VALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI"

Átírás

1 D. Gausz Tamás VALÓSÁGOS ÖRVÉNYEK Az aeodinamikában igen gyakan találkozunk az övény fogalmával. Ez az övény a epülőgép köüli áamlásban kialakuló otációból (fogásból) számazik. Egy általában kis téész otációit egyetlen vonala sűítve kapjuk az övény-fonalat, amely övény-fonal ezek szeint valamilyen, véges cikulációt képvisel és számos esetben jól alkalmazható övény modellt ad. Ilyen övény fonal pl. a szányakon keletkező hodozó-övény vagy a szányakól leúszó leúszó-övény, illetve az induló övény. Ezek az övény-fonalak a könyezetükben sebességet indukálnak, az indukált sebességet a Biot-Savat tövény segítségével hatáozzuk meg. Az övény-fonalak létehozási módjából is következik, hogy ez az indukált sebesség a fonalnál (nulla távolság esetén) végtelen. Ez, fizikailag nyilvánvalóan nem lehetséges, ezét a valósághoz közelebb álló számítások esetében az övény-fonal feltételezés helyett olyan övény-csővel számolunk, amelynek véges sugaú magja van. Ez az övény-mag alkalmas az övény öegedés figyelembe vételée is. Az ilyen, valóságos vagy viszkózus övény esetén a hagyományos számolási módszeek kiegészíthetők a súlódás hatását figyelembe vevő módszeel. IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI Tekintsük példaként egy szány mögötti, diszkét övényekből álló leúszó övényendszet. Az ilyen típusú endszeeke, ideális esete Betz háom megmaadási elvet fogalmazott meg []. Az első az övény-megmaadási tétel, eszeint: L Γ = γ ( xl ) dxl = const () 0 L A második megmaadási elv szeint az övények elsőendű nyomatéka állandó: K = γ ( xl ) xl dxl = const () 0 Végül a hamadik megmaadási elv szeint az övények másodendű nyomatéka is állandó: L J = γ ( xl ) xl dxl = const (3) 0 ahol: Γ, K és J a megfelelő állandók; γ ( x l ) a szányól leúszó, megoszló övény az x l helyen; L szány esetében a fél fesztáv, oto esetében a lapáthossz. Ez a háom elv többek között alkalmas aa, hogy segítségükkel a felcsavaodó szányvég övény tébeli helyzetét meghatáozzuk, vagy az esetleg más módszeel meghatáozott övény-pozíciót ellenőizzük. A szányól leúszó övények viszonylag hama felcsavaodnak és egy, nagy intenzitású leúszó övénnyé egyesülnek. A szány vagy otolapát mögötti, teljes felcsavaodás előtti zónát közeli övényes nyomnak is szokás nevezni. Ebben a szányhoz, otolapáthoz közeli zónában az övények csak igen övid időt töltenek, ezét a súlódás hatását elhanyagolhatjuk, az övényeket ideálisnak tekinthetjük.

