Kiralitás és homokiralitás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kiralitás és homokiralitás"

Átírás

1 A biológiai kiralitás eredetének sztohasztikus kinetikai modelljei Lente Gábor Debreeni Egyetem, Szervetlen és Analitikai Kémiai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Matematikai Modellalkotás Szeminárium,. szeptember 8.

2 Kiralitás és homokiralitás Királisnak nevezzük azokat a testeket, térbeli szerkezeteket, amelyek saját tükörképükkel nem hozhatók fedésbe Biológiai kiralitás aminosavak (L-enantiomer) fehérjék ukrok (D-enantiomer) poliszaharidok és nukleinsavak Következetesebb jelölésrendszer: R és S Kiralitás és homokiralitás Tükörképi párok EATIOMEREK energetikai szempontból pontosan azonosak A biológiai kiralitás oka sakis kinetikai lehet, vagyis a reakiók sebességi viszonyaival függ össze

3 Contergan (R)-enantiomer (S)-enantiomer teratogén hatású hatékony szedatívum a szervezetben nagyon gyorsan raemizálódik Abszolút aszimmetrikus reakió: jelentős enantiomerfelesleg kialakulása akirális reaktánsokból aszimmetrikus külső hatások nélkül Királis autokatalízis: kémiai reakió, amelyben a királis termék egyik enantiomere gyorsítja saját keletkezését (de a másik enantiomerét nem) 3

4 4+ H H HO OH OH Co H H H Co OH H Co OH HO H4Br H H + H H4Br H3 H Co H + Co(HO)6+ Br H királis K. Asakura et al. J. Phys. Chem. A, 4, 689. enantiomerfelesleg : R S ee = R+S kísérlet K. Asakura et al. J. Phys. Chem. A, 4,

5 A Soai-reakió OH i-pr Zn H + CHO (S) Et O-toluol (3,7 :,) H + OH (R) K. Soai et al. Tetrahedron Asymm. 3, 4, azonos kísérlet K. Soai et al. Tetrahedron Asymm. 3, 4, 85. 5

6 ..75 Soai-reakió: enantiomereloszlás K. Soai et al. Tetrahedron Asymm. 3, 4, 85. F(x) x R..75 Soai-reakió: enantiomereloszlás K. Soai et al. Tetrahedron Asymm. 3, 4, 85. F(x).5.5 K. Soai et al. Chirality 6, 8, x R 6

7 Determinisztikus kinetika d = dt f () : a rendszerben előforduló összes anyagfajta konentráióját tartalmazó vektor, az idő függvénye Egyértelműen meghatározott kiindulási állapot Egyértelműen meghatározott állapot bármely időpillanatban Reprodukálhatatlanság: lényeges, de nem kellő mértékben szabályozott külső tényezők ingadozásának hatására, a kísérletező számára látszólag azonos körülmények között mért különböző eredmények Sztohasztikus jelleg: természeti törvény(ek) következményeként pontosan azonos körülmények között különböző eredmények 7

8 9Bi ature, 3, 4, 876. t/ =,9 9 év λ =, 7 s Determinisztikus leírás dnbi = λnbi dt Elsőrendű reakió kezdeti állapot: db bizmutmag nbi = e λt 8

9 Sztohasztikus leírás kiszemelt bizmutmag t idő után még nem bomlott el: e λt elbomlott: e λt exponeniális eloszlás db bizmutmag közül t idő után pontosan m bomlott el: Várható érték: Szórás: e m ( λt ) m ( e binomiális eloszlás µ = ( e σ = ( e λt ) λt λt )e λt ) m Elsőrendű modell sztohasztikus tartománya λt (= ln t / t ½ ).E+.E-6.E-.E-8 45,7 g tömegű Bi 4 Ge 3 O bolométer = 8,8 sztohasztikus tartomány (σ/µ >,) óra mérési idő λt = 4,3.E-4.E+.E+8.E+6.E+4 9

10 Egy egyszerű királis autokatalitikus modell A B (B R vagy B S ) v = k u [A] d[a] = k dt u [A] k [A]([B R ] + [B S ]) A + B R B R v = k [A][B R ] A + B S B S v 3 = k [A][B S ] d[b dt d[b dt R S ] =, 5k ] =, 5k u u [A] + k [A] + k [A][B [A][B R S ] ] analitikusan megoldható Egy egyszerű királis autokatalitikus modell A B (B R vagy B S ) v = k u [A] A + B R B R v = k [A][B R ] [B A + B S B S v 3 = k [A][B S ] [B analitikusan megoldható R S ] ] λ k [B ] u = + R t k λ λ k[a] + k[a] e λ k λ = [B k + k + u ] [ A] + k[br ] k[bs ] u = + S t k λ λ k[a] + k[a] e ku k ku k

11 k u = 5 s k = 8 M s V = m 3 kezdeti állapot: [A] =, M [B R ] = [B S ] = végállapot: [B R ] =, M [B S ] =, M molekula átalakulása után: [A] =, M [B R ] =,66 M [B S ] = végállapot: [B R ] =,943 M [B S ] =,57 M Sztohasztikus kinetika P. Érdi and J. Tóth Mathematial models of hemial reations Theory and appliations of deterministi and stohasti models Manhester University Press, 989. Tóth János, Érdi Péter A formális reakiókinetika modelljei, problémái és alkalmazásai A kémia legújabb eredményei oldal Akadémiai Kiadó, Budapest, 978.

12 Sztohasztikus kinetika A B R A B S diszkrét állapot - folytonos idő n: az A molekulák száma reakió előtt (r,s) állapot: pontosan r darab B R és s darab B S molekula van jelen, (n r s) darab A molekula maradt P(r,s,t): annak a valószínűsége, hogy a rendszer t időpillanatban éppen az (r,s) állapotban van A B R v =,5κ u a+ κ ar κu = k u dp( r, s, t) dt + { κ u A B S v =,5κ u a+ κ as / = ( κ + κ r + κ s)( n r + κ ( r u )}( n r s + ) P( r κ = k V A s) P( r, s, t) +, s, t) + + { κ u / + κ ( s )}( n r s + ) P( r, s, t)

13 Lineáris, elsőrendű, homogén, állandó együtthatós differeniálegyenlet-rendszer dp( t) = M P( t) dt az állapotok száma: ( n + )( n + ) M = rendezőfüggvény: P( t) = P()exp( M t) ( r + s)( r + s + ) f ( r, s) = + r + Q(r,s): annak a valószínűsége, hogy a rendszer a reakió során bármikor áthalad az (r,s) állapoton.e+.e-6 sztohasztikus tartomány α.e-.e-8.e-4.e+.e+8.e+6.e+4 3

14 α = κ /κ u = 3 f(x) n = n = 5 n = x R Elsőrendű autokatalízis f ( x Diszkrét-folytonos átmenet nagyon nagy részeskeszámra: Γ α Γ Γ α α ( / α ) (/ α) R ) = lim nq( r,s) = xr ( xr ) n,x = r / n r Béta-eloszlás Lente, G. J. Phys. Chem. A, 4, 8,

15 f(x) eloszlási sűrűségfüggvény α =,5 3 f(x) α =, α =,5 α = α = x R.75 F(x) = x f ( ν ) dν eloszlásfüggvény α =,5 α =, α = F(x).5 α =,5 α = x R 5

16 Magasabb rendű autokatalízis A B R v =,5κ u a+ κ ar ξ A B S v =,5κ u a+ κ as ξ ahol ξ > α = κ /κ u = 5 4 másodrendű autokatalízis α = 4 f(x) 3 n = n = 5 n = x R 6

17 ..75 Illeszkedésvizsgálat: Asakura-reakió másodrendű autokatalízis α = 5,5 4 n = 6, elsőrendű autokatalízis α =,6 F(x).5.5 normál eloszlás σ =, x R. Illeszkedésvizsgálat: Soai-reakió.75 másodrendű autokatalízis α = 3,8 n = 3, F(x).5.5 elsőrendű autokatalízis α =, x R 7

18 A Frank-modell F. C. Frank, Biohim. Biophys. Ata 953,, 459. A Frank-modell A: nem királis molekula B R és B S : királis tükörképi molekulapár C: nem királis bomlástermék reakióindítás: A B R A B S v = k u [A] v = k u [A] királis autokatalízis: A + B R B R v = k [A][B R ] A + B S B S v = k [A][B S ] kölsönös antagonizmus: B R + B S C v = k d [B R ][B S ] 8

19 Az enantiomerfelesleg definíiója hagyományos módosított determinisztikus ee = [B [B R R ] [B ] + [B S S ] ] E = [ B ] [B R [A] S ] sztohasztikus (várható érték) ee ee i P i = n i = E E i P i = n i = = {aκ Zárt rendszer számolás differeniálegyenlet-rendszer dp( a, r, s, t) = dt u + arκ + asκ + rsκ d } P( a, r, s, t) + + {( a + ) κ u + ( a + )( r ) κ } P( a +, r, s, t) + + {( a + ) κ u + ( a + )( s ) κ } P( a, r, s, t) + + {( r + )( s ) κ d } P( a, r +, s +, t) ee(t = ) = E(t = ) Végállapot: sak C és B R vagy B S 9

20 Eloszlások Q(,n,).. κ /κ u =, = n 3 κ d /κ u E értékek = E 4 κ /κ u 4 κ d /κ u 4

21 Átfolyásos rendszer (CSTR) A-t betápláljuk, A, B, C keverékét elvezetjük E ee Állandó részeskeszám Átfolyási reakió: B R, B S vagy C seréje A-ra (κ f ) B S B S A A A C A, B R, B S, C B R B R Átfolyásos rendszer staionárius állapot az egyes állapotok valószínűsége független az időtől, a staionárius állapot független a kezdeti feltételektől Algebrai egyenletrendszer: nn lineáris egyenlet = {aκ + {( a + ) κ + {( a + ) κ + {( r + )( s ) κ + ( r + ) κ + ( s + ) κ f + arκ + ( a + )( r ) κ + ( a + )( s ) κ P( a, r +, s) + f u P( a, r, s + ) + + ( a r a + ) κ u u d + asκ + rsκ } P( a, r +, s +, t) + f d P( a, r, s) + ( a) κ } P( a +, r, s) + } P( a, r, s ) + f } P( a, r, s) + Állapotok száma: + 3 ( + 3)( + )( + ) nn = = 3 6 Rendezőfüggvény: 3 a a( a + ) f ( a,r,s ) = + a 6 = M P a + a r 3r + + r( a ) + + s +

22 E és ee értékek κu/κf = = E ee κ/κf κd/κf κ/κf κd/κf Lente, G.; Ditrói, T. J. Phys. Chem. B, 9, 3, 737. E és ee értékek κu/κf = = Lente, G. Symmetry,,, 767.

23 A Soai-reakió sztohasztikus modellje OH i-pr Zn H + CHO (S) Et O-toluol (3.7 :.) H + OH (R) A Soai-reakió kinetikai modellje Reation Reation + z zr k z 9 dr + tr k 3 dr + z zs k z tr dr + k 3b tr 3 zr + zr dr k (zr) ds + ts k 3 ds 4 dr zr k b dr ts ds + k 3b ts 5 zs + zs ds k (zs) 3 drs + trs k 3 drs 6 ds zs k b ds 4 trs drs + k 3b trs 7 zr + zs drs α k zs zr 5 tr + z dr + zr k 4 tr z 8 drs zr + zs k b drs 6 ts + z ds + zs k 4 ts z 7 trs + z drs + zr k 4 trs z 8 trs + z drs + zs k 4 trs z T. Buhse Tetrahedron Asymm. 3, 4, 55. 3

24 Anyagmegmaradás: Az állapotok száma = + zr + zs + (dr + ds + drs) + z = z + zr + zs + 3 (tr + ts + trs) + (dr + ds + drs + tr + ts + trs) Az állapotok száma: Ezen egyenletrendszer megoldásainak száma (minden ismeretlen nemnegatív egész szám) Az állapotok száma n = = z M Ha n osztható 6 - M( n ) = 3 6 8! n 7 8! n n ! tal : + n 3 8! 3 n = = z n 3 8! 5 M n 8 8! n + 8! ~4,7 ~, n 8! 5 + 4

25 Az állapotok száma n = = z M n = = z M ~4,7 ~,3 7 Rendezőfüggvény yers erő : az értelmezési tartomány és az értékkészlet teljes felsorolása (8 állapot) Mátrixformalizmus: teljes megoldás mátrixexponeniális függvénnyel 5

26 6 Időfüggések µ () 4 ee µ () 5 ee % % t (s) Enantiomereloszlás végállapotban. P s ee n r 6

27 Monte Carlo (MC) szimuláió Eloszlások közelítése nagy számú egyedi szimuláióval A Természet nem old meg differeniálegyenleteket, hanem MC szimuláiót végez MC szimuláió a Soai-reakióban agyon lassúúúúúúúúúúúúúúúúúúúú... Reation v = Reation v = + z zr + z zs k z k z dr + tr tr dr + k 3 dr k 3b tr 7 78 zr + zr dr k (zr) 357 ds + ts k 3 ds dr zr k b dr 355 ts ds + k 3b ts zs + zs ds k (zs) 6 drs + trs k 3 drs 7 ds zs k b ds 6 trs drs + k 3b trs zr + zs drs drs zr + zs α k zs zr k b drs 3 3 tr + z dr + zr ts + z ds + zs trs + z drs + zr trs + z drs + zs k 4 tr z k 4 ts z k 4 trs z k 4 trs z 9 4 = 6 9 ; z =, ; V =,9 m 3 7

28 Gyorsító trükk Új változó: mr = zr + dr (hasonlóan ms = zs + ds) [ m / ] i r k AV m r! i i = k i b i!(mr i)! dr = [ m / ] i r k + AV m r! i = kb i!(m i)! r i zr = mr dr 8

29 . A Soai-reakió MC szimuláiója.75 F(x).5.5 zr and zs molekula képződéséig ismétlés: x R..75 A Soai-reakió MC szimuláiója Binomiális eloszlás P( m) =. 5 m F(x).5.5 zr and zs molekula képződéséig ismétlés: x R 9

30 Determinisztikus folytatás Determinisztikus differeniálegyenlet-rendszer A kezdeti érték az MC szimuláió végeredménye em jósol kimutatható enantiomerfelesleget makroszkopikus nagyságú anyagmennyiségekre!!! Ez a következtetés nem változik, ha bármely paraméter -3 nagyságrenddel változik 4 Determinisztikus folytatás. A Soai-reakió MC szimuláiója 3.75 F(x).5 ee % [] =, M [z] =, M.5 [zr] =,78 8 M [zs] =,9 8 M zr and zs molekula képzodéséig ismétlés: x R 4 8 t (ps) 3

31 Összefoglalás Sztohasztikus kinetika: ritka, de esetenként feltétlenül szükséges a kémiában A biológiai kiralitás kialakulásában a királis autoktalízis szerepe Kísérletileg mért és elméletileg levezettet eloszlások összehasonlításának jelentősége 3

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Reakció kinetika és katalízis

Reakció kinetika és katalízis Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus

Részletesebben

Differenciál egyenletek (rövid áttekintés)

Differenciál egyenletek (rövid áttekintés) Differeniál egyenletek (rövid áttekintés) Differeniálegyenlet: olyan matematikai egyenlet, amely egy vagy több változós ismeretlen függvény és deriváltjai közötti kasolatot írja le. Fontosabb tíusok: közönséges

Részletesebben

Oppozíció Lente Gábor doktori értekezéséről

Oppozíció Lente Gábor doktori értekezéséről Oppozíció Lente Gábor doktori értekezéséről Élő szervezetekben minden királis vegyületnek mindig csak az egyik enantiomerje fordul elő. Pasteur szerint ez az egyetlen világos határ [ ] az élettelen és

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

A környezetszennyezés folyamatai anyagok migrációja

A környezetszennyezés folyamatai anyagok migrációja A környezetszennyezés folyamatai anyagok migráiója 9/1 Migráió homogén és heterogén környezeti rendszerekben Homogén rendszer: felszíni- és karsztvíz, atmoszféra Heterogén rendszer: talajvíz, kızetvíz,

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

Molekulák mozgásban a kémiai kinetika a környezetben

Molekulák mozgásban a kémiai kinetika a környezetben Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

ODE SOLVER-ek használata a MATLAB-ban

ODE SOLVER-ek használata a MATLAB-ban ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József

Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Matematika III. 5. : Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Szemináriumi feladatok (alap) I. félév

Szemináriumi feladatok (alap) I. félév Szemináriumi feladatok (alap) I. félév I. Szeminárium 1. Az alábbi szerkezet-párok közül melyek reprezentálják valamely molekula, vagy ion rezonancia-szerkezetét? Indokolja válaszát! A/ ( ) 2 ( ) 2 F/

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER

Részletesebben

A biológiai kiralitás eredetét értelmező kémiai reakciók modellezése

A biológiai kiralitás eredetét értelmező kémiai reakciók modellezése A biológiai kiralitás eredetét értelmező kémiai reakciók modellezése MTA Doktori értekezés Lente Gábor Debreceni Egyetem, Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

BME Járműgyártás és -javítás Tanszék. Javítási ciklusrend kialakítása

BME Járműgyártás és -javítás Tanszék. Javítási ciklusrend kialakítása BME Járműgyártás és -javítás Tanszék Javítási ciklusrend kialakítása A javítási ciklus naptári napokban, üzemórákban vagy más teljesítmény paraméterben meghatározott időtartam, amely a jármű, gép új állapotától

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

A mikroskálájú modellek turbulencia peremfeltételeiről

A mikroskálájú modellek turbulencia peremfeltételeiről A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Excel segédlet Üzleti statisztika tantárgyhoz

Excel segédlet Üzleti statisztika tantárgyhoz Miskolci Egyetem Üzleti Statisztika és Előrejelzési Intézeti Tanszék Excel segédlet Üzleti statisztika tantárgyhoz. Z próba einek meghatározása óbafüggvény: x - m z = ; vagy σ/ n x - m z = ; vagy s/ n

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 5. előadás: /22 : Elemi reakciók kapcsolódása. : Egy reaktánsból két külön folyamatban más végtermékek keletkeznek. Legyenek A k b A kc B C Írjuk fel az A fogyására vonatkozó

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 14. előadás: Enzimkatalízis 1/24 Alapfogalmak Enzim: Olyan egyszerű vagy összetett fehérjék, amelyek az élő szervezetekben végbemenő reakciók katalizátorai. Szubsztrát: A reakcióban

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

ó ő ő ő ő ü ő ő ö ó ü ź ű ĘĘ ü É É É Ü Ü É É É É É Ĺ É Ü É É Ö É É É Ł É ü ő ź É Ü ö ź ź ő ő ő ä ű ö ő ö ő ő ö ó ź ö ö ö ę ő ö ó ó ö ú ő ü ź ő ő ő ő ö ó ő ę ő ó ö ő ü ű ü ö ü ő ő ő ő ö ö ő ő ő ö ő ó ö

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

Differenciálegyenletek a mindennapokban

Differenciálegyenletek a mindennapokban Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

A kutatás eredményei 1

A kutatás eredményei 1 A kutatás eredményei 1 SZELEKTÍV SZINTÉZISMÓDSZEEK KIFEJLESZTÉSE VIZES KÖZEGBEN ÁTMENETIFÉM-KMPLEXEK JELENLÉTÉBEN 1. Bevezetés.1 2. A Nozaki-Hiyama reakció módosítása: szén-szén kötés enantioszelektív

Részletesebben