SZTE TTIK Bolyai Intézet
|
|
- Aurél Vass
- 8 évvel ezelőtt
- Látták:
Átírás
1 Néhány érdekes végtelen összegről Dr. Németh József SZTE TTIK Bolyai Intézet Analízis Tanszék nemethj Háttéranyag: Németh József: Előadások a végtelen sorokról (Polygon, Szeged, 2002)
2 2 Nagy a) Arkhimédesz (i.e. 250) (m=400 jegy; 8 napig fut mellette a fény) b) Ókori India: 023 majom c) Sakk = 2 64 búzaszem 2 64 =, millió tonna (998: 600 millió tonna a világ évi búzatermése; 500 évi búzatermés) d) Minden nap Ft=3 millió Ft = 2 30 = > 0 millió Ft e) Egy 2 km oldalú kockában elhelyezhető a világ összlakossága fülke Végtelen összegek a) Csoki
3 n + = b) n + =? α) TORTA β) = A = 3 A 3 = 2 3 A A = 2. 3 c) } + = A = 2A A = A = d) + + = A (Leibniz) α) A = 0 β) A =
4 4 γ) A = 2 δ) x x 3 }{{} + x + x 2 = x+x 3 x 4 +x 6 A = 3 (Vessük el a végtelent!) Definíció. a + a a n +?=A s n = a + + a n A, akkor a végtelen sok szám összegén A-t értjük. Pl.: ) CSOKI :
5 s n = n = = ( ( 2 n ) = 5 = 2 2 ) n =. 2) TORTA : ( ) n s n = = 2. Mértani sor: + q + q q n +
6 6 = q n =, ha q <, n=0 q hiszen s n = qn q. 3) esetén s n = n = 2n+. 2 4) +... esetén s =, s 2 = 0, s 3 =, s 4 = 0,..., így s n nem tart egy számhoz sem, azaz nincs összege ennek a végtelen sok számnak. Egy további érdekes összeg: n 2 n + = n n= 2 n = 2 (Swineshead; XIV. század; fizika, valószínűség).
7 7 Bontsuk fel a sort a következőképpen: n + = = n n + = Megjegyzés: n=0 000n, 06 n?
8 8 000, , , Néhány további érdekes összeg: a) n + = (harmonikus sor) n= n =? > > > > > 00, 5 0
9 Lassú (példa) = = = = = = = 2.
10 0 n= Belátható: α) g/ n n = n < 80. Bizonyítsuk be, hogy a 9 n n sor konvergens. Megoldás. Írjuk fel az új sor néhány tagját részletesen. n = n = ( ) ( ) ( ) ( + 0 k + + ) +. } 8 8 {{ 8 } (k+)-szer
11 Végezzük el a következő felső becsléseket: = 8, = 8 9 0, k k } 8 8 {{ 8 } 0, k (k+)-szer. Így azt kapjuk, hogy 9 n n < 8 90 = ( 9 0 ( 9 ) k = 80, 0 k=0 ) k + =
12 2 tehát a sor valóban konvergens. β) s n (n > ) soha sem egész szám. Tegyük fel, hogy van olyan n >, hogy ( ) n = A, ahol A N +. Legyen p 2 r a legnagyobb paritású tag az, 2,..., n számok között. Ekkor ( ) a következő alakban írható: ( ) u 2 s v + p 2 r = A, ahol v és p páratlan és r > s (mivel r volt a maximális paritás). Szorozzuk be ( ) mindkét oldalát 2 s p v-vel, akkor az adódik, hogy u p + v 2 r s = A 2s p v,
13 3 ami ellentmondás, mert a bal oldal első tagja egész, a második pedig nem, így összegük nem adhatja ki a jobb oldalon álló egész számot. Tehát a részletösszegek nem adhatnak egész számot (n > ) esetben). γ) = 2, 5 Mi a helyzet, ha váltakozik az előjel? =? ) Az összeg: A = log e 2 (ld. könyv; 2 megoldás) 2) Átrendezés
14 = A = A = A 2 () + (3) : = 3 2 A = 3 2 A A. Tetszőleges számhoz átrendezhető. Még egy érdekesség:
15 = log e 5 3 2π Kérdés: az összege? n= sinn n konvergens-e? Mi b) n 2 + = Van véges összeg: ) s n < 2 Alkalmazzuk az alábbi becslést: ( ) s n = n 2 < n= n 2 < (n )n, majd az egyes tagokat bontsuk fel törtek különbségére az alábbi módon:
16 6 2 = 2 ; 2 3 = 2 3 ;, (n )n = n n. Így ( ) jobb oldala helyett az írható, hogy n n = 2 n, hiszen a közbülső tagok kiesnek, ugyanis ez egy teleszkópikus összeg. Azt kapjuk, hogy s n 2 n < 2 Versenypélda: a ) Geometriai megoldás a 2 n =.
17 7 Mekkora az összeg? 689 (Jacob Bernoulli) tűzte ki (Baseli probléma) Euler 734
18 n 2 + =? =, =, =, =, π 2 0 év 6 Tehát n= n 2 = π2 (elemi bizonyítás a 6 könyvben: sinmx =...; Viete formulák n-edfokú egyenletre) Johann Bernoulli: Bárcsak a bátyám
19 9 megérhette volna. Euler memóriája: Vergilius: Aeneasz (580 oldal) További összegek (Euler) = = ! 3 π = 24 7! 3 π = ! 5 π = 0 30! = 32 3! = 34 5! 3 π0 π2 05 π2 35 π4
20 = 26 7! = 28 9! = 220 2! = ! = ! = ! π π π π π 26 π 24 c) d) n= n= 3 (?) (Apery) n = n 3 n= 3/2 konvergens vagy n
21 divergens? n = = = ( = 2 (geometriai sor) 8 + = ) 2 ( ) = 2 e)
22 22 + = (ld. könyv; oszthatóság; 7 harmonikus sor) Prímszámok a négyzetszámok között. Mutassuk meg, hogy van két olyan szomszédos négyzetszám, amelyek közé legalább 0 6 db prímszám esik. Megoldás. Tegyük fel, hogy az állítás nem igaz, azaz minden n természetes szám esetén n 2 és (n+) 2 közé kevesebb, mint 0 6 db prímszám esik.,..., p(n) s n ezeket a prímszámokat. Ekkor tehát s n < 0 6 teljesül minden n esetén. Nyilvánvaló, hogy ekkor Jelölje p (n) 0 6 n 2 > p (n) + p (n) p s (n) n
23 23 Viszont, ha mindkét oldalt összegezzük, adódik, hogy 0 6 n= n 2 > n= p n, ahol a jobb oldali összegben az összes prímszám reciprok összege van. Ez nyilvánvaló, hogy ellentmondás, mert a n= n 2 sor konvergens, a n= p n sor pedig divergens, mégpedig úgy, hogy (pozitív tagú lévén) a részletösszegek tartanak a végtelenbe. Azaz eredeti állításunk valóban igaz. f) 2, 4...
24 24 ( + x) n n(n ) = + nx + x 2 + 2! n(n ) (n k + ) + x k + + x n. k! n 2 (NEWTON) ( ) ( + x) 2 = + 2 x x 2 + 2! ( ) ( ) k + + x k + k! x =
25 25 2 = ! ! ! + (irracionális; Hyppasos) g) π 3, 4... i.e (B) 3,25 (E) 3, (A) 3,48 i.sz. 263 : 5 tizedesjegy 480 : : 4 60 : : : : : : : :
26 26 François Viète (kb. 579): 2 π = John Wallis (kb. 650): π 2 = William Brouncker (kb. 650): π = Madhava, James Gregory, Gottf-
27 27 ried Wilhelm Leibniz (450 67): π 4 = (lassú, de szép; Newton; biz. a könyvben) Isaac Newton (kb. 666): π = 3 3 ( ) Srinivasa Ramanujan (94): π = n=0 ( ) 3 2n 42 n + 5. n 22 n+4 π = n=0 (4n)! (n!) 4 [ n] 396 4n.
28 28 David Chudnovsky és Gregory Chudnovsky (989): π = 2 ( ) n (6n)! (n!) 3 (3n)! n=0 (Minden újabb tag hozzávétele kb. 5 újabb pontos jegyét adja π-nek.) n ( ) n+/2 Jonathan Borwein és Peter Borwein (989): ahol π = 2 n=0 ( ) n (6n)! (n!) 3 (3n)! (A + nb) C n+/2, A := B := C := [5280( )] 3.
29 29 (Minden újabb tag hozzávétele kb. 3 újabb pontos jegyét adja π-nek.) David Bailey, Peter Borwein és Simon Plouffe (996): π = i=0 ( 4 6 i 8 i i i i + 6 Megjegyzés: irracionalitás; transzcendencia; 76 Lambert; 882 Lindemann h) e 2, 7... (e def ( = lim + n ; n n) folyamatos kamatozás; Euler-szám.) Bizonyítsuk be, hogy ). () n=0 n! = e. Megoldás. Jelöljük a () sor n-edik rész-
30 30 letösszegét s n -nel, azaz (2) s n = + + 2! + 3! + + n!. Be fogjuk látni, hogy s n e, ha n. A binomiális tétel alkalmazásával adódik, hogy
31 ( + ) n n = + n n(n ) + n 2! n 2 n(n )(n 2) + 3! n 3 + n(n ) 2 + n! n n n(n ) = + + n 2 2! n(n )(n 2) + n 3 3! + n(n ) 2 + n n n! + + 2! + 3! + + n! = s n, tehát azt kaptuk, hogy (3) ( + n) n sn. 3
32 32 Most rögzítsünk egy k N + számot. Legyen n > k, és (+ n )n -nek a binomiális kifejtéséből hagyjuk el a (k +)-edik utáni tagokat. Ezzel az ( + n )n kifejezést csökkentjük, azaz ( + ) n n(n ) > + + n n 2 2! n(n )(n 2) + n 3 3! + + n(n ) (n k + ) + n k k! = + + ( ) 2! n + ( )( 2 ) + + 3! n n + k! ( n )( 2 n ) ( k n ). Ha n, a bal oldal határértéke e, a
33 jobb oldalé pedig (k rögzített) ! + + k!. Ebből tehát az adódik, hogy (4) e + + 2! + + k! = s k. Mivel (4) minden k-ra igaz, így k helyett n-et írva és figyelembe véve (3)-at, azt kapjuk, hogy ( + n) n sn e. A rendőrelv alapján adódik, hogy lim n s n = e, azaz ()-t sikerült belátnunk. Megjegyzés: irracionalitás; transzcendencia (n sin(2πen!) 2π) π + e??? j) sin x = x x3 3! + x5 5!
34 34
A végtelen a matematikában Dr. Németh József egyetemi docens SZTE TTIK Bolyai Intézet.
A végtelen a matematikában Radnóti Gimnázium 203. 04. 23. Dr. Németh József egyetemi docens SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj 2 Pólya György: Ha a tudomány
Részletesebbenkonvergensek-e. Amennyiben igen, számítsa ki határértéküket!
