MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához! a 1) Egy 2) számsorozatról a következőket tudjuk: - a harmadik tagtól kezdve mide tag kiszámítható a következő rekurzív képlet segítségével: ; - az a 1, a 2 és a 9a 3 1 a a 12a 1 2 ebbe a sorredbe egy számtai sorozat 3 egymást követő tagja; sorozat első öt tagjáak összege 682. a - az Mekkora eek a számsorozatak a hatodik tagja? a) Legye a (16 pot) egy mértai sorozat, melyek első tagja 5, háyadosa 3. Meyi a valószíűsége, hogy ha eek a mértai sorozatak az első 110 tagjából egyet véletleszerűe kiválasztuk, akkor a kiválasztott tag 11- gyel osztva 1 maradékot ad? b) Legye egy számtai sorozat, amelyek az első tagja 5, és b differeciája 3. Mekkora a valószíűsége, hogy ha eek a számtai sorozatak az első 110 tagjából egye kiválasztuk, akkor a kiválasztott tag 11-gyel osztva 1 maradékot ad? (7 pot) 3) Egy pozitív tagokból álló mértai sorozat első három tagjáak összege 26. Ha az első taghoz egyet, a másodikhoz hatot, a harmadikhoz hármat aduk, akkor ebbe a sorredbe egy számtai sorozat első három tagját kapjuk. Adja meg eek a számtai sorozatak az első három tagját! (14 pot) 4) Legye pozitív egész. Adottak az alábbi sorozatok: a b c, ahol, ahol, ahol a 2 2 b 23 10 c si cos 2 2 ; ; Vizsgálja meg midhárom sorozat korlátosság és mootoitás szempotjából! Válaszoljo midhárom esetbe, hogy a sorozat korlátos vagy em, illetve mooto vagy em! (Válaszát idokolja!) Korlátos esetbe adjo meg egy alsó és egy felső korlátot! (16 pot) 2. - 1 -
5) Egy bak a Godoskodás evű megtakarítási formáját ajálja újszülöttek családjáak. A megtakarításra vállalkozó családok a gyermek születését követő év első baki apjá számlát yithatak 100000 forit összeggel. Mide következő év első baki apjá szité 100000 foritot kell befizetiük a számlára. Az utolsó befizetés aak az évek az első apjá törtéhet, amely évbe a gyermekük betölti 18. életévét. A bak év végé a számlá lévő összeg utá évi 8%-os kamatot ad, amit a következő év első baki apjá ír jóvá. A gyermek a 18. születésapját követő év első baki apjá férhet hozzá a számlához. a) Mekkora összeg va ekkor a számlá? A válaszát egész foritra kerekítse! (8 pot) A gyermek a 18. születésapját követő év első baki apjá felveheti a számlájá lévő teljes összeget. Ha em veszi, választhatja a következő lehetőséget is: Hat éve keresztül mide év első baki apjá azoos összeget vehet fel. Az első részletet a 18. születésapját követő év első baki apjá veheti fel. A hatodik pézfelvétellel a számla kiürül. Ha ezt a lehetőséget választja, akkor a bak az első pézfelvételtől számítva mide év végé a számlá lévő összeg utá évi 5%-os kamatot garatál, amit a következő év első baki apjá jóváír. b) Ebbe az esetbe mekkora összeget vehet fel alkalmakét? A válaszát egész foritra kerekítse! (8 pot) 6) Az a mértai és b 1 orozat hatodik tagja. számtai sorozatak is 1 az első tagja, és midkét a) Sorolja fel midkét sorozat első öt tagját! (4 pot) b) Milye pozitív egész -ekre lesz a két sorozat első tagjáak összege ugyaakkora? (9 pot) 7) Egy mértai sorozat első három tagjáak összege 91. A hatodik, hetedik és a yolcadik tag összege 2912. Háy tizehárom-jegyű tagja va a sorozatak? (13 pot) 8) A főiskolások műveltségi vetélkedője a következő eredméyel zárult. A verseye iduló égy csapatból a győztes csapat potszáma 4 3 -szorosa a második helye végzett csapat potszámáak. A egyedik, harmadik és második helyezett potjaiak száma egy mértai sorozat három egymást követő tagja, és a egyedik helyezettek 25 potja va. A égy csapat között kiosztott potszámok összege 139. a) Határozza meg az egyes csapatok által elért potszámot! (8 pot) Mid a égy csapatak öt-öt tagja va. A vetélkedő utá az iduló csapatok tagjai között három egyforma értékű köyvutalváyt sorsolak ki(mideki legfeljebb egy utalváyt yerhet). b) Mekkora a valószíűsége aak, hogy az utalváyokat három olya főiskolás yeri, akik midhárma más-más csapat tagjai? (5 pot) - 2 -
9) Két egyees hasábot építük, H1-et és H2-t. AZ építéshez haszált égyzetes oszlopok (égyzet alapú egyees hasábok) egybevágok, magasságuk kétszer akkora, mit az alapélük. A H1 hasáb építésekor a szomszédos égyzetes oszlopokat az oldallapjukkal illesztjük össze, a H2 hasáb építésekor pedig a égyzet alaplapjukkal- az ábra szerit. a) A H1 és H2 egyees hasábok felszíéek háyadosa A A H1 H2 0,8. Háy égyzetes oszlopot haszáltuk az egyes hasábok építéséhez, ha H1-et és H2-t ugyaayi égyzetes oszlopból építettük fel? (8 pot) b) Igazolja, hogy korlátos! 3 2 4 1 sorozat szigorú mooto övekvő és (8 pot) 10) a) Egy derékszögű háromszög oldalhosszai egy számtai sorozat egymást követő tagjai, a legrövidebb oldala 4 egység hosszú. Számítsa ki a háromszög másik két oldaláak hosszát! (5 pot) b) Egy háromszög oldalhosszai egy számtai sorozat egymást követő tagjai, a legrövidebb oldala 4 egység hosszú. Tudjuk, hogy a háromszög em szabályos. Igazolja, hogy a háromszögek ics 60 -os szöge! (11 pot) 11) Egy övekvő számtai sorozat első három tagjáak összege 60. Az első tagot 64-gyel övelve, a másik két tagot változatlaul hagyva, egy mértai sorozat első három tagjához jutuk. Meyi a két sorozat első három tagja? (13 pot) 12) Péter agypapája mide évbe félretett émi pézösszeget egy perselybe uokája számára. 5000 Ft-tal kezdte a takarékoskodást 1996. jauár 1-jé. Ezutá mide év első apjá hozzátett az addig összegyűlt összeghez, mégpedig az előző évbe félretettél 1000 Ft-tal többet. 2004. jauár 1-jé a agypapa bele tette a perselybe a megfelelő összeget, majd úgy dötött, hogy a perselyt most uokájáak most adja át. a) Mekkora összeget kapott Péter? (5 pot) b) Péter agypapája ajádékából vett éháy apróságot, de elhatározta, hogy a kapott összeg agyobb részét 2005. jauár 1.-jé bakszámlára teszi. Be is tett 60000 Ft-ot évi 4%-os kamatos kamatra (a kamatok mide évbe, év végé hozzáadódak a tőkéhez). Legalább háy évig kell Péterek vária, hogy a számlájá legalább 100000 Ft legye úgy, hogy közbe em fizet be erre a számlára? (9 pot) 13) A Robotvezérelt Elektromos Kisautók Nemzetközi Verseyé a verseyzők akkumulátorral hajtott modellekkel idulak. A magyar verseyautó az első órába 45 kilométert tesz meg. Az akkumulátor teljesítméyéek csökkeése miatt az autó a második órába kevesebb utat tesz meg, mit az első órába, a harmadik órába kevesebbet, mit a másodikba, és így tovább: az idulás utái -edik órába megtett útja midig 95,5%-a az 1 -edik órába megtett útjáak ( és 1). a) Háy kilométert tesz meg a 10. órába a magyarok verseyautója? Válaszát egész kilométerre kerekítve adja meg! (4 pot) - 3 -
14) A verseye több kategóriába lehet iduli. Az egyik kategória verseyszabályai lehetővé teszik az akkumulátorcserét versey közbe is. A magyar csapat mérökei kiszámították, hogy abba az órába még em érdemes akkumulátort cseréli, amelyikbe az autó legalább 20 km-t megtesz. b) Az idulástól számítva legkorábba háyadik órába érdemes akkumulátort cseréli? A Végkimerülés kategóriába a résztvevők azo verseyezek, hogy akkumulátorcsere és feltöltés élkül mekkora utat tudak megtei az autók. A világrekordot egy japá csapat járműve tartja 1100 km-rel. c) Képes-e megdötei a magyar verseyautó a világrekordot a Végkimerülés kategóriába? a) Egy bak olya hitelkostrukciót ajál, amelybe api kamatlábat számolak úgy, hogy az adott hitelre megállapított éves kamatlábat 365- tel elosztják. Egy adott évbe a hitelfelvételt követőe mide apra kiszámolják a api kamat értékét, majd ezeket december 31-é összeadják, és csak ekkor tőkésítik (azaz a felvett hitel értékéhez adják). Ez a bak egy adott évbe évi 8%-os kamatlábat állapított meg. Éva abba az évbe a március 1-jé felvett 40 000 Ft utá október 1-jé újabb 40 000 Ft hitelt vett fel. A két kölcsö felvétele utá meyi kamatot tőkésít a bak december 31-é? (A hitelfelvétel apjá és az év utolsó apjá is számítaak api kamatot.) (5 pot) b) Ádám is vett fel hiteleket ettől a baktól évi 8%-os kamatos kamatra. Az egyik év jauár 1-jé éppe 1 000 000 Ft tartozása volt. Több hitelt em vett fel, és attól kezdve 10 éve keresztül mide év végé befizette az azoos összegű törlesztőrészletet. (A törlesztőrészlet összegét a bak már az éves kamattal megövelt tartozásból voja le.) Mekkora volt ez a törlesztőrészlet, ha Ádám a 10 befizetés utá teljese visszafizette a felvett hitelt? Válaszát ezer foritra kerekítve adja meg! (9 pot) 15) Egy 1 méter oldalú égyzetbe egy második égyzetet rajzoltuk úgy, hogy a belsőégyzet mide csúcsa illeszkedje a külső égyzet egy-egy oldalára. A belső és a külső égyzet oldalaiak aráya 5:7. a) Milye aráyba osztja két részre a belső égyzet csúcsa a külső égyzet oldalát? Az aráy potos értékét adja meg! (10 pot) A belső égyzetbe egy újabb, harmadik égyzetet rajzoluk úgy, hogy a harmadik és a második égyzet oldalaiak aráya is 5:7. Ezt az eljárást aztá godolatba végtele sokszor megismételjük. b) Mekkora lesz a kapott égyzetek kerületeiek az összege, ha a kiidulási égyzet kerülete is tagja a (végtele sok tagú) összegek? - 4 -
16) Az ABCDEF szabályos hatszögbe a rövidebb átló hossza 5 2. a) Számolja ki a hatszög területéek potos értékét! b) Az ABCDEF hatszög oldalfelező potjai által meghatározott szabályos hatszög területét jelölje, a területű hatszög oldalfelező potjai által meghatározott szabályos hatszög területét a t t 1 t 1 sorozatot. Számítsa ki a értékkel számoljo!) t 2 lim t1 t2... t, és így tovább, képezve ezzel határértékét! (Potos (10 pot) 17) Kiga 10. születésapja óta kap havi zsebpézt a szüleitől. Az első összeget a 10. születésapjá adták a szülők, és mide hóapba 50 Ft-tal többet adak, mit az azt megelőző hóapba. Egy bizoyos hóapba, amikor éppe 1850 Ft volt a havi zsebpéze, összeadta az addig kapott összes zsebpézét. Az összeg 35100 Ft lett. Meyi volt Kiga iduló zsebpéze, és háy hóap telt el a 10. születésapja óta? (12 pot) 18) Egy dolgozó az év végi prémiumkét kapott kamatoztati a következő yárig, hat hóapo át. Két kedvező ajálatot kapott. Vagy kéthavi lekötést választ kéthavi 1,7%-os kamatra, kéthavokéti tőkésítés mellett, vagy foritot átváltja euróra, és az összeget havi 0,25%-os kamattal köti le hat hóapra, havi tőkésítés mellett. a) Meyi péze lee hat hóap utá a foritszámlá az első esetbe? (Az eredméyt Ft-ra kerekítve adja meg!) (3 pot) b) Ha ekkor éppe 252 foritot ért egy euró, akkor háy eurót vehete fel hat hóap múlva a második ajálat választása eseté? (Az eredméyt két tizedesjegyre kerekítve adja meg!) (4 pot) c) Legalább háy százalékkal kellee változia a 252 forit/euró árfolyamak a félév alatt, hogy a második választás legye kedvezőbb? (Az eredméyt két tizedesjegyre kerekítve adja meg!) (5 pot) 1000000 Ft-ját akarja 19) Adrás edzőtáborba készül egy úszóverseyre, 20 apo át. Azt tervezte, apota 10000 métert úszik. De az első apo a tervezettél 10%-kal többet, a második apo pedig az előző apiál 10%-kal kevesebbet teljesített. A 3. apo ismét 10%-kal övelte előző api adagját, a 4. apo 10%-kal kevesebbet edzett, mit az előző apo és így folytatta, páratla sorszámú apo 10%-kal többet, pároso 10%-kal kevesebbet teljesített, mit a megelőző apo. a) Háy métert úszott le Adrás a 6. apo? (4 pot) b) Háy métert úszott le összese a 20 ap alatt? c) Az edzőtáborozás 20 apjából véletleszerűe kiválasztuk két szomszédos apot. Mekkora a valószíűsége, hogy Adrás e két apo együttese legalább 20000 métert teljesített? - 5 -
20) Egy övekvő számtai sorozat első három tagjából álló adathalmaz szóráségyzete 6. a) Igazolja, hogy a sorozat differeciája 3-mal egyelő! (4 pot) Adrás, Barbara, Cili, Dezső és Edit rokook. Cili 3 évvel idősebb Barbaráál, Dezső 6 évvel fiatalabb Barbaráál, Edit pedig 9 évvel idősebb Ciliél. Dezső, Barbara és Edit életkora (ebbe a sorredbe) egy mértai sorozat három egymást követő tagja, Adrás, Barbara és Cili életkora (ebbe a sorredbe) egy számtai sorozat három szomszédos tagja. b) Háy éves Adrás? Adrás, Barbara, Cili, Dezső, Edit és Feri moziba meek. c) Háyféleképpe foglalhatak helyet hat egymás melletti széke úgy, hogy a három láy e három egymás melletti széke üljö? 21) Állítsuk a pozitív egész számokat övekvő sorredbe, majd botsuk redre 1- gyel övekvő elemszámú csoportokra, az alábbi módo kezdve: 1, 2;3, 4;5;6, 7;8;9;10,... a) A 100-adik csoportak melyik szám az első eleme? (5 pot) b) Az 1851 háyadik csoport háyadik eleme? (9 pot) - 6 -