2 D. Gausz Tamás Valóságos övények VALÓSÁGOS ÖRVÉNY MODELLEK A má felcsavaodott szányvég övény intenzitása és élettatama egyaánt indokolja illetve szükségessé teszi a súlódás hatásának figyelembe vételét. Ezen túl fontos a valóságos övényekkel való számolás azét is, met egy ideális, lényegében nulla átméőjű övényfonal a saját helyén végtelen sebességet indukál - ez fizikailag nyilvánvalóan lehetetlen. Ezét több, a valóságos övényeket leíó modellt fejlesztettek ki ([3], [6], [8]). E modellek közös vonása az övény-mag definiálása, az övényesség ebben, a véges sugaú magban helyezkedik el. A legkoábbi ilyen modellt Rankine fejlesztette ki. Ezután számos modellt alkottak (pl. Kaufmann, Scully, Vatistas), ebben a cikkben a Lamb-Oseen modellből indulunk ki: Γ v () = exp, (4) π 4ν t ahol: v () Γ ν t az indukált sebesség a sugá () függvényében; cikuláció; kinematikai viszkozitás; idő (az övény koa). A (4) szeinti indukált sebesség eloszlás olyan, hogy az indukált sebesség étéke az övénymag középpontjában nulla, ettől kifele meedeken növekszik egy maximális étékig majd csökken és hipebolikushoz hasonló módon nullához tat. A maximális étékhez tatozó sugától (ez az övénymag sugaa) kifelé az indukált sebesség alakulása az ideális, egy vonalon elhelyezkedő övény indukált sebesség eloszlásához a sugá növekedésével egye inkább hasonló lesz. Az övénymag sugaát úgy számíthatjuk ki, ha a (4)-et a sugá szeint deiváljuk, az így kapott egyenletet nullával tesszük egyenlővé - innen az övénymag sugaa (c) számítható: c = ν t LambetW, e ν t 4 ahol: a LambetW függvény aktuális étéke: ; behelyettesítve ezt az étéket (5)-be, a jól ismet fomulát kapjuk: c = 4 α ν t, (6) ahol: α = Ez, a Lamb-Oseen modell [3] szeint, ez ekvivalens viszkozitási együttható (δ ) bevezetésével tubulens áamlása is kitejeszthető: c = 4 α δ ν t, (7) ahol: δ = + a Re Γ ; Re Γ = Γ / ν az övény-reynolds szám; a = , tapasztalati tényező. Az övénymag sugaa ezek szeint csak a viszkozitástól és az övény létezési idejétől függ, konkét étéke a nem túl nagy időtatamok esetében 0 cm nagyságendben változik. A (6) vagy (7) szeinti övénymag sugá az időben növekszik. Ez megfelel annak a váakozásnak, ami szeint az övény a fogása soán kitejed. Másészt ezzel a növekedéssel együtt a maximális indukált sebesség csökken, amit másképp az övény öegedésének is nevezhetünk. (5)

3 D. Gausz Tamás Valóságos övények TÉRBELI ÖRVÉNY MODELL A Lamb-Oseen modell kétdimenziós áamlása évényes, aa az esete, amiko az övény geometiai középvonala egy egyenes. Az indukált sebességet az ee az egyenese meőleges síkban adja, polá koodináta endszeben. A epülésben általában göbe vonal mentén elhelyezkedő övényekkel találkozhatunk. Ezeket az övényeket (övid) egyenes szakaszokból álló övény szegmensekkel közelíthetjük. Egy ilyen övény szegmens látható az. ábán. ρ Γ. ába. Övény szegmens P Az ideális övény szegmens által indukált sebességet, egy deékszögű koodináta endszeben a következő módon számíthatunk ki: Γ w = ρ (8) 4 π Egy-egy ilyen övény szegmens má fogás-szimmetikusnak tekinthető és a poblémát ekko má egy olyan koodináta endszeben vizsgálhatjuk, ahol a z tengely az és pontok által meghatáozott egyenes, illetve az ee meőleges síkban egy tengelyt definiálhatunk. Az indukált sebesség vektonak a z tengelye meőleges síkba eső összetevőjét ( h a. ába B pontjának z-koodinátája, a szegmens hossza) a következő módon számíthatjuk: Γ z z h ( ) w ϕ = 4 (9) π z + z h + A maximális sugaat (c max ) a z = h helyettesítéssel számíthatjuk ki, ezután viszont a w ϕ = w ϕ max = áll. feltételből minden további z koodinátához tatozó sugaat számíthatunk. Ezzel megkapjuk a. ábán szaggatott vonallal hatáolt, véges hosszúságú övény szegmenshez endelhető övény magot. Ez a mag-felület a szegmensek végétől nem messze záódik. A valóságban az övény szegmensek egymáshoz csatlakoznak, így az indukált sebesség számításában a szegmenstől távolabbi pontok nem bínak túl nagy jelentőséggel, az ilyen pontokban a hozzájuk közeli szegmensek indukált sebessége a jelentős. A valóságos övény szegmenseke áttéve, ott az indukált sebességet (8) módosításával hatáozhatjuk meg. Vezessünk be a következő függvényt: ( ) ( ) ϕ = exp α δ, (0) c z c z ahol: z - a P pont lokális koodinátája; c(z) az adott lokális koodinátához tatozó mag sugá. 3

4 D. Gausz Tamás Valóságos övények,35 c(z) c(z) c max A B z P. ába. Övénymag és hatás-tatomány A (8)-at ezzel a függvénnyel megszoozva kapjuk azt a kifejezést, amivel a valóságos övény szegmens által indukált sebesség számítható: Γ w = ρ 4 π ϕ c ( z) A. ábán látható a vastag vonallal kihúzott,35 c(z) tatomány. A () kifejezéssel csak ezen tatományon belül számolunk, mivel az általában évényes paaméteek esetén a különbség (8) és () között a vastag vonalon kívül eső tében kicsi (általában kisebb, mint 0,%). ALKALMAZÁSI PÉLDA A 3. ábán egy otolapát köül kialakuló övényendszet ábázoltunk. Az un. letolt övények az időben változó cikuláció következtében előálló, a otolapát hossztengelyével nagyjából páhuzamosan induló övények. A véges maggal endelkező, felcsavaodott, leúszó övények a könyező levegő észecskéiből állnak, ezét, temészetesen a könyező levegő sebességével mozognak. A helikopte otook mögötti áamlásban a epülési sebesség mellett a otolapátok övényendszee által indukált sebesség játszik szeepet. Az itt található alkalmazási példában az indukált sebesség mezőt egysze észletesen kiszámítottuk, az így kapott eedményt a módszee utaló szabad övény elnevezéssel láttuk el. Másodszo, mivel az első módsze igencsak számítás igényes, tapasztalati alapon álló, előít indukált sebesség eloszlást alkalmaztunk, előít övény elnevezéssel. () 4

5 D. Gausz Tamás Valóságos övények x l z Rotolapát Hodozó övények Ellenőző pont β l x Leúszó övények y Csapkodó csukló Roto tengely Letolt övények Felcsavaodott övények (Valóságos övény szál) Kollokációs pont ( P ) - övény szegmens 3. ába. Rotolapát köül kialakuló övény-endsze Az MD 500-as helikoptee vonatkozó számítási példa észletesebben [5]-ben található meg, itt csak egy, jellemző észeedményt mutatunk be: 4. ába. Felhajtóeő tényező eloszlása otolapát mentén A példa észben mutatja, hogy ezzel a módszeel a helikopte otolapátok aeodinamikai jellemzői számíthatók, illetve ami szintén igen fontos: a kétféle módsze közel azonos eedményt ad, vagyis az előít indukált sebességgel működő, számítástechnikailag sokkal gazdaságosabb modell a példa szeinti esetben nyugodtan alkalmazható. A cikk lezáásaként néhány gondolatot fogalmazunk meg. Legelőszö is elmondhatjuk, hogy a epülőgépek aeodinamikájában széles köben alkalmazzuk az övény elméleteket. A szánypofilok egyik legeltejedtebb és legegyszeűbb vizsgálati módja az övény-panel mód 5