1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,
RészletesebbenAnalízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
RészletesebbenSzámsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
RészletesebbenRekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26
Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő
RészletesebbenNUMERIKUS SOROK I. A feladat ekvivalens átfogalmazása a következő végtelen sok tagú összegnek a meghatározása ) 1 21
NUMERIKUS SOROK I. Ha az {a n } (n N) sorozat elemeiből egy új {s n } (n N) sorozatot képezünk olyan módon, hogy s = a, s 2 = a + a 2,, s n = a + a 2 + + a n,, akkor ezt numerikus sornak (vagy csak simán
RészletesebbenEötvös Loránd Tudományegyetem Természettudományi Kar. Érdekes összegek. Szakdolgozat. Matematika BSc Tanár
Eötvös Loránd Tudományegyetem Természettudományi Kar Érdekes összegek Szakdolgozat Készítette: Pressing Dániel Matematika BSc Tanár Témavezető: dr Besenyei Ádám Adjunktus Budapest, 4 Tartalomjegyzék Bevezetés
RészletesebbenGyakorló feladatok I.
Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
RészletesebbenAlgebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom
RészletesebbenA sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
RészletesebbenBevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
RészletesebbenGyakorló feladatok az II. konzultáció anyagához
Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n
Részletesebben1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Részletesebbenminden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
RészletesebbenTartalom. Algebrai és transzcendens számok
Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast
RészletesebbenKövetkezik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.
Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges
RészletesebbenSzakács Lili Kata megoldása
1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
RészletesebbenEgészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
RészletesebbenAnalízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
RészletesebbenBizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
RészletesebbenÉrdekességek az elemi matematika köréből
Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház
Részletesebben4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim
Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2
RészletesebbenMegoldások 11. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 016. március 1115. Megoldások 11. osztály 1. feladat Egy háromszög három oldalának mér száma, a, b, c ebben a sorrendben egy mértani sorozat három egymást
Részletesebbenvégtelen sok számot?
Hogyan adjunk össze végtelen sok számot? Németh Zoltán, SZTE Bolyai Intézet www.math.u szeged.hu/~nemeth 2006, 2007. Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan
RészletesebbenAnalízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
RészletesebbenSorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
RészletesebbenFourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
RészletesebbenVIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
Részletesebben2. Reprezentáció-függvények, Erdős-Fuchs tétel
2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív
Részletesebbenismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Részletesebbenvégtelen sok számot?
Hogyan adjunk össze végtelen sok számot? Németh Zoltán, SZTE Bolyai Intézet www.math.u szeged.hu/~nemeth 2006. Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan
RészletesebbenKalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
RészletesebbenSorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
RészletesebbenA folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.
Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 016. április 7. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.
RészletesebbenKözepek Gauss-kompozíciója Gondolatok egy versenyfeladat kapcsán
Gondolatok egy versenyfeladat kapcsán Debreceni Egyetem, Matematikai Intézet, Analízis Tanszék Regionális Matematika Szakkör Megnyitója Debrecen, 015. szeptember 7. AGH-egyenl tlenség Tétel Értelmezzük
RészletesebbenElemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
Részletesebben= Itt a jobb oldalon föllelhető az először az Egyiptomi Középbirodalomban használt
2 Átmenet az analitikus számelmélet felé: Lánctörtek 2 Történeti bevezetés Az általános vélekedéssel szemben nem Diofantosz volt az első, aki egész együtthatós határozatlan egyenletek egész megoldásait
RészletesebbenVEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
RészletesebbenMinden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.
1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden
Részletesebben1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
Részletesebben1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenA folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.
Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 014. április 1. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.
RészletesebbenSzA XIII. gyakorlat, december. 3/5.
SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?
RészletesebbenVIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
RészletesebbenMegoldott feladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA
Megoldott eladatok IX. osztály 7 MEGOLDOTT FELADATOK A IX. OSZTÁLY SZÁMÁRA. Az : R R üggvény teljesíti az ( + y) = ( a y) + ( y) ( a ) összeüggést bármely,y R esetén (a egy rögzített valós szám). Bizonyítsd
RészletesebbenAz egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
RészletesebbenProgramtervező informatikus I. évfolyam Analízis 1
Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás
RészletesebbenAlgebra es sz amelm elet 3 el oad as Permut aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Permutációk Waldhauser Tamás 2014 őszi félév 1. Definíció. Permutációnak nevezzük egy nemüres (véges) halmaz önmagára való bijektív leképezését. 2. Definíció. Az {1, 2,...,
RészletesebbenA prímszámok eloszlása, avagy az első 50 millió
Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,
Részletesebben7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
RészletesebbenAlapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
Részletesebbenb, b > 0 racionális szám, hogy a
3. A lánctörtek alkalmazásai. 3.. Diofantikus approximáció. Alapkérdés: Mennyire jól közelíthetők az irracionálisok racionális számokkal? Megjegyzés. Mindenek előtt azt kell tisztázni, hogy mit jelent
RészletesebbenDiszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
RészletesebbenHatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
Részletesebben4. Számelmélet, számrendszerek
I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenFüggvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenAkkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk
Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Egyetemi tavasz Szeged, SZTE L. Csizmadia (Szeged) Egyetemi tavasz 2013. 2013.04.20.
RészletesebbenFüggvények alkalmazása feladatokban. nemethj
Dr. Németh József Függvények alkalmazása feladatokban http://www.math.u-szeged.hu/ nemethj . Oldjuk meg a következő egyenletet: x 6 + 6 x x 5x 6. Megoldás. Vizsgáljuk az ÉT.-t! A bal oldalon x 6 0 x 6
RészletesebbenKiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok
Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)
Részletesebben352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
RészletesebbenHatárérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.
Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:
RészletesebbenKiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok
Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)
Részletesebbenegyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
RészletesebbenAz R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenFeladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet
Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
RészletesebbenSzámelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
Részletesebben1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
Részletesebben4. Sorozatok. 2. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 100 =
4. Sorozatok Megjegyzés: A szakirodalomban használt a sorozat tagjáról, máskor eleméről beszélni. Az alábbiakban mindkét kifejezést használtuk megtartva a feladatok eredeti fogalmazását. I. Feladatok.
RészletesebbenLogika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
RészletesebbenGyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6
Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenMatematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
Részletesebben1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
Részletesebbenilletve a n 3 illetve a 2n 5
BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)
RészletesebbenFeladatsor A differenciálgeometria alapja c. kurzus gyakorlatához
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó
RészletesebbenOSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
RészletesebbenMagyary Zoltán Posztdoktori beszámoló előadás
Magyary Zoltán Posztdoktori beszámoló előadás Tengely Szabolcs 2007. november 9. Számelméleti Szeminárium tengely@math.klte.hu slide 1 Eredmények Eredmények Chabauty (T.Sz.): On the Diophantine equation
RészletesebbenSHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Részletesebben5. Az Algebrai Számelmélet Elemei
5. Az Algebrai Számelmélet Elemei 5.0. Bevezetés. Az algebrai számelmélet legegyszerűbb kérdései az ún. algebrai számtestek egészei gyűrűjének aritmetikai tulajdonságainak vizsgálata. Ezek legegyszerűbb
RészletesebbenFonyó Lajos: A végtelen leszállás módszerének alkalmazása. A végtelen leszállás módszerének alkalmazása a matematika különböző területein
A végtelen leszállás módszerének alkalmazása a matematika különböző területein A végtelen leszállás (infinite descent) egy indirekt bizonyítási módszer, ami azon alapul, hogy a természetes számok minden
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
RészletesebbenMiért érdekes a görög matematika?
2016. március Tartalom 1 Bevezetés 2 Geometria 3 Számelmélet 4 Analízis 5 Matematikai csillagászat 6 Következtetések Bevezetés Miért éppen a görög matematika? A középiskolások sok olyan matematikai témát
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2
RészletesebbenSZÁMELMÉLETI FELADATOK
SZÁMELMÉLETI FELADATOK 1. Az 1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4 számokat a pitagoreusok háromszög számoknak nevezték, mert az összeadandóknak megfelelő számú pont szabályos háromszög alakban
RészletesebbenOszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):
Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész
RészletesebbenA következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
RészletesebbenZáróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
Részletesebben