1. MATEMATIKAI ÖSSZEFOGLALÓ

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. MATEMATIKAI ÖSSZEFOGLALÓ"

Átírás

1 1. MTEMTIKI ÖSSZEFOGLLÓ fejeet néhány olyan matematiai össefüggést foglal össe, ao egat bionyítása nélül, amelyete a Fiia I. c. tágy tágyalása soán felhasnálása eülne Vetoo, művelete vetooon Saláis és vetomennyisége olyan mennyisségeet, amelye poitív és negatív sámoal jellemehető saláis mennyiségene neveü. Ilyen, pl. a töltés, a tömeg, a hőmésélet, a sűűség, a muna. oat a mennyiségeet visont, amelye megadásáho méetü mellett még tébeli helyetüe, iányaia is süség van, vetomennyiségene neveü. Pl. eő, sebesség, gyosulás, eletomos és mágneses téeősség. Mind a saláis, mind a vetomennyisége a hely és idő függvényében váltohatna. míg egy adott időpillanatban egy adott helyen a saláis mennyiséget egy poitív vagy negatív étéű sámadat és a météegysége jellemi, addig egy adott helyen egy adott időpillanatban a vetomennyiséget a nagysága és météegysége mellett a iánya is meghatáoa. F = Fe F (1.1) vetomennyiség F nagysága a veto hossával, a veto F absolút étéével adható meg, F = F, (1.2) a veto e F iányát a F veto iányába mutató = F F (1.3) e F egységveto definiálja ába. F veto ábáolása 1.1. ábán látható F veto a pontból a pont felé mutat, hossa F, iányát a pontoat össeötő egyenes iányába mutató, a pontból a pont felé mutató e F egységveto adja meg.

2 4. Iványi, Fiia-I Pont helyvetoa deésögű, Descates oodináta endseben a, y, oodinátáal jellemett P (, y, ), aa a P( ) pont helye (1.2. ába) a oodináta endse oigójából a P pont felé mutató vetoal adható meg, ahol a veto a, y, oodináta vetületeivel és a oodináta tengelye iányába mutató e, ey, e egységvetooal a öveteő = e + yey + e. (1.4) 1.2. ába. P pont a deésögű oodináta endseben Két veto ao teinthető egyenlőne, ha a absolút étéü egyenlő, és iányú megegyei, aa páhuamosa és egyenlő nagyságúa Vetoművelete Vetooon alalmaott lineáis opeáció, a jelen esetben lineáis művelete a össeadás, a ivonás és a állandóval való soás. Legyen 1 és 2 ét helyveto, a deésögű oodináta endsebeli (Descates-féle) oodináta vetületeivel adott 1 = 1e + y1e y + 1e, 2 = 2e + y2ey + 2e. (1.5) (i) ét helyveto össege a = 1 + 2, (1.6) 1.3. ába. Két veto össege 1.4. ába. Két veto ülönbsége a a veto, amelye a = 0 össefüggés fennáll, aa a 1, 2 és a vetoo át háomsöget (több veto esetén át sosöget) alotna (1.3. ába). eedő

3 1. Fejeet, Matematiai össefoglaló 5 veto oodináta vetületei a omponense oodináta vetületeine össegeént adható meg = + e + y + y e + e. (1.7) ( 1 2 ) ( 1 2 ) y ( ) (ii) ét helyveto ülönbsége a 1 és a 2 vetoo össege (1.4. ába), = 1 2. (1.8) ülönbségi veto oodináta vetületei a omponense oodináta vetületeine ülönbségével a öveteő alaban fejehető i = e + y y e + e. (1.9) ( 1 2 ) ( 1 2 ) y ( 1 2 ) helyvetona valamely c állandóval való soata a veto hossána, absolút 1 étééne, a megnövelését ( c >1), ill. csöentését ( c < 1) eedményei c 1 = c1e + cy1e y + c1e 2 2 =, ( ) ( ) ( ) 2 = c + + (1.10) 1 cy1 c1 (iii) Két veto saláis soata saláis mennyiség. 1 és a 2 vetoo 1 = 2 saláis soatána a ét veto absolút étééne, és a ét veto által beát isebbi ϕ sög soatával apott = 1 2 cosϕ saláis mennyiséget neveü, (1.5. ába) = cosϕ. (1.11) ába. Két veto saláis soata 1.6. ába. Egységvetoo saláis soata deésögű Descates-féle oodináta endseben a páhuamos egységvetoo saláis soatai egységnyi saláis étéet eedményene, míg a egymása meőleges egységvetoo saláis soatai nulla étéet adna (1.6. ába) e e = 1, ey ey = 1, e e = 1, (1.12) e e = 0, e e = 0, e e = 0. y y 1 = 2 vetoo saláis soatána eedménye a oodináta omponenseel is megadható, ha figyelembe vessü a egységvetoo saláis soataia vonatoó össefüggéseet. Így a 1 2 saláis soat a öveteő alaban íható = e + y e + e e + y e + e = + y y. (1.13) ( 1 1 y 1 ) ( 2 2 y 2 ) = 2 1 cosϕ Két veto saláis soata úgy is ételmehető, mint a egyi vetona a mási vetoa eső vetülete 1 cosϕ soova a mási veto 2 hossával (1.7. ába).

4 6. Iványi, Fiia-I 1.7. ába 1 vetona a 2 vetoa vonatoó vetülete (iv) Két veto vetoiális soata vetot eedménye. 1 és a 2 vetoo 1 = 2 vetoiális soatána at a vetot teintjü, amelyne a 1 2 sin ϕ hossúsága a 1 és a 2 vetoo által ifesített paalelogamma teületével egyenlő, iánya meőleges mind a 1 mind a 2 vetoa, olyan iányítással, hogy a 1, a 2 és a vetoo jobbsodású hámast alotna (1.8. ába) = = sinϕ. (1.14) 1 2, ába. 1 és a 2 vetoo vetoi soata 1.9. ába. Egységvetoo vetoiális soata deésögű, Descates-féle oodináta endseben a páhuamos egységvetoo vetoiális soatai nullahossúságú vetot eedményene, míg a egymása meőleges egységvetoo vetoiális soatai mindét vetoa meőleges, egységnyi hossúságú, egységvetot adna (1.9. ába) e ey = e, ey e = e, e e = ey, (1.15) e e = 0, e e = 0, e e = 0. y y Figyelembe véve a egységvetoo vetoiális soataia vonatoó fenti össefüggéseet, ét veto vetoi soata a vetoo oodináta omponenseivel is ifejehető a öveteő detemináns iétéelésével e ey e = y = e y y e + e y y ). (1.16) 2 y2 2 ( ) y ( ) (

5 1. Fejeet, Matematiai össefoglaló 7 vetoo soataina tulajdonságai öül i ell emelni a saláis soat ommutatív tulajdonságát, míg meg ell jegyeni, hogy a vetoiális soat nem ommutatív, aa vetoiális soat eleine felcseélése ugyanolyan nagyságú, de elleneő iányú vetot eedménye = =. (1.17) , integál és a deivált fogalma Salá-veto és veto-veto függvénye olyan Φ saláis mennyiséget, amely a geometiai té egy tatományána minden veto által ijelölt pontjában maghatáoott étéet ves fel Φ = Φ( ) salá-veto függvényne neveü. Ilyen salá-veto függvény pl. a hőmésélet, a sűűség, a salá potenciál. olyan V vetomennyiséget, amely a geometiai té egy tatományána minden veto által ijelölt pontjában maghatáoott veto étéet ves fel V = V ( ) veto-veto függvényne neveü. Ilyen pl. a sebesség, a eletomos és a mágneses téeősség, stb vonalintegál Mint ismeetes, ha a geometiai té valamely pontjában egy F( ) eő hat egy tömegponta, amely a eő hatásáa valamely iányába l elmodulást vége, ao a tömegpont W munát vége, W = Fl, (1.18) ahol F l ( ) ( ) l a eőne a elmodulás iányába eső omponense, l pedig a út hossa (1.10.a ába). fenti (1.18) össefüggés a vetoo saláis soata alapján megadható a eő és a elmodulás vetoo saláis soataént W = F l, W = F l cosϕ. (1.19) 1.10.a ába. elemi tömegpont F l eő hatásáa a l úton való elmodulása 1.10.b ába. vonalintegál ételmeése, a munavégés sámítása

6 8. Iványi, Fiia-I Ha a F( ) eő hatásáa a elemi tömegpont a pontból a pontba modul el valamely l út mentén, ao a út elemi saasain végett munavégése össege a pontból a pontba való elmodulás soán ifejtett munát eedményei (1.10. b ába). N W = W. (1.20) = 1 Et a munát úgy hatáohatju meg, hogy a ponto öötti útsaast N elemi ése bontju. adi elemi útsaast a l veto jelleme. Minden elemi saas belsejében felvesün egy pontot, és ott meghatáou a eőhatás nagyságát F ( ), amelyet a elemi elmodulás vetoal saláisan soova a -adi saason végett munát apju W = F l. (1.21) ( ) össes elemi saason apott munavégéseet össegeve a ét pont öötti munavégést apju W N N = W = F( ) l. (1.22) = 1 = 1 Ha a elemi saaso hossát, absolút étéét, minden hatáon túl csöentjü, ao a út elemi l saasaina végtelen finom dl ostása seinti össegeéshe, a F( ) eőne a ponto öötti vonalintegáljáho, a tömegpont elmodításáho süséges munavégéshe jutun W = l lim N F 0 = 1 ( ) l = F( ) dl. (1.23) Minthogy a lassius fiia ételemben a pontból a pontba való elmodulás soán végett muna valamint a pontból a pontba való vissatéés soán végett össes muna nulla, W = F ( ) dl + F( ) dl = 0, (1.24) aa a integál alsó és felső hatáaina felcseélése a integál eedményében egy negatív előjelet eedménye F = dl. (1.25) ( ) dl F( ) dju meg a F( ) eőt a eő F( ) = F( ) absolút éétével és a eő iányába mutató es F s egységvetoal, F( ) = F( ) ef, valamint a ponto öti elmodulást a l úthoss l absolút éétével (hossával), valamint a elmodulás éintője iányába mutató e l egységvetoal, l = lel. fenti jelöléseet a (1.23) ifejeésbe helyettesítve a ponto öti elmodulás soán végett muna ifejeésée a öveteőt apju

7 1. Fejeet, Matematiai össefoglaló 9 F ( ) dl = F( ) dl e F e. (1.26) l Vegyü figyelembe, hogy a ét egységveto, e F, el saláis soata a ( F ) eő és a l útsaas éintője öti sög osinusát eedményei, így a fenti (1.26) ifejeés a eőne a elmodulás iányába eső vetületéne a elmodulás menti integálját adja F ( ) dl e e = F l F cosϕ dl. (1.27) felületi integál Mint ismeetes, ha egy felületen mágneses inducióvonala menne át, ao össege a felület fluusát adjá. Enne meghatáoásáho teintsü a ábát, ahol a a felület a felület a méősámával és a hoá endelt n felületi nomálissal adható meg, a = a n ába. elemi felület ételmeése ába. felületi integál ételmeése ontsu fel a ábán látható a felületet N elemi a felülete, amely belsejében a veto egy pontot hatáo meg. megfelelően is méetű elemi a felület pontjában a ( ) mágneses inducióveto állandóna teinthető. Een elemi felületeen a inducióvetona a elemi felület nomálisával való saláis soata a inducióvetona a felülete meőleges omponensét eedményei ( ) = n. (1.13 ába) n ába. elemi felület fluusa ába. Zát felület fluusa Eo a a elemi felület Ψ fluusa Ψ = ( ) n a, aa Ψ = a. (1.28) teljes felület Ψ fluusa a elemi felülete fluusaina össege,

8 10. Iványi, Fiia-I N N Ψ = Ψ = ( ) a. (1.29) = 1 = 1 Ha a elemi felülete méetét minden hatáon túl csöentjü egy végtelen so elemből álló össeghe, a inducióna a a felülete vett integáljáho jutun, N Ψ = lim a = ( ) da. (1.30) a 0 = 1 a Egy át felületen a belépő fluus i is lép, (1.14. ába) da = Ψ, da =Ψ, (1.31) a1 1 1 a2 2 2 és minthogy Ψ 1 = Ψ2, így a át felület fluusa nulla, da = 0. (1.32) a téfogati integál Egy test tömegét a ρ sűűsége és a v téfogata hatáoa meg. Ha aonban a test sűűsége nem állandó, hanem a geometiai té egyes pontjaiban más-más étéet ves fel ρ = ρ( ), a test tömege a test sűűségfüggvényéne a téfogata vett integáljával hatáoható meg. ontsu fel a test v téfogatát olyan N sámú elemi v téfogatoa, amelye helyetét a vetooal lehet jellemeni. Teintsü a elemi v téfogat pontjában a test ρ = ρ( ) sűűségét állandóna, eo a elemi téfogat m tömegét a öveteő soattal fejehetjü i (1.15. ába) m = ρ v. (1.33) ába. elemi téfogat ába. téfogati integál ételmeése teljes v téfogat m tömege een elemi m tömege össegeént állítható elő, (1.16. ába) N m = Dm = ρ Dv. (1.34) = 1 N = 1

9 1. Fejeet, Matematiai össefoglaló 11 Ha a elemi v téfogato méeteit minden hatáon túl csöentjü, ugyancsa egy végtelen so elemből álló össeghe, a test ρ ( ) sűűségéne