6 D. Gausz Tamás Valóságos övények sze. A epülőgépszányak felhajtóeő-eloszlását a hodozóvonal vagy az alkalmazott övény elmélet, esetleg a felületi övény panel módsze segítségével hatáozhatjuk meg. A légcsavaok és a helikopte otook esetében is széles köben alkalmazzuk az övény elméleteket - főként a felületi övény-panel módsze és a hodozóvonal elmélet elemeinek kombinációját. Az övény elméletek több előnyös és több hátányos tulajdonsággal endelkeznek. Előnyük az áamlási viszonyok jó közelítése a epülőgépek köüli teljes tében, miközben a figyelembe veendő övény-szám nem kell túl nagy legyen. Ezzel mód nyílik különböző elemek aeodinamikai kölcsönhatásának vizsgálatáa (pl. szány - vezésík, vagy két szány stb). További igen nagy előny, hogy az elegendően finom övény elméletek képesek az időben változó eőket az instacionáius hatásokat nyomon követni. Ez, különösen a helikopte otook esetében igen fontos. Az instacionáius hatások következtében jelentek meg a letolt övények, amik ezek szeint az instacioneitások számításához szükségesek is. Ezzel szemben állnak az övény-elméletek hátányai. Alappobléma az, hogy ha ideális övénnyel vagy nem megfelelő valóságos övénnyel számolunk, akko könnyen kaphatunk fizikailag ieális eedményeket (pl. igen nagy indukált sebesség), ami, ha ee külön nem figyelünk, diekt módon esetleg nem is deül ki. A másik pobléma az, hogy az övényelméletekkel töténő számolás számítógépen is időigényes, különösen, ha szabad leúszó övényekkel számolunk és különböző ellenőzéseket is beiktatunk. Végeedményben, ha az övény elmélet jól működik, akko viszonylag hosszabb számolás után jó eedményeket kapunk, ha azonban nem működik jól, akko az eedmények igen osszak is lehetnek. Ez nagyjából azt jelenti, hogy a bonyolultabb számításokat valamilyen (más) módon feltétlenül ellenőizni kell. FELHASZNÁLT IRODALOM [] Begh, H.-Wekken, A.J.P.: Compaaison between Measued and Calculated Stall-Flutte Behaviou of a One- Bladed Model Roto, Vetica, Vol.. No. 3. pp , 987. [] Betz, A.: Vehalten von Wibelsystemen, Zeitschift fü Angewandte Mathematik und Mechanik, Bd. XII., N (pp ). [3] Bhagwat, M. J.- Leishman, J. G.: Genealized Viscous Votex Model fo Application to Fee-Votex Wake and Aeoacoustic Calculations AHS Foum, 00. [4] Gausz, T.: Aeodynamical and Dynamical Investigation os Helicopte Rotos, ICAS Congess 000, Haogate, United Kingdom (ICA 08). [5] Gausz, T.: Votex-Wake Model fo Helicopte Rotos. 8TH Mini Confeence on Vehicle System Dynamics, Identification and Anomalies, Budapest 4. Nov. 00. [6] Leonad, A.: Votex Methods fo Flow Simulation. Jounal of Computational Physics, (pp ). [7] Rossow, V.J.: On the Inviscid Rolled-Up Stuctue of Lift Geneated Votices, Jounal of Aicaft, Vol. 0. No., (pp ). [8] Staufenbiel, R.: Ein Model zu Analytischen Bescheibung von Randwibeln, Zeitschift fü Flugwissenschaft und Weltaumfoschung, N. 9, Heft [9] Westwate, F.L.: The Rolling Up of the Suface of Discontinuity Behind an Aeofoil of Finite Span, RAES Repots and Memoanda, No. 69, Aug. 935 (pp. 6-3). 6

KOAXIÁLIS ROTOROK AERODINAMIKAI VIZSGÁLATA AZ IMPULZUS TÉTEL

KOAXIÁLIS ROTOROK AERODINAMIKAI VIZSGÁLATA AZ IMPULZUS TÉTEL Szilágyi Dénes KOAXIÁLIS ROTOROK AERODINAMIKAI VIZSGÁLATA Ebben a munkában a Ka 6 helikopte egyenes vonalú egyenletes epülését vizsgáltam. A típus kiválasztásában döntő szeepet játszott, hogy ezzel a hajtottak

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

Lencsék fókusztávolságának meghatározása

Lencsék fókusztávolságának meghatározása Lencsék fókusztávolságának meghatáozása Elméleti összefoglaló: Két szabályos, de legalább egy göbe felület által hatáolt fénytöő közeget optikai lencsének nevezünk. Ennek speciális esetei a két gömbi felület

Részletesebben

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató

Részletesebben

Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására

Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására Tébeli polákoodináták alkalmazása egy pont helyének sebességének és gyosulásának leíásáa A címbeli feladat a kinematikával foglalkozó tankönyvek egyik alapfeladata: elmagyaázni levezetni az idevágó összefüggéseket

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Tásulat Aany Dániel Matematikai Tanulóveseny 017/018-as tanév 1. foduló Haladók III. kategóia Megoldások és javítási útmutató 1. Anna matematika házi feladatáa áfolyt a tinta.

Részletesebben

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög.

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög. 17. tétel kö és észei, kö és egyenes kölcsönös helyzete (elemi geometiai tágyalásban). Keületi szög, középponti szög, látószög. Def: Kö: egy adott ponttól egyenlő távolsága levő pontok halmaza a síkon.

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

f r homorú tükör gyűjtőlencse O F C F f

f r homorú tükör gyűjtőlencse O F C F f 0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp

Részletesebben

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules)

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) Atomok (molekulák) fotoionizációja soán jelentkező ezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) BORBÉLY Sándo, NAGY László Babeş-Bolyai Tudományegyetem, Fizika ka, 484

Részletesebben

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE Íta: Hajdu Ende Egy pénzémének vagy egyéb lemezidomnak saját síkjában töténő elmozgathatósága meggátolható oly módon, hogy a lemez peeme mentén, alkalmasan megválasztott

Részletesebben

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása Numeikus módszeek A. Egyenletek gyökeinek numeikus meghatáozása A1) Hatáozza meg az x 3 + x = egyenlet (egyik) gyökét éintı módszeel. Kezdje a számítást az x = helyen! Megoldás: x 1, Megoldás 3 A függvény

Részletesebben

IV x. 2,18 km magasan van a hôlégballon.

IV x. 2,18 km magasan van a hôlégballon. 8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk

Részletesebben

Kétváltozós vektor-skalár függvények

Kétváltozós vektor-skalár függvények Kétáltozós ekto-skalá függények Definíció: Az olyan függényt amely az ( endezett alós számpáokhoz ( R R ( ektot endel kétáltozós ekto-skalá függénynek neezzük. : ( ( ( x( i + y( j + z( k Az ektoal együtt

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

III. Differenciálszámítás

III. Differenciálszámítás III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 Fizika ménm nök k infomatikusoknak. FBNxE- Mechanika 7. előadás D. Geetovszky Zsolt. októbe. Ismétl tlés Centifugális és Coiolis eő (a Föld mint fogó von. endsze) Fluidumok mechanikája folyadékok szabad

Részletesebben

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c

Részletesebben

Gruber József, a hidrodinamikai szingularitások művelője

Gruber József, a hidrodinamikai szingularitások művelője Gube József, a hidodinamikai szingulaitások művelője Czibee Tibo Személyes kapcsolatom Gube pofesszoal: Egyetemi tanulmányaimat a miskolci Nehézipai Műszaki Egyetemen végezvén nem hallgathattam egyetemi

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3 októbe 7 technológia és a költségek dualitása oábban beláttuk az alábbi összefüggéseket: a) Ha a munka hatáteméke nő akko a hatáköltség csökken

Részletesebben

Készletek - Rendelési tételnagyság számítása -1

Készletek - Rendelési tételnagyság számítása -1 Készlete - Rendelési tételnagyság számítása -1 A endelési tételnagyság meghatáozása talán a legészletesebben tágyalt édésö a észletgazdálodási szaiodalomban. Enne nagyészt az az oa, hogy mind az egyszee

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Bé ni. Barna 5. Benc e. Boton d

Bé ni. Barna 5. Benc e. Boton d Egy asztalon háom halomban 009 db kavics van Egyet eldobok belőle, és a többit két kupacba osztom Ezután megint eldobok egyet az egyik halomból (amelyikben egynél több kavics van) és az egyik halmot ismét

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Fogaskerék hajtások I. alapfogalmak

Fogaskerék hajtások I. alapfogalmak Fogaskeék hajtások I. alapfogalmak A fogaskeekek csopotosítása A fogaskeékhajtást az embeiség évszázadok óta használja. A fogazatok geometiája má a 8-9. században kialakult, de a geometiai és sziládsági

Részletesebben

Mobilis robotok irányítása

Mobilis robotok irányítása Mobiis obotok iánítása. A gakoat céja Mobiis obotok kinematikai modeezése Matab/Simuink könezetben. Mobiis obotok Ponttó Pontig (PTP) iánításának teezése és megaósítása.. Eméeti beezet Mobiis obotok heátoztatása

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

A pénzügyi számítások alapjai II. Az értékpapírok csoportosítása. Az értékpapírok csoportosítása. értékpapírok

A pénzügyi számítások alapjai II. Az értékpapírok csoportosítása. Az értékpapírok csoportosítása. értékpapírok A pénzügyi számítások alapjai II. étékpapíok Miskolci Egyetem Gazdaságtudományi Ka Pénzügyi Tanszék Galbács Péte doktoandusz Az étékpapíok csopotosítása Tulajdonosi jogot (észesedési viszonyt) megtestesítő

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

Az atomok vonalas színképe

Az atomok vonalas színképe Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

IV. Reinforced Concrete Structures III. / Vasbetonszerkezetek III. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár

IV. Reinforced Concrete Structures III. / Vasbetonszerkezetek III. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár IV. Reinfoced Concete Stuctues III. Vasbetonszekezetek III. - Oszlopok kihajlási hossza, külpontosságok, oszlopvizsgálat - D. Kovács Ime PhD tanszékvezető főiskolai taná E-mail: d.kovacs.ime@gmail.com

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu

Részletesebben

Makromolekulák fizikája

Makromolekulák fizikája Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés

Részletesebben

A városi hősziget által generált konvekció modellezése általános célú áramlástani szoftverrel példaként egy szegedi alkalmazással

A városi hősziget által generált konvekció modellezése általános célú áramlástani szoftverrel példaként egy szegedi alkalmazással A váosi hősziget által geneált konvekció modellezése általános célú áamlástani szoftveel példaként egy szegedi alkalmazással Kistóf Gegely* Rácz Nobet* Bányai Tamás* Gál Tamás** Unge János** Weidinge Tamás***

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között? Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

Bevezetés az anyagtudományba II. előadás

Bevezetés az anyagtudományba II. előadás Bevezetés az anyagtudományba II. előadás 010. febuá 11. Boh-féle atommodell 1914 Niels Henik David BOHR 1885-196 Posztulátumai: 1) Az elekton a mag köül köpályán keing. ) Az elektonok számáa csak bizonyos

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

HARDVEREK VILLAMOSSÁGTANI ALAPJAI

HARDVEREK VILLAMOSSÁGTANI ALAPJAI HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat ellenőizte Macsa Dániel, okl. villamosménök Széchenyi István

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ. 5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági

Részletesebben

462 Trigonometrikus egyenetek II. rész

462 Trigonometrikus egyenetek II. rész Tigonometikus egyenetek II ész - cosx N cosx Alakítsuk át az egyenletet a következô alakúa: + + N p O O Ebbôl kapjuk, hogy cos x $ p- Ennek az egyenletnek akko és csak akko van valós megoldása, ha 0 #

Részletesebben

INDUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MODELLEZÉSÉRE 3

INDUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MODELLEZÉSÉRE 3 Ráz Gábo 1 Veess Ápád INUKÁLT SEBESSÉGELOSZLÁS MEGHATÁROZÁSA ÉS ALKALMAZÁSA LÉGCSAVAROS REPÜLŐGÉP KÖRÜL KIALAKULT ÁRAMLÁS MOELLEZÉSÉRE A BME 4 Vasúti Jáműek, Repülőgépek és Hajók Tanszék munkatásai számos

Részletesebben

ÖSSZEFÜGGÉSEK A LINEÁRIS REGRESSZIÓS MODELLBEN

ÖSSZEFÜGGÉSEK A LINEÁRIS REGRESSZIÓS MODELLBEN MÓDSETANI TANULMÁNOK ÖSSEFÜGGÉSEK A LINEÁIS EGESSIÓS MODELLBEN D HAJDU OTTÓ A tanulmány a lineáis egessziós modell alavető mutatóit tágyala E mutatókat egymásból vezeti le olymódon hogy azok statisztikai

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Utak és környezetük tervezése

Utak és környezetük tervezése Dr. Fi István Utak és környezetük tervezése 3A előadás: Vonalvezetési elvek Vonalvezetési elvek Vonalvezetés az útvonalat alkotó egyenesek és ívek elrendezése. A vonalvezetés ismérve az ívesség (I) (lásd

Részletesebben

4. Előadás A mátrixoptika elemei

4. Előadás A mátrixoptika elemei 4. Előadás A mátixoptika elemei Amiko optikai endszeek elemeinek pozicionálását tevezzük, a paaxiális optika eszközeie támaszkodunk. Fénysugaak esetében ez az optikai tengelyhez közeli, azzal kis (< 5º)

Részletesebben

Mobilszerkezetek mechatronikája

Mobilszerkezetek mechatronikája Mobilszekezetek mechatonikája A közeljövő új navigációs endszeei Ütközés-megelőzés Kocsi követés Automatikus pakolás Ütközés-megelőzés Az adaptív menetvezélés (ACC egyik alapvető feltétele a jámű megfelelő

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény

Részletesebben

A kerék-sín között fellépő Hertz-féle érintkezési feszültség vizsgálata

A kerék-sín között fellépő Hertz-féle érintkezési feszültség vizsgálata A keréksín között fellépő Hertzféle érintkezési feszültség vizsgálata közúti vasúti felépítmények esetében Dr. Kazinczy László PhD. egyetemi docens i Műszaki és Gazdaságtudományi gyetem, Út és Vasútépítési

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN

A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN FRÖHLICH GEORGINA Eötvös Loánd Tudományegyetem Temészettudományi Ka Fizika, Csillagász szak Témavezető: D. Édi Bálint tanszékvezető egyetemi taná

Részletesebben

Az összefüggések egyszerűsítése érdekében az egyes parciális derivált jelölések helyett ú jelöléseket vezetünk be az alábbi módon:

Az összefüggések egyszerűsítése érdekében az egyes parciális derivált jelölések helyett ú jelöléseket vezetünk be az alábbi módon: Konzevatív eőteek A fizikában kiemelt szeepet játszanak az úgynevezett konzevatív eőteek. Ezek a klasszikus mechanikában fontosak, bá ott inkább csak kivételt képeznek. iszont az elektomágnesesség, illetve

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív

Részletesebben

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez lméleti összefoglaló a I. éves vegyészhallgatók oláis molekula dipólusmomentumának meghatáozása című mééséhez 1.1 ipólusmomentum Sok molekula endelkezik pemanens dipólus-momentummal, ugyanis ha a molekulát

Részletesebben

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

A gúla ~ projekthez 2. rész

A gúla ~ projekthez 2. rész 1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

A FÖLD PRECESSZIÓS MOZGÁSA

A FÖLD PRECESSZIÓS MOZGÁSA A ÖLD PRECEZIÓ MOZGÁA Völgyesi Lajos BME Általános- és elsőgeodézia Tanszék A öld bonyolult fogási jelenségeinek megismeéséhez pontos fizikai alapismeetek szükségesek. A fogalmak nem egységes és hibás

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Szuszpenziók tisztítása centrifugálással

Szuszpenziók tisztítása centrifugálással Szuszpenziók tisztítása centiugálással Vegyipai mveletek labogyakolat 1. Elméleti bevezető A centiugálás mvelete a centiugális eőté kihasználásán alapuló hidodinamikai szepaációs mvelet. A centiugális

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

dr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = ["#,#]

dr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = [#,#] Gömbszimmetikus, M tömegű test köüli téidő vákuumban: 1) Vákuum: T " = 0 2) Ügyes koodinátaendsze-választással ki lehet használni a gömbszimmetiát. Az Einstein-egyenlet analitikusan is megoldható, a megoldás,

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

A rugalmassággal kapcsolatos gondolatmenetek

A rugalmassággal kapcsolatos gondolatmenetek A ugalmassággal kapcsolatos gondolatmenetek Az igen szeteágazó, ugókkal kapcsolatos ezgési és sztatikus poblémák közül néhányat tágyalunk gondolkodás módszetani szempontok bemutatásáa. A ugó poblémák az

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!

Részletesebben

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q 1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben