végtelen sok számot?
|
|
- Zalán Horváth
- 10 évvel ezelőtt
- Látták:
Átírás
1 Hogyan adjunk össze végtelen sok számot? Németh Zoltán, SZTE Bolyai Intézet szeged.hu/~nemeth 2006.
2 Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan fut, ezért lovagiasságból ad 1 sztadion előnyt. Utoléri e Akhilleusz a teknősbékát, és ha igen, hol?
3 Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan fut, ezért lovagiasságból ad 1 sztadion előnyt. Utoléri e Akhilleusz a teknősbékát, és ha igen, hol? Utoléri, hiszen ha Akhilleusz megtesz mondjuk 2 sztadion utat, ezalatt a teknősbéka az előnyével együtt is csak 1,2 sztadion messzire jut, tehát lemaradt.
4 Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan fut, ezért lovagiasságból ad 1 sztadion előnyt. Utoléri e Akhilleusz a teknősbékát, és ha igen, hol? Utoléri, hiszen ha Akhilleusz megtesz mondjuk 2 sztadion utat, ezalatt a teknősbéka az előnyével együtt is csak 1,2 sztadion messzire jut, tehát lemaradt. Ahhoz, hogy a teknőst utolérje, Akhilleusznak sztadion utat kell megtennie k
5 Gombóc Artúr nagyon szereti a csokoládét. Kedvenc csokija csomagjában van egy szelvény, és 10 szelvényért egy újabb csokit lehet kapni a boltban (persze becsomagolva). Mennyit ér valójában egy csomag csoki?
6 Gombóc Artúr nagyon szereti a csokoládét. Kedvenc csokija csomagjában van egy szelvény, és 10 szelvényért egy újabb csokit lehet kapni a boltban (persze becsomagolva). Mennyit ér valójában egy csomag csoki? Világos, hogy egy tábla csokit és egy szelvényt. De ha 10 szelvény = 1 csomag, akkor 1 szelvény = 0,1 csomag, és a tized csomaghoz is tartozik egy tized szelvény... Tehát a becsomagolt csoki mindösszesen tábla (meztelen) csokit ér. 10 k
7 Másrészt, ha 10 szelvény = 1 csomag, akkor 10 szelvény = 1 tábla csoki + 1 szelvény, azaz 9 szelvény = 1 tábla csoki, 1 1 szelvény = tábla csoki, 9
8 Másrészt, ha 10 szelvény = 1 csomag, akkor 10 szelvény = 1 tábla csoki + 1 szelvény, azaz 9 szelvény = 1 tábla csoki, 1 1 szelvény = tábla csoki, 9 tehát k =1 1 9
9 Másrészt, ha 10 szelvény = 1 csomag, akkor 10 szelvény = 1 tábla csoki + 1 szelvény, azaz 9 szelvény = 1 tábla csoki, 1 1 szelvény = tábla csoki, tehát k =1 1 9 Azaz a becsomagolt csoki 1 tábla csokit ér; Akhilleusz 1 sztadion után éri utol a teknőst; és úgy adhatunk össze végtelen sok számot, hogy az elsőt 1, a másodikat 0,1, a harmadikat 0,01másodperc alatt adjuk a többihez és így tovább ekkor 1 másodperc alatt végzünk
10 Nézzük általánosan: Ha 1 x x 2 x 3 x 4 =S, x x 2 x 3 x 4 =x S, azaz = 1 x S, 1 x x 2 x 3 x 4 = 1 1 x.
11 Nézzük általánosan: Ha 1 x x 2 x 3 x 4 =S, x x 2 x 3 x 4 =x S, azaz Ha x = 1 10, akkor = 1 x S, 1 x x 2 x 3 x 4 = 1 1 x k = =1 1 9
12 Ha x = 1, akkor 4 1 x x 2 x 3 x 4 = 1 1 x k = 1 =
13 Ha x = 1, akkor 4 1 x x 2 x 3 x 4 = 1 1 x k = 1 =
14 = = = 1 4
15 = = = 1 4
16 1 x x 2 x 3 x 4 = 1 1 x
17 Ha x = 1, akkor 1 x x 2 x 3 x 4 = 1 1 x = = 1 2 Egész számok összege tört?
18 Ha x = 1, akkor 1 x x 2 x 3 x 4 = 1 1 x = = 1 2 Egész számok összege tört? Ha x =2, akkor = = 1 Pozitív számok összege negatív?
19 Ideje pontos definíciót adni. Az a 1 a 2 a 3 a 4 a k = k =1 formális összegnek (végtelen sornak, numerikus sornak) képezzük a részletösszegeit a következő módon: a k s 1 =a 1, s 2 =a 1 a 2, s 3 =a 1 a 2 a 3, s 4 =a 1 a 2 a 3 a 4, s n =a 1 a 2 a 3 a n,
20 Ideje pontos definíciót adni. Az a 1 a 2 a 3 a 4 a k = k =1 formális összegnek (végtelen sornak, numerikus sornak) képezzük a részletösszegeit a következő módon: a k s 1 =a 1, s 2 =a 1 a 2, s 3 =a 1 a 2 a 3, s 4 =a 1 a 2 a 3 a 4, s n =a 1 a 2 a 3 a n, Ha van olyan s szám, amit a részletösszegek minden határon túl megközelítenek, azt mondjuk, hogy a sor konvergens és összege s. Ha nincs ilyen szám, az összeget nem értelmezzük, a sor divergens.
21 Számoljuk ki az sor részletösszegeit: 1 x x 2 x 3 x k s n =1 x x 2 x n = 1 x n 1 x x 1
22 Számoljuk ki az sor részletösszegeit: 1 x x 2 x 3 x k s n =1 x x 2 x n = 1 x n 1 x Legyen x < 1. Ha n elég nagy, x n 0, s n 1 1 x, s n 1 1 x x 1
23 Számoljuk ki az sor részletösszegeit: 1 x x 2 x 3 x k s n =1 x x 2 x n = 1 x n 1 x Legyen x < 1. Ha n elég nagy, x n 0, s n 1 1 x, s n 1 1 x 1 Tehát fenti sorunk összege. 1 x x 1 Ha x 1, a részletösszegek minden határon túl növekszenek (abszolút értékben); ha x = 1, a 0 és az 1 között ugrálnak; a sor összege definíciónk szerint ekkor nem értelmezett.
24 Ha a sor tagjai mind pozitívak, a részletösszegek monoton növekszenek. A helyzet egyszerű: Ha a részletösszegek minden határon túl növekszenek, a sor divergens.
25 Ha a sor tagjai mind pozitívak, a részletösszegek monoton növekszenek. A helyzet egyszerű: Ha a részletösszegek minden határon túl növekszenek, a sor divergens. Ha a részletösszegek korlátosak, a sor konvergens.
26 Példa: k s 2 n= n
27 Példa: k s 2 n= n n n A részletösszegek nem korlátosak, ezért a fenti, ún. harmonikus sor divergens, azaz nincs összege.
28 Példa: k 2
29 Példa: k 2 s n = n n 1 n
30 Példa: k 2 s n = n n 1 n tudjuk, hogy 1 k 1 k = 1 k 1 1 k n 1 1 n 2 1 n 2
31 Mivel a részletösszegek (növekedőek és) korlátosak, a sornak van összege, nem tudjuk, mennyi, de legfeljebb 2. Belátható, hogy k k = 2 6
32 Példa: k 1 1 k A sor tagjai egyre kisebbek és váltakozó előjelűek.
33 Példa: k 1 1 k A sor tagjai egyre kisebbek és váltakozó előjelűek. Az ilyen sorok mindig konvergensek, mert a részletösszegek egy számra húzódnak rá. Tehát a fenti sornak van összege.
34 Egy háromszög minden oldalára tegyünk egy harmadakkora háromszöget, majd ezt folytassuk. A határalakzat az ún. Koch féle hópehely.
35 Az eredeti háromszög oldala legyen 1. Minden lépésben az oldalak száma megnégyszereződik, hosszuk pedig harmadolódik.
36 Az eredeti háromszög oldala legyen 1. Minden lépésben az oldalak száma megnégyszereződik, hosszuk pedig harmadolódik. 3 Az n edik alakzat kerülete tehát 4 n. 3
37 Az eredeti háromszög oldala legyen 1. Minden lépésben az oldalak száma megnégyszereződik, hosszuk pedig harmadolódik. 3 Az n edik alakzat kerülete tehát 4 n. 3 Ez a sorozat minden határon túl nő, tehát a Koch hópehely kerülete végtelen nagy! Akkor igencsak kanyargós lehet...
38 Az n edik lépésben a hozzáragasztott kis háromszögek területe: 3 4 n n 3 4 = n 1, 4 9
39 Az n edik lépésben a hozzáragasztott kis háromszögek területe: 3 4 n n 3 4 = n 1, 4 9 tehát a hópehely területe = = tehát a végtelen hosszú görbe véges területet határol! (Azért a kerület és terület fogalma igazából tisztázandó.)
40 Egy apa elhatározza, hogy gyermekének minden születésnapjára annyiszor 1000 Ft ot ajándékoz, ahány éves (a gyerek). Mennyi pénzt tegyen a bankba évi 6 % os kamatra, hogy ezt akármeddig folytathassa? Ahhoz, hogy n év múlva n 1000 forintunk legyen, most n 1000 q n Ft ot kell a bankba rakni (ahol q =1,06 ). A keresett összeg tehát q 2 q 2 3 q 3 4 q 4 5 q 5
41 1 q 1 1 q 2 q 1 3 q 1 4 q 5 1 q 2 1 q 3 1 q 4 1 q q 3 q 1 4 q q 4 q 5
42 1 q 1 1 q 2 q 1 3 q 1 4 q 5 1 q 2 1 q 3 1 q 4 1 q q 3 q 1 4 q q 4 q 5 1 q 2 3 q 2 q 4 3 q 5 4 q 5
43 1 q 1 1 q 2 q 1 3 q 1 4 q = 1 5 q q q 2 q 3 q 4 q 5 = 1 q 1 q q 3 q 1 4 q 5 = 1 1 q 2 q q 4 q = q 3 q 1 = 1 q 1 1 q 2 3 q 2 q 4 3 q 5 4 q = q 1 q 1 q q 3 q 1 4 q 5
44 1 q 1 1 q 2 q 1 3 q 1 4 q = 1 5 q q q 2 q 3 q 4 q 5 = 1 q 1 q q 3 q 1 4 q 5 = 1 1 q 2 q q 4 q = q 3 q 1 = 1 q 1 1 q 2 3 q 2 q 4 3 q 5 4 q = q 1 q 1 q q 3 q 1 4 q = 5 A feladat számaival ez kb. 277 ezer Ft. 1 2 q 1
45 Egy 10 m hosszú gumikötél egyik vége rögzített, a másik végétől egy csiga mászik a fal felé, 1 cm/s sebességgel. Igen ám, de a kötelet egy gonosz manó közben nyújtja, 10 m/s sebességgel. Eléri e a csiga a falat? 1 s múlva a csiga megtett legalább 1 cm t, a kötél 2000 cm. 2 s múlva a csiga megtett legalább 1,5 + 1 cm t, a kötél 3000 cm. Ez nem hangzik valami jól...
46 Egy 10 m hosszú gumikötél egyik vége rögzített, a másik végétől egy csiga mászik a fal felé, 1 cm/s sebességgel. Igen ám, de a kötelet egy gonosz manó közben nyújtja, 10 m/s sebességgel. Eléri e a csiga a falat? 1 s múlva a csiga megtett legalább 1 cm t, a kötél 2000 cm, tehát megtette az út legalább részét. 2 s múlva a csiga megtett legalább 1,5 +1 cm t, a kötél 3000 cm, tehát megtette az út legalább Ez az! részét.
47 Tehát n s múlva a csiga megtette az út legalább n részét. Mivel a zárójelben levő összeg minden határon túl nő. eléri az 1000 értéket is, és akkor a csiga célba ért. (A feladat adatait komolyan véve, mintegy év alatt, a Föld kora mintegy 10 9 év )
48 Az ábrán látható négyzetrácsban hány pont látszik a bal alsó sarokból? Az ábrán például a zöld pontok látszanak, a pirosak nem. Bebizonyítható, hogy N növelésével a látható és az összes pontok számának aránya egy állandó K értékhez közelít. Mekkora ez a K állandó? (Úgy is fogalmazhattuk volna a kérdést, hogy milyen gyakoriak a relatív prím számpárok.)
49 A nem látható pontokat (mint a és b ), nyilván látható pontok takarják el (mint A és B ). Az a pontot feleúton takarja el a A pont, az ilyen takarópontok láthatóak az N/2 oldalú négyzetben. A b pontot harmadúton takarja el a B, az ilyen takarópontok láthatóak az N/3 oldalú négyzetben...
50 A nem látható pontokat (mint a és b ), nyilván látható pontok takarják el (mint A és B ). Az a pontot feleúton takarja el a A pont, az ilyen takarópontok láthatóak az N/2 oldalú négyzetben. A b pontot harmadúton takarja el a B, az ilyen takarópontok láthatóak az N/3 oldalú négyzetben... A látható pontok száma K N 2 =N 2 K N 2 2 K N 3 2 K N 4 2,
51 A nem látható pontokat (mint a és b ), nyilván látható pontok takarják el (mint A és B ). Az a pontot feleúton takarja el a A pont, az ilyen takarópontok láthatóak az N/2 oldalú négyzetben. A b pontot harmadúton takarja el a B, az ilyen takarópontok láthatóak az N/3 oldalú négyzetben... A látható pontok száma K N 2 =N 2 K N 2 2 K N 3 2 K N 4 2, = K = 6 2 2
52 Tudjuk, hogy az alábbi összeg létezik: =s.
53 Tudjuk, hogy az alábbi összeg létezik: =s =s
54 Tudjuk, hogy az alábbi összeg létezik: =s =s = 1 2 s
55 Tudjuk, hogy az alábbi összeg létezik: =s =s = 1 2 s = 3 2 s
56 Tudjuk, hogy az alábbi összeg létezik: =s =s = 1 2 s = 3 2 s = 3 2 s Ezek szerint az (1) összeg megváltozhat, ha a tagokat más sorrendben adjuk össze!?
57 A végtelen összegek érdekesek!
végtelen sok számot?
Hogyan adjunk össze végtelen sok számot? Németh Zoltán, SZTE Bolyai Intézet www.math.u szeged.hu/~nemeth 2006, 2007. Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan
Sorozatok határértéke VÉGTELEN SOROK
Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
FELADATOK ÉS MEGOLDÁSOK
3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
SZTE TTIK Bolyai Intézet
Néhány érdekes végtelen összegről Dr. Németh József SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj Háttéranyag: Németh József: Előadások a végtelen sorokról (Polygon, Szeged,
SZÁMTANI SOROZATOK. Egyszerű feladatok
SZÁMTANI SOROZATOK Egyszerű feladatok. Add meg az alábbi sorozatok következő három tagját! a) ; 7; ; b) 2; 5; 2; c) 25; 2; ; 2. Egészítsd ki a következő sorozatokat! a) 7; ; 9; ; b) 8; ; ; 9; c) ; ; ;
4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz.
1. Tekintse az oldalsó ábrát! a. Mekkora lesz a 4. sor téglalap mérete? b. Számítsa ki az ábrán látható három téglalap területösszegét! c. Mekkora lesz a 018. sorban a téglalap oldalai? d. Hány téglalapot
4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim
Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2
Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26
Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Gyakorló feladatok az II. konzultáció anyagához
Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n
cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.
1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:
SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
I. rész. Valós számok
I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93
. Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan
48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.
8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük
NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2014 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 7.
1. Falióránk három mutatója közül az egyik az órát, a másik a percet, harmadik a másodpercet mutatja. Egy bolha ráugrik déli órakor a másodpercmutatóra és megkezdi egy órás körutazását. Ha fedésbe kerül
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
Sorozatok, sorozatok konvergenciája
Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény
2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200
2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.
Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:
5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.
5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2008. NOVEMBER 22.) 3. osztály
3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? Gyöngyi gyöngyszemeket fűz egy zsinegre. Először 1 pirosat, utána 2 sárgát, aztán 3 zöldet, majd újra 1 piros, 2 sárga és
Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!
Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és
Sorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
Mozgással kapcsolatos feladatok
Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek
PISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál
Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
SOROZATOK- MÉRTANI SOROZAT
SOROZATOK- MÉRTANI SOROZAT Egy mértani sorozat első tagja 8, hányadosa 1 2. Számítsa ki a sorozat ötödik tagját! 2005. május 10. 8. feladat (2 pont) Egy mértani sorozat első tagja 3, a hányadosa 2. Adja
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Integr alsz am ıt as. 1. r esz aprilis 12.
Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges
1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.
Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:
Háromszögek fedése két körrel
SZTE Bolyai Intézet, Geometria Tanszék 2010. április 24. Motiváció Jól ismert a kerületi szögek tétele, vagy más megfogalmazásban a látókörív tétel. Motiváció A tételből a következő állítás adódik: Motiváció
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály
3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen
1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5
WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1
Eötvös Loránd Tudományegyetem Természettudományi Kar. Érdekes összegek. Szakdolgozat. Matematika BSc Tanár
Eötvös Loránd Tudományegyetem Természettudományi Kar Érdekes összegek Szakdolgozat Készítette: Pressing Dániel Matematika BSc Tanár Témavezető: dr Besenyei Ádám Adjunktus Budapest, 4 Tartalomjegyzék Bevezetés
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
MATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Feladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet: 1 1 = 7. 5 Ezt rendezve
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x
10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét
Kártyázzunk véges geometriával
Kártyázzunk véges geometriával Bogya Norbert Bolyai Intézet Egyetemi tavasz, 2016 Tartalom Dobble Véges geometria Dobble újratöltve SET Kérdések Hogy tudunk ilyen kártyákat konstruálni? 8 helyett más
Keresd meg a többi lapot, ami szintén 1 tulajdonságban különbözik csak a kitalált laptól! Azokat is rajzold le!
47. modul 1/A melléklet 2. évfolyam Feladatkártyák tanuló/1. Elrejtettem egy logikai lapot. Ezt kérdezték tőlem: én ezt feleltem:? nem? nem? nem nagy? nem? igen? nem Ha kitaláltad, rajzold le az elrejtett
5. osztály. tört nem irreducibilis! ezért x y
1. feladat: 5. osztály Anna és Tamás egy 7x10 kisnégyzetből álló tábla csokoládén osztozik. Felváltva törnek vagy egy sort vagy egy oszlopot a táblából, amíg elfogy. Ha Anna vesz először, milyen stratégiája
Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk
Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Egyetemi tavasz Szeged, SZTE L. Csizmadia (Szeged) Egyetemi tavasz 2013. 2013.04.20.
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató
OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
NUMERIKUS SOROK I. A feladat ekvivalens átfogalmazása a következő végtelen sok tagú összegnek a meghatározása ) 1 21
NUMERIKUS SOROK I. Ha az {a n } (n N) sorozat elemeiből egy új {s n } (n N) sorozatot képezünk olyan módon, hogy s = a, s 2 = a + a 2,, s n = a + a 2 + + a n,, akkor ezt numerikus sornak (vagy csak simán
Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.
Bolyai János Matematikai Társulat Oktatási Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 005/00-os tanév első iskolai) forduló haladók II. kategória nem speciális
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Modern matematikai paradoxonok
Modern matematikai paradoxonok Juhász Péter ELTE Matematikai Intézet Számítógéptudományi Tanszék 2013. január 21. Juhász Péter (ELTE) Modern paradoxonok 2013. január 21. 1 / 36 Jelentés Mit jelent a paradoxon
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140
1.) Melyik igaz az alábbi állítások közül? 1 A) 250-150>65+42 B) 98+24
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
a. Melyik nagyvárost hívják Nagy Almának? Itt rendezik meg évente a világ leghosszabb ultra maratoni futóversenyét.
1. feladat a. Melyik nagyvárost hívják Nagy Almának? Itt rendezik meg évente a világ leghosszabb ultra maratoni futóversenyét. Hogyan hívják ezt a versenyt? Pontosan hol rendezik meg a versenyt? Hány kilométert
pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen
A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.
Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:
II. forduló, országos döntő május 22. Pontozási útmutató
Apáczai Nevelési és Általános Művelődési Központ 76 Pécs, Apáczai körtér 1. II. forduló, országos döntő 01. május. Pontozási útmutató 1. feladat: Két természetes szám összege 77. Ha a kisebbik számot megszorozzuk
Matematika érettségi emelt 2013 május 7. 4 x 3 4. x 3. nincs megoldása
4 4 0 0 nincs megoldása 4 0 4 4 Z A { 4; ;, 1;0;1;} A B { 4; ; ; 1;0} A B { 6; 5; 4; ; ; 1;0;1;} A \ B {1;} 0 0 4 4 4 7 1 Z B { 6; 5; 4; ; ; 1;0} AE AE AB 46 BE 19 A hosszabbik körív: 8,8 o 60 o 0 79cm
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő Második nap Javítási útmutató HARMADIK OSZTÁLY. Négy barát, András, Gábor, Dávid és Csaba egy négyemeletes ház négy különböző emeletén lakik.
MATEMATIKA ÉRETTSÉGI május 3. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. május. EMELT SZINT I. ) Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű számjegy
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!
Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,