valószínűségi, optimalizációs probléma, mely Magyarországon Szindbád problémája néven vált ismertté.

Részletesebben

Fuzzy Rendszerek és Genetikus Algoritmusok

Fuzzy Rendszerek és Genetikus Algoritmusok Fuzzy endszere és Genetus lgortmuso Előadás vázlat előadás Felhasznált Irodalom: Összeállította: armat István Ph.D., egyetem adjuntus ózsa Pál: neárs algebra és alalmazása. Budapest, 99. [] Sajátérté-eladat

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

a sorozata konvergál a normális eloszlásfüggvényhez. E tételnek nem adom meg a

a sorozata konvergál a normális eloszlásfüggvényhez. E tételnek nem adom meg a A Valószínűségszámítás I. előadássorozat tizedik témája. Eloszlások konvergenciájáról. A centrális határeloszlástétel bizonyítása. A centrális határeloszlástétel azt állítja, hogy bizonyos valószínűségi

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai 1. A probléma megfogalmazása. KÁLMÁN-FÉLE SZŰRŐK E jegyzet témája az úgynevezett Kálmán-féle szűrők vizsgálata. A feladat a következő. Adott egy x(0),x(1),..., több változós (együttesen) normális, más

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL Surányi János Farey törte mate.fazeas.u Surányi János VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL FAREY-TÖRTEK. Egy a alós számot racionális számoal, azaz törteel aarun megözelíteni. A törteet az alábbiaban mindig

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I jún. 11.

Matematika szigorlat, Mérnök informatikus szak I jún. 11. Matematia szigorlat, Mérnö informatius sza I. 007. jún. 11. Megoldóulcs 1. Adott az f(x) = (x ) függvény. (a) Végezzen teljes függvényvizsgálatot! D f = R \ {} 13 zérushely: x = y-tengelyen a metszet:

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Matematikai statisztika Tómács Tibor

Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Publication date 2011 Szerzői jog 2011 Hallgatói Információs Központ Copyright 2011, Educatio Kht., Hallgatói Információs Központ

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

feltételek esetén is definiálják, tehát olyan esetekben is, amikor a hagyományos, a

feltételek esetén is definiálják, tehát olyan esetekben is, amikor a hagyományos, a A Valószínűségszámítás II. előadássorozat hatodik témája. ELTÉTELES VALÓSZÍNŰSÉG ÉS ELTÉTELES VÁRHATÓ ÉRTÉK A feltételes valószínűség és feltételes várható érték fogalmát nulla valószínűséggel bekövetkező

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Ágoston Kolos Csaba. Hogyan hat a bizonytalanság és a. vev kör nagysága együttesen az árakra?

Ágoston Kolos Csaba. Hogyan hat a bizonytalanság és a. vev kör nagysága együttesen az árakra? Ágoston Kolos Csaba Hogyan hat a bizonytalanság és a vev ör nagysága együttesen az árara? Operációutatás Tanszé Témavezet : Kovács Erzsébet Copyright c Ágoston Kolos Csaba, 2004 Budapesti CORVINUS Egyetem

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5 Valószínűségszámítás Földtudomány BSc szak, 2016/2017. őszi félév Backhausz Ágnes agnes@cs.elte.hu Tartalomjegyzék 1. Bevezetés 2 2. A Kolmogorov-féle valószínűségi mező 3 2.1. Klasszikus valószínűségi

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben