Jelek spektruma, Fouriertranszformáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Jelek spektruma, Fouriertranszformáció"

Átírás

1 Jelek spektruma, Fouriertranszformáció Horváth Árpád 04 október 7 Tartalomjegyzék Harmónikus jel és a szögfüggvények lapismeretek Fourier-sor 7 Trigonometrikus alakban 8 Exponenciális alakban 3 Fouriertranszformáció 6 3 z M modulált jel spektruma 9 3 Diszkrét Fouriertranszformáció (DFT) 4 jelek csoportosítása 4 Fellegi József anyagának felhasználásával Spektrum vagy színkép, a frekvenciatartománybeli alak: milyen szinuszos jelekb l tudom összerakni Ennek tanulmányozására ajánlott a oldal Pár feladat, amit megoldhatunk vele: Hogyan lehet egy jel összetev it meghatározni? Hogyan torzul a négyszögjel, ha egy vezetéken (=alulátereszt sz r n) küldöm át? 3 Milyen kapcsolat van a jel spektruma és a modulált jel spektruma között? 4 Hangok és képek igen jelent s (veszteséges) tömörítése Harmónikus jel és a szögfüggvények Tanulmányozzuk el ször a harmónikus jeleket

2 Harmónikus jel fogalma Denició Harmónikus jelnek nevezzük azokat a jeleket, amelyek felírhatóak alakban f(t) = sin(t + ϕ 0 ) Tulajdonképpen ezek a szinuszfüggvény középiskolában tanult transzformáltjai (eltoltjai, nyújtottjai az egyes tengelyek mentén) Tétel Minden harmónikus jel felírható alakban is megfelel a, b valós számokkal f(t) = a cos t + b sin t Keressük meg a kapcsolatot a (, ϕ 0 ) és a (a, b) valós számpárok között! El ször ismételjük át, amit a szögfüggvényekr l tudni kell! Szükséges alapismeretek ismétlése radián értelmezése, átváltása rad r α = rad i = r r α = π rad i = kerület = rπ α rad = i r α rad π = α fok 80 szögfüggvények változójaként a radiánban mért szöget szoktuk használni radián értéke kellemetlen olyan szempontból, hogy a nevezetes szögeket irracionális számként (π többszöröseként) adhatjuk meg fokra való átváltás viszont nem jelent gondot, ha megjegyezzük azt hogy a teljes szög, a 80, π radiánnal egyenl Ilyenkor aránypár felírásával bármelyik irányban könnyen átszámolhatunk Példák az átváltásra példa Váltsuk át az alábbi radián-értékeket fokba! π 3 rad, π 4 rad, 3π 4 rad, 3π rad, rad, 3,4 rad,,5 rad

3 példa Váltsuk át az alábbi fok-értékeket radiánba! 90, 300, 5, 0, 4,6 3 példa Egy r = 0 cm sugarú körben mekkora a 3 radiános központi szöghöz tartozó ívhossz? Megoldások: példa példa 60, 45, 35, 70, 57,30 80, 43,, π rad, 0π 6 rad, π rad, π 9 rad, rad 3 példa 60 cm Szögfüggvények, szinusz függvény sin és cos szögfüggvényeket adott irányszög egységvektor koordinátáiként deniáljuk y y = sin α α cos α sin α x π 6 π 6 π π α fázisszög az id során változik, a változási gyorsaságát jellemezhetjük a villanytanból már ismert körfrekvenciával = 00πrad/s 34 rad s esetén a fázisszög minden másodpercben 00π radiánnal növekszik teljes körhöz tartozó bels szög, a teljes szög, π radián, mivel a kör kerülete π-szerese a sugárnak Tehát az = 00πrad/s esetén másodpercenként 50 teljes kört teszek meg a forgóvektorral, azaz másodpercenként 50 teljes periódust ír le a függ leges vetületeként kapott szinuszfüggvény teljes körök másodpercenkénti számát jellemzi a frekvencia, amely eszerint a radiánok számának π-ed része periódusid az az id, ahonnan a jel ismétl dik Nyilván ez a forgóvektor teljes körének megtétele után történik meg Ha frekvencia 50 /s, azaz másodpercenként 50 teljes kört ír le a forgóábra, akkor a periódusid a másodperc 50-ed része: 00 s = 0 ms Jelen esetben tehát: = 00π rad s f = π = 50 = 50 Hz T = 0 ms s 3

4 Ez egyébként épp az európai elektromos hálózatban használt körfrekvencia, frekvencia és periódusid híradástechnikában ennél jóval nagyobb körfrekvencia-értékekkel találkozunk általában forgóvektor y y = sin(t + ϕ 0 ) ϕ(t) sin ϕ x T 4 T t harmónikus jeleket egy-egy forgó vektor vetületeként kaphatjuk meg (Mi a függ leges összetev t fogjuk vizsgálni, de más irodalomban el fordul a vízszintes összetev is) Nulla kezd fázis esetén a jel nulla értékr l indul pozitív irányba mennyiben nem ez a helyzet, az összetev t valamilyen ϕ 0 kezd fázissal jellemezhetjük kés bbiek során a vektor irányát jellemz ϕ irányszög az id vel arányosan változik: ϕ(t) = t + ϕ 0 ( ϕ utáni zárójelben lev t azt jelzi, hogy a fázisszög értéke az id ben változik, matematikus szóhasználattal az id függvénye képlet jobb oldalán tehát csak a t a változó, a másik kett érték, a harmónikus jelre jellemz állandó, más néven paraméter) fenti ábrán a kezd fázis π/6, azaz 30 Mint látható, az érték lesz a kitérés amplitúdója csúcstól csúcsig érték pedig korábbi tétel igazolásához bontsuk a t = 0 pillanatban a vektort két részre, a két tengely menti összetev jére két összetev nagyságát jelölje a és b az ábrán látható módon (Figyelem, az a és b helye itt fordított, mint a komplex számok a + bj algebrai alakjában) cos és sin összetev k (t = 0) 4

5 y a ϕ 0 b x Vizsgáljuk meg a vektor és az összetev i helyzetét, amikor kissé arrébb fordultak cos és sin összetev k (t 0) y f(t) =? t + ϕ 0 x z f(t) értékét könnyen kiszámíthatjuk egy szögfüggvény alkalmazásával, mivel a szöggel szemközti oldal a kérdéses, és az átfogó ismert: ezek a szinuszban szerepelnek f(t) = sin(t + ϕ 0 ) (Ha összeg van a szinusz után, azt mindig zárójelbe tesszük) Most vizsgáljuk meg, hová kerültek az a és b szakaszok, és mekkora a vetületük! cos és sin összetev k (t 0) 5

6 y a a =? f(t) = sin(t + ϕ 0 ) t f(t) t b b =? x f(t) = a + b f(t) = a cos t + b sin t fenti ábrából megállapítható, hogy a vetületük a = a cos t, illetve b = b sin t Ezek összege éppen a keresett f(t) = sin(t + ϕ 0 ) Ezt mondta ki a korábbi tétel kétféle írásmód közül néha az egyik, néha a másik kellemesebb illetve hasznosabb Példa Hogyan tudunk áttérni az egyik féle írásmódból a másikba? (a, b) és a (, ϕ) valós számpárok között? Másképpen milyen kapcsolat van a Összefüggés (a, b) és (, ϕ) között y = a + b tg ϕ 0 = a/b a = sin ϕ 0 b = cos ϕ 0 kapott eredmények fontosak, a de inkább az ábráról való ϕ 0 leolvasásukat érdemes x b megjegyezni, mint a végeredményeket Vegyük észre! hhoz, hogy a szakirodalomban megszokott jelöléseket használhassuk (a a koszinusz, b a szinusz együtthatója), az a és b helyét fordítva kell megválasztanunk, mint a komplex számok algebrai alakjánál! Különösen a szög kiszámításánál hasznos a síknegyed-helyes ábra, ugyanis a tangens nem tesz különbséget a 80-fokkal eltér szögek között, azaz az I és III valamint II és IV síknegyed között Ilyenkor az arkusztangenssel kapott szöghöz a III és IV (alsó) síknegyedekben 80 hozzáadandó 6

7 kés bb említend matematikai programokban a szögek számításához érdemes az atan (octave, MTLB) illetve arctan (pylab) függvényeket használni Példák az átváltásra példa Határozzuk meg az a és b értéket 4 értékes jegy pontossággal, = 6 V, ϕ 0 = π/3 példa f(t) = 4 V sin t + 3 V cos t = sin(t + ϕ 0 ) esetén határozzuk meg és ϕ 0 értékét négy értékes jegyre 3 példa esetén ugyanez f(t) = 4 V sin t + 3 V cos t Megoldások: példa csupán és 3 képletet kell alkalmazni a = 3 3 V 5,96 V, b = 3 V négy értékes jegy azt jelenti, hogy az els nem nulla számjegyt l négy jegyet hagyunk meg második esetben írhattunk volna 3,000 értéket, amit a mérnöki gyakorlatban alkalmaznak is, ha az adat pontosságát szeretnék hangsúlyozni Mérnöki gyakorlatban ugyanis nincsenek abszolút pontos mérhet mennyiségek, minden mérés csak valamilyen mérési pontossággal értend példa csupán és képletet kell alkalmazni = 5 V, ϕ 0 = arctg 3/4 = 0,6435 rad = 36,87 3 példa feladatmegoldás menete hasonló z arctg-re negatív értéket kapunk z ábrát felrajzolva kit nik, hogy a III (jobb alsó) síknegyedben van az vektorunk (t = 0-ban), tehát a értékhez 80 fokot hozzá kell adnunk: arctg( 3/4) = 0, 6435 rad = 36,87 ϕ 0 = π + arctg( 3/4) = π 0, 6435 rad =,498 rad = 80 36,87 = 43,3 Fourier-sor Fourier-sorbafejtés mint már említettük a jelek felbontását jelenti harmónikus jelekre sorbafejtés során egy végtelen sor összegeként kapjuk meg a függvényt sorbafejtés csak periódikus függvények esetén lehetséges nem periódikus jelek esetén, más módszerre lesz szükség Fourier-sort kétféle alakban szokás megadni két alak a komlex számok két alakjával a trigonometrikus és az exponenciális alakkal van kapcsolatban Mindkét alaknak vannak el nyei, ezért mindkett t és kapcsolatukat is tárgyaljuk 7

8 Trigonometrikus alakban Fourier-sor Periodikus jelekre m ködik f(t + T ) = f(t) Trigonometrikus alak: x(t) = a 0 +a cos( 0 t) + a cos( 0 t) + +b sin( 0 t) + b sin( 0 t) + = = a 0 + (a k cos(k 0 t) + b k sin(k 0 t)) k= 0 = πf 0 = π T () z együtthatók kiszámítása a Scharnitzky Viktor: Vektorgeometria és lineáris algebra cím könyvben (Nemzeti Tankönyvkiadó Rt, Bp, 999) részletesen benne van négyszögjel spektruma f(t) t T x(t) = { ha t ]0, T [ ha t ] T, 0[ x(t + T ) = x(t) Páratlan függvényekben csak szinuszos tagok vannak (a k = 0) Páros függvényekben csak koszinuszos tagok vannak (b k = 0) (k = ) négyszögjel spektruma, trigonometrikus Páratlan függvényekben csak tagok, páros függvényekben csak tagok vannak x(t) = 4 ( sin( 0 t) + sin(3 0t) + sin(5 ) 0t) + π 3 5 x(t) = 4 π k=,3,5, sin(k 0 t) k 8

9 b = 4 π, b 3 = 4 3 π, b 5 = 5 4 π, b 7, b 9 z a k -k és a páros index b k -k nullák Ezt a sorbafejtést jegyezzük meg, a többi (50%-os kitöltési tényez j ) négyszögjel spektrumát ebb l ki tudjuk következtetni Ha az amplitudókat ábrázolom a frekvencia függvényében, akkor az alábbi ábrákat kapom: négyszögjel spektruma: trigonometrikus, b k b k b = 4/π, 7 b 3 = b /3 b 5 = b / b k 0 k páratlan négyszögjel spektruma: trigonometrikus, a k a k a 0 = 0 nincs egyenszint a k = 0 nincsenek koszinuszos tagok négyszögjel spektruma: trigonometrikus, amplitudó 9

10 k = a k + b k = 4/π, 7 3 = /3 5 = /5 0 = 0 nincs egyenszint Itt k = a k + bk = 0 + b k = b k = b k (k > 0) négyszögjel (áttérés másik négyszögjelre) x(t) = { 4 V ha t ]0, s[ 0 V ha t ] s, 0[ x(t + s) = x(t) z el z kétszeresét vesszük, és hozzáadunk kett t, és az 0 értéket is meghatározzuk 0 = πf = π T = π rad = π s s négyszögjel spektruma x(t) = V + 8 ( π V sin( 0 t) + sin(3 0t) + sin(5 ) 0t) x(t) = V + 8 π V k=,3,5, sin(k 0 t) k 0 = π rad s 0

11 a 0 = V; b = 8 π V, b 3 = 3 8 π V, b 5 = 5 8 π V négyszögjel spektruma: trigonometrikus, amplitudó k = a k + b k = 8/π,55 0 = egyenszint 3 = /3 5 = / Itt k = b k, ha k, 0 = a 0 Fourier-részösszeg MTLB-ban és Octave-ban x = linspace(-pi, pi, 04) y = zeros(, 04) for k=::5 %, 3, 5 y += sin(k*x)/k end plot(x, 4/pi*y) title('négyszögjel Fourier-sora 5 tag') savefig('fourier5png') MTLB nagytudású kereskedelmi szoftver, mely mártixm veletekben és több más m szaki és tudományos területen kíváló lehet ségekkel rendelkezik Ingyenesen sajnos nem tölthet le z Octave a MTLB szabad szoftver változata tudása kisebb mint a MTLB-é, de a mátrixm veleteket és függvényábrázolást képes hasonlóan elvégezni Fourier-részösszeg Python3-ban from pylab import * x = linspace(-pi, pi, 04) y = 0 for k in range(,6,): #, 3, 5 y += sin(k*x)/k plot(x, 4/pi*y) title('négyszögjel Fourier-sora 5 tag')

12 savefig('fourier5png') show() Mint látjuk csak a pylab modult kell plusszban behívni, és a ciklus átírni Pythonosra Python általános célú nyelv, nem a matematikára van kihegyezve, ezért a matematika terén néha bonyolultabban kezelhet, mint a MTLB Ezért viszont több dolog kárpótolhat: a rendkívül kézreálló szintaktikája, ingyenessége, az, hogy Linux disztribúciókban alapból települ Szintén el nye a rengeteg szintén ingyenes modul Többek közt a fent bemutatott pylab modul a matplotlib csomagból Pylab telepítése: Python oktató (tutorial): ki még nagyobb tudású szabadon használható szoftvert szeretne, érdemes megismerkednie a SGE-dszel, amely részeként szintén használható a pylab Ezt akár telepítve is használhatjuk, de lehet ség van a honlapján regisztrálva a honlapon keresztül használni Fourier-sor exponenciális alakban Két fontos összefüggés cos és sin exponenciális alakja cos t = e jt + ejt sin t = j e jt j ejt j a képzetes egység (szokásos mérnöki jelölésmódja) j = z e z jelölés helyett gyakran az exp(z) jelölés használatos: cos t = exp( jt) + exp(jt) ( levezetést nem kell tudni, egyébként a következ összefüggésb l kiindulva megkapható az exponenciális alak: e jt = exp(jt) = cos t + j sin t () El ször a e jt értékét kell meghatározni el jeleket, a sin mivel páratlan nem Ehhez tudni kell, hogy a cos páros függvény lévén elnyeli az Ha e jt és e jt összegét illetve különbségét vesszük, akkor csak a cos illetve sin marad meg, átrendezéssel a fenti képletek megkaphatóak) Exponenciális alakban a Fourier-sorban szinuszok és koszinuszok helyett exponenciális függvények szerepelnek Mint láttuk a szinusz és koszinusz függvényt át lehet írni exponenciális függvények összegére Mindegyikb l két tag lesz, ami újdonság, hogy megjelennek a negatív (kör)frekvenciák (exp( j 0 t)) z együtthatók ilyenkor komplexek lesznek: a koszinuszból lesz a valós rész, a szinuszból a képzetes rész Nehezen tudjuk a frekvencia függvényében ábrázolni mindkét összetev t, ezért gyakran az abszolut értéket szoktuk

13 komplex számok bevezetésével a matematikai formulák egyszer bbek lesznek, és ezen keresztül vezet az út az általánosításhoz z alábbi alakban az X 0 együtthatójú rész exponenciális részének kitev je nulla lesz, az eggyel való szorzás elhagyható Ez lesz az egyen-összetev (X 0 = a 0 ) z els sorban vannak a pozitív frekvenciás tagok, a harmadikban pedig a negatív frekvenciásak z el jelet az el l kivittük a j elé az egyszer ség kedvéért Exponenciális alakban x(t) = X exp(j 0 t) + X exp(j 0 t) + X 3 exp(j3 0 t) + (3) + X 0 + X exp( j 0 t) + X exp( j 0 t) + X 3 exp( j3 0 t) + rövid alakja: e jt = exp( jt) = cos t j sin t (4) x(t) = + X k exp(jk 0 t) (5) k= STOP Határozzuk meg trigonometrikus és exponenciális alakban az együtthatók értékét (a k, b k, X k )! x(t) = sin( 0 t) (7) és 0 valós szám érték zikai mennyiségek x(t) = sin( 0 t) = j exp(j 0t) + j exp( j 0t) (8) Trigonometrikus alakban b = Exponenciális alakban X = j, X = j k > egészek esetén a k, b k, X k és X k mind nulla STOP Határozzuk meg mindkét alakban a Fourier-együtthatók értékét (a k, b k, X k )! Határozzuk meg az alapfrekvencia, alap-körfrekvencia és periódusid értékét! ( x(t) = 40 V cos 777 rad ) s t + 77 V nullától különböz Fourier-együtthatók: a 0 = X 0 = 77 V, a = 40 V, X = X = a = 0 V z alap-körfrekvencia, alapfrekvencia és periódusid értékei: STOP 0 = 777 rad s, f 0 = 0 π = 3, 7 Hz, T = 8, 086 ms Határozzuk meg mindkét alakban a Fourier-együtthatók értékét (a k, b k, X k )! Határozzuk meg az alapfrekvencia, alap-körfrekvencia és periódusid értékét! ) ) x(t) = 80 V cos ( 34 rad s t + V sin ( 68 rad s t + 3 V 3

14 Remélhet leg ez már önállóan is menni fog Csak két együtthatót példaképpen: X = 6j V, X = 6j V (Ha az x(t) jel valós érték, akkor minden k indexre X k és X k egymás konjugáltjai Szinuszból két képzetes érték, koszinuszból két valós érték lesz) Áttérés a trigonometrikus és exponenciális ( alak között a a cos(t) + b sin(t) = + jb ) ( a e jt + jb ) e jt feladat Igazoljuk a fenti összefüggést! feladat Hogyan számolhatjuk az X és X együtthatókat és a és b együtthatókat egymásból? 3 feladat Milyen kapcsolat lesz és X között? Megoldások: feladat X = a + jb, X = a jb, a = Re(X ), b = Im(X ) Re és Im a komplex szám valós és képzetes része 3 feladat X = a jb (a ( ) b ) = + = a + b = fenti eredmények alapján elég könnyen át tudjuk alakítani egymásba a kétfajta Fourier-sort z egyenszinttel semmi gondunk sincs: a 0 = X 0 = 0 valós szám lesz z a k cos(k 0 t) + b k sin(k 0 t) alakú többi összetev t pedig a fenti képlettel át tudjuk alakítani exponenciális alakba, meg tudjuk határozni az X k és X k együtthatókat Másik irányba pedig az X k értékéb l meg tudjuk határozni mind az a k és b k együtthatókat 4 feladat Mi lesz X 5 ha X 5 = 4 3j? 5 feladat Mekkora X 5, a 5, b 5 és 5, ha X 5 = 4 3j? 6 feladat Milyen függvények esetén lesznek X k értékek valósak? 7 feladat Mit lehet mondani az X k, a k és b k értékekr l, ha a függvény páratlan? 4

15 Megoldások: 4 feladat: 4 + 3j, mivel a korábbi képletb l látható, hogy az ellentett index tagok egymás konjugáltjai (képzetes részük ellentettje egymásnak) 5 feladat: X 5 = = 5, 5 ennek kétszerese, 0 a 5 = ReX 5 = 4 = 8, b 5 = ImX 5 = 3 = 6, 5 = a 5 + b 5 = 0 z utolsó számítással immár kétféleképp is kiszámoltuk 5 -öt 6 feladat: Nyilván, ha csak a k együtthatók vannak, azaz csak koszinuszos tagok és egyenszint Ez pedig akkor van így, ha a függvény páros 7 feladat: páratlan függvényeknél csak szinuszos tagok vannak, nincs koszinuszos és egyenszint, emiatt a k = 0 minden lehetséges k-ra, b k értékeir l semmit nem tudunk, azok tetsz leges értékek lehetnek z X k -ra ez annyit jelent, hogy csak képzetes része lesz az együtthatóknak Ez a helyzet az els négyszögjelünkkel is négyszögjel spektruma, exponenciális Ezt már megállapítottuk korábban b = 4 π, b 3 = 4 3 π, b 5 = 4 5 π, b 7, b 9 z a k -k és a páros index b k -k nullák Mivel nincs egyenszint X 0 = 0 páros index X k -k nullák lesznek π, X 5 = j 5 π, = j π, X 3 = j 3 π, X 5 = j 5 π, X = a + j b = j π, X 3 = j 3 X = a j b négyszögjel spektruma: exponenciális, X k X 0 = 0 X k = X k = k, k > 0 X k X = = π 0,63 5 X 3 = X 3 X 5 = X X 0 = 0 nincs egyenszint 5

16 z ábra feletti összefüggések minden esetben érvényesek Ha ismerem a trigonometrikus alak k amplitúdóit, akkor minden esetben meghatározhatóak ilymódon az exponenciális alak komplex együtthatóinak abszolút értéke 3 Fouriertranszformáció (folytonos és diszkrét) Fouriersor csak periódikus jelekre használható Nem periódikus jeleknél a Fouriertranszformációt használjuk folytonos spektrum kialakítását az alábbi ábrán követjük nyomon négyszögjel spektrumát a már megvizsgáltuk Nézzük meg mi történik, ha a négyszögjel szélességének változtatása nélkül növeljük a periódusid t! Ha a periódusid t a végtelenségig növeljük (T, akkor egyetlen impulzust kapunk, amely már nem periódikus Mint az ábrán látható, ahogy a periódusid t növeljük, a diszkrét jel spektrumának tüskéi egyre közelebb lesznek egymáshoz, határértékben folyamatos jelet kapunk Kitér az alábbi ábra értelmezésére z alábbi ábra egyes soraiban egymás mellett láthatóak az összetartozó id tartománybeli és frekvenciatartománybeli ábrák Hogyan értelmezzük, hogy negatív értékek is vannak a spektrumban? Egyel re vizsgáljuk a legels sorban szerepl esetet z ábrán olyan négyszögjel szerepel, mely páros függvény: a magas szint plató közepénél van a 0 id pillanat Nyilván akkor csak koszinuszos tagok lehetnek z ábrán tehát az el jeles a i együtthatók szerepelnek Látszik, hogy a négyszögjelet vízszintesen eltolom, hogy páros legyen, az egyes összetev k amplitúdói nem változnak, a frekvenciaösszetev k nem függhetnek attól, mikor kezdem el mérni az id t, de b i együtthatók helyett a i együtthatók lesznek Ráadásul ebben ez esetben felváltva lesznek pozitív és negatív koszinuszos tagok, pozitív és negatív a i együtthatók z alábbi els ábrán látható jel a következ harmónikus összetev kb l áll: x(t) = egyenszint + ( cos( 0 t) π 3 cos(3 0t) + 5 cos(5 0t) ) 7 cos(7 0t) + Ha a periódusid t növeljük a magas szint szélességének növelése nélkül, akkor a burkológörbe alakja és annak zérushelyei változatlanok maradnak frekvenciaösszetev k viszont egyre közelebb kerülnek egymáshoz periódusid duplázódásával (második sorban szerepl grakonok) fele akkora távolságra Ez nyilvánvaló, hiszen az alap-körfrekvencia a periódusid reciprokával arányos Ha a periódusid vel végtelenhez tartunk (a legalsó sorban szerepl ábrához), akkor egy nem periódikus esethez közelítünk, a frekvenciaösszetev k egyre közelebb kerülnek, míg végül kialakul a folytonos színkép folytonos színkép zérushelyei ugyanott maradnak, ahol az eredeti (els sorban szerepl ) jelben az alapfrekvencia páros számú többszörösei 6

17 Folytonos spektrum kialakulása Ezek után nézzük meg, hogyan alakulnak át a képletek, ha a Fourier-sorról a Fourier-transzformációra térünk át z összehasonlíthatóság kedvéért egymás mellett szerepeltetjük a képleteiket fels sorban szerepelnek azok a képletek, amellyel a frekvencia-tartományból (X-b l) id tartományba (x(t)-be) térhetünk át, az alsóban azok a képletek, amelyekkel az id -tartományból térhetünk át frekvencia-tartományba z X k sorozat helyett egy X() folytonos függvény szerepel a Fourier-transzformációban z id tartománybeli jel most már nem fejezhet ki egy sorösszegként, hanem egy integrállal határozható meg Fouriertranszformáció Nem periodikus (aperiódikus) jelek esetén (T ) Fouriersor Fouriertranszformáció x(t) = + k= X k exp(jkt) x(t) = + X() exp(jt) d X k = T T 0 x(t) exp( jkt) dt X() = + x(t) exp( jt) dt STOP Milyen lesz a szinusz, illetve a csillapított szinusz színképe? Gondoljunk arra, hogy mit l függött, hogy a spektrum megállapításánál használhatjuk-e a Fourier-sort, vagy csak a Fourier-transzformációt? 7

18 Szinusz és csillapított szinusz színképe u(t) [V] absy(j) [db] Sinus and dumped sinus in time and frequency domain t [x05 ms] f [Hz] Látható, hogy valóban igaz, hogy periódikus jel spektruma diszkrét vonalakból áll, a csillapított szinusz viszont már nem lesz periódikus, és a színképe tényleg folytonos Megnézhetjük ugyanezt a négyszögjelre és a csillapított négyszögjelre is 8

19 Négyszögjel és csillapított négyszögjel színképe u(t) [V] Rectangular and dumped rect in time and frequency domain t [x05 ms] 0 absy(j) [db] f [Hz] 3 z M modulált jel spektruma z rádióadások egy része amplitudómodulált (M) jelként kerül kisugárzásra Ennél a modulálandó a(t) hangjelet megszorozzák egy nagyobb frekvenciájú harmónikus jellel, az úgynevezett viv jellel (s c ), és ezt sugározzák ki c index onnan származik, hogy a viv angolul carrier viv jele s c (t) = cos c t, ahol f c = c /π a viv frekvencia modulálandó a(t) jel Fourier-transzformáltját jelölje () Ekkor az M-modulált jel Fouriertranszformáltja a következ képp számolható S M () = + + ( a(t) cos c t e jt dt = a(t) e jct + ) e+jct e jt dt = (9) = + a(t) e j(+c)t dt + + a(t) e j( c)t dt (0) = ( c ) + ( + c ) () z utolsó sorban az látszik, hogy a modulált jelben az eredeti spektrum két helyen található meg, eltolódva a plusz és minusz c -vel () 9

20 Változtat-e a dolgon, hogyha a moduláló jel koszinusz függvény helyett szinusz? Nem, mivel az az exponenciális alak X() függvényében csak annyit változtat, hogy azoknak valós, vagy képzetes értékkészlete lesz-e z ábrán pedig az abszolútérték, azaz X(), szerepel, ami ugyanaz a két esetben lapsávi és modulált jel spektruma, harmónikus jel z alábbi ábra mutatja az alapsávi és modulált jel spektrumát az alábbi képlet s m harmónikus moduláló jel és s c viv jel esetén s m (t) = m cos( m t) + 0, s c (t) = cos( c t) 0 X k m m4 0 m m c m c + m c m c + m c c Periódikus jel esetén amikor a spektrum vonalas az alapsávi jelek X k együtthatói már felei az eredeti jel amplitúdóinak, a moduláció esetén ismét felez dik az amplitudó, tehát az eredeti amplitudó negyede jelenik meg exponenciális alakot használva lapsávi és modulált jel spektruma, M-DSB z alábbi ábra mutatja az alapsávi és modulált jel spektrumát folytonos spektrumú moduláló jel esetén X() c z utóbbi esetben egy olyan jel M modulált változatát mutattunk be, amelyben a moduláló jel spektruma folytonos, és valamilyen frekvenciahatárok közé esik Általában ilyennek vehetünk egy rádióadást, ahol a jel pl 0 Hz és 0 khz között folytonosnak tekinthet Gyakran ilyenkor a spektrumot egy trapézzal (mint itt) vagy háromszöggel ábrázoljuk Itt a két oldalsávos M-moduláció (M-DSB) spektrumát mutattuk be Két oldalsávos angolul: Double Side Band (z angol megfelel ket nem kell tudni, csak a rövidítéseket rövidítetlen alakot csak azért írom ki, mert az angolul tudók így könnyebben megjegyzik a rövidítést, és esetleg könnyebben keresnek a témához szakirodalmat) c 0

21 lapsávi és modulált jel spektruma, elnyomott viv s, M-DSB/SC z alábbi ábra mutatja az alapsávi és modulált jel spektrumát folytonos spektrumú moduláló jel esetén X() c Ha egyszer en nem adunk egyenszintet a modulálandó jelhez, akkor a kisugárzott jelben hiányozni fog a viv jel Ez el ny vagy hátrány? Mindkett viv jel hiánya, mint látni fogjuk, nehezebbé teszi a demodulálást, azaz a moduláló jel visszaállítását Emiatt az M modulációval m köd rádióadók nem elnyomott viv vel m ködnek z elnyomott viv s moduláció el nye viszont, hogy kisebb teljesítményt kell kisugározni Nem kell kisugározni az ± c frekvenciájú tüskéket, mégsem lesz a vett jelb l visszaállított (demodulált) jel gyengébb min ség, mintha a viv jelet is kisugároztam volna Elnyomott viv angolul: Suppressed Carrier Modulált jel spektruma, egy oldalsávos, M-SSB z alábbi ábra mutatja a modulált jel spektrumát folytonos spektrumú moduláló jel esetén X() c c z M modulációnak van még egy harmadik változata, amellyel sávszélességet takaríthatunk meg Egyszer en csak az egyik oldalsávot továbbítjuk Lényegtelen, hogy a fels t, vagy az alsót z ábrán az alsó oldalsáv (lower band) maradt meg, azaz a viv frekvenciánál kisebb frekvenciák, de használhattuk volna a fels oldalsávot (upper band) is Ez a modulációtípus az analóg telefonos hangátvitel alapja Nagyjából kétszer annyi beszédet továbbíthatunk így, mintha mindkét oldalsávot továbbítanánk Ez a modulációtípus nem jelent energiatakarékosságot, mivel a fél oldalsáv levágása gyengébb min séget jelent, ha nem kompenzáljuk azzal, hogy nagyobb teljesítménnyel továbbítjuk a jelet Manapság jelent sen el rehaladt a digitalizálás a telefonvonalok esetében, úgyhogy a telefonvonalakon egyre kevesebb helyen megy analóg jel, azaz M-SSB jel Egy oldalsávos angolul: Single Side Band c

22 3 Diszkrét Fouriertranszformáció (DFT) Diszkrét Fouriertranszformáció (DFT) Mintavételezett jelek esetén a Fouriertranszformáció DFT-be megy át Twiddle-faktor Diszkrét Fouriertr Fouriertranszformáció x(n) = N n,k N k=0 X(k)WN x(t) = + X() exp(jt) d X(k) = N N n=0 W n,k N n,k x(n)wn X() = + x(t) exp( jt) dt ( ) ( πkn πkn = cos + j sin N N f = kf 0, t = nt ) Twiddle-faktor pontos alakját nem fontos tudni, hanem azt, hogy egy rögzített mintaszám (N) esetén két paramétert l függ, az n-t l és a k-tól N = 6 esetben k = 0,,,, 5 és n = 0,,,, 5 értékei lehetnek (mindkett 0-tól 5-ig vesz fel egész értékeket) Ez összesen 6 6 = 56 értéket jelent, amelyet el re meghatározhatunk és eltárolhatunk STOP W n,k N szerepel az id tartományból a spektrumba alakításnál Ezeket az együtthatókat külön ki kell számolnunk, vagy valahogy meghatározható a W n,k értékekb l? fenti képletb l látható, hogy az n el jelének megváltoztatásával a két szögfüggvény argumentuma ellentettjére változik koszinusz az ellentettet elnyeli, mert páros függvény, a szinusz elé viszont kiemelhet a mínusz el jel Tehát a valós rész marad, a képzetes rész ellentettjére változik, azaz mindegyik Twiddle-faktornak a konjugáltját kell venni az inverz m veletnél W n,k N ( πkn = cos N ) j sin ( ) πkn N = W n,k N diszkrét Fouriertranszformációt mátrix alakban is felírhatjuk mindkét irányban Ha az X(k) illetve x(n) értékeket egy oszlopvektorként írjuk fel, akkor az egyikb l a másikat úgy kapjuk meg, hogy a Twiddle-faktorokból álló mátrix-szal szorozzuk DFT: mátrix alak (N=6) N N X(k) = N N n=0 W 0,0 6 W n,0 6 W 5,0 6 W 0, 6 W n, 6 W 5, 6 W 0, 6 W n, 6 W 5, 6 W 0,k 6 W n,k 6 W 5,k 6 W 0,5 6 W n,5 6 W 5,5 6 x(n)w n,k N x(0) x() x() x(n) x(5) = X(0) X() X() X(k) X(5)

23 DFT: szemléletesen (N=8) folytonos valós rész, szaggatott képzetes másik irányba nyilván a konjugáltakból álló mátrix-szal kell számolni DFT: m veletszám m veletek különféle átrendezésével kisebb m veletigénnyel is megvalósítható, és ezáltal gyorsabbá tehet a transzformáció Ezeket a gyorsabb változatokat nevezzük gyors Fouriertranszformációnak (FFT, Fast F T) MC-m veletszám (komplex szorzás+összegzés) DFT FFT N (N ) N/ log N hányados Míg a DFT akárhány minta esetén m ködik, az FFT egyik változata csak kett hatvány ( n ) minta esetén m ködik igazán hatékonyan, akkor viszont jelent sen rövidebb id alatt kiszámítható diszkrét koszinusztranszformáció, DCT a diszkrét Fouriertranszformáció olyan változata, ahol a mintavett jelet csupa koszinuszokból rakjuk össze Mint láttuk a koszinusz exponenciális alakjában csupa valós együttható (/) szerepel DCT együtthatói tehát csupán valós szám, cserében viszont kétszer annyi lesz bel le DCT fontos szerepet játszik a JPEG és MPEG formátumok tömörítési eljárásában z FFT története gyors Fouriertranszformációt többször elfeledték, és többször felfedezték Fontosságra igazán a gyors számítógépek megjelenésével tett szert 805 körül Gauss már felfe- 3

24 dezte, kés bb a fehérvári születés Lánczos Kornél fedezte fel 940-ben egy munkatársával Végül James Cooley és John Tukey fedezte fel 965-ben az IBM munkatársaiként Korábban mindketten Neumann munkatársai voltak a IS számítógép megépítésében Tukey-t l származik a bit kifejezés 4 jelek csoportosítása nalóg/digitális jel Digitális jel, amelynek az értékkészlete és az értelmezési tartománya is diszkrét értékekb l áll Általában az értékkészlete véges számú értéket vesz fel Gyakorlatban az értelmezési tartományra kirótt feltétel azt jelenti, hogy adott id pillanatokban érdekel minket, hogy a diszkrét értékek közül melyik értéket veszi fel, a többi id pontban érdektelen az értéke nalóg jel, amelynek mind az értelmezési tartománya, mind az értékkészlete folytonos Tehát minden id pillanatban fontos a jel értéke, és az érték a széls értékek között minden értéket felvesz Találkozunk olyan jellel is, amely csak id ben diszkrét, ez szigorúan véve egyik csoportba sem sorolható be Ilyen lesz a jelek mintavételezésekor kapott impulzusamplitudó moduláció (PM) másik köztes állapottal amikor az értékkészlet diszkrét, és a jel id ben folytonos mi nem fogunk találkozni az órán Periodicitás Periodikus jel: amelynél van olyan T periódusid, melyre f(t + T ) = f(t) Csak a periódikus jelek írhatóak fel Fouriersor összegeként z alábbi alakban felírható jeleket hívják harmónikus jeleknek: f(t) = sin(t + ϕ 0 ) Itt a körfrekvencia, ϕ 0 a kezd fázisszög (kezd fázis), a jel amplitudója képletben a szinusz helyett koszinuszt is írhattunk volna, akkor csupán a kezd fázis értékét kell máshogy megválasztani Nyilván a harmónikus jelek periódikus jelek, periódusidejük π/ Kváziperiodikus jel: Ezek a Fouriersorhoz hasonló összegként írhatóak fel, de az összetev k körfrekvenciák aránya nem minden esetben racionális szám Pl sin(5t) + sin( t) Ebben az esetben nincs olyan alap(kör)frekvencia, amelynek mindegyiké egész számú többszöröse lenne Racionális arányok esetén mindig van ilyen alapfrekvencia Egyéb tulajdonságok Sávhatárolt jel: amelyhez tartozik egy f max frekvenciahatár, amelynél nagyobb frekvenciát nem tartalmaz Véges idej jel: amelynél van olyan t és t id pont, melyeken kívül a jel értéke nincs értelmezve vagy nulla Nyilván periódikus jel nem lehet véges idej, csak akkor, ha állandóan nulla véges idej jeleknek ezt kivéve nincs Fouriersora Tehát gyakorlatban nem is tudunk olyan jelet létrehozni, amely tökéletesen periódikus lenne 4

Jelek spektruma, Fourier transzformáció

Jelek spektruma, Fourier transzformáció Jelek spektruma, Fourier transzformáció Horváth Árpád 0. szeptember 3. Tartalomjegyzék. Harmónikus jel és a szögfüggvények.. lapismeretek.........................................

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal. Komplex számok Komplex számok és alakjaik, számolás komplex számokkal. 1. Komplex számok A komplex számokra a valós számok kiterjesztéseként van szükség. Ugyanis már középiskolában el kerülnek olyan másodfokú

Részletesebben

Diszkrét idej rendszerek analízise szinuszos/periodikus állandósult állapotban

Diszkrét idej rendszerek analízise szinuszos/periodikus állandósult állapotban Diszkrét idej rendszerek analízise szinuszos/eriodikus állandósult állaotban Dr. Horváth Péter, BME HVT 6. november 4.. feladat Adjuk meg az alábbi jelfolyamhálózattal rerezentált rendszer átviteli karakterisztikáját

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: = " 3. = + " 2 = " 2 % &' + +

illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: =  3. = +  2 =  2 % &' + + DFT 1. oldal A Fourier-sorfejtés szerint minden periodikus jel egyértelműen felírható különböző amplitúdójú és fázisú szinusz és koszinusz jelek összegeként: = + + 1. ahol az együtthatók, szintén a definíció

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban 1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23 Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet

Részletesebben

RC tag mérési jegyz könyv

RC tag mérési jegyz könyv RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét idej rendszerek analízise az id tartományban

Diszkrét idej rendszerek analízise az id tartományban Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II. Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői A függvények ábrázolásához használhatjuk a nevezetes szögek, illetve a határszögek értékeit. f (x) = sin x Az ábráról leolvashatjuk a függvény

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ] Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Tamás Ferenc: Nevezetes szögek szögfüggvényei

Tamás Ferenc: Nevezetes szögek szögfüggvényei Tamás Ferenc: Nevezetes szögek szögfüggvényei A derékszögű háromszögekben könnyedén fel lehet írni a nevezetes szögek szögfüggvényeit. Megjegyezni viszont nem feltétlenül könnyű! Erre van egy könnyen megjegyezhető

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete) Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!) DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Wavelet transzformáció

Wavelet transzformáció 1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

A dierenciálszámítás alapjai és az érint

A dierenciálszámítás alapjai és az érint A dierenciálszámítás alapjai és az érint 205. november 7.. Alapfeladatok. Feladat: Határozzuk meg az fx) x 2 3 x függvény deriváltját! Megoldás: Deriválás el tt célszer átalakítani a függvényt. A gyök

Részletesebben

Shift regiszter + XOR kapu: 2 n állapot

Shift regiszter + XOR kapu: 2 n állapot DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x = . Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 33

Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 33 Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Komplex számok Baran Ágnes Matematika Mérnököknek 1. 2.-4. Gyakorlat 1 / 33 Feladatok 1. Oldja meg az alábbi egyenleteket a komplex számok halmazán! Ábrázolja

Részletesebben

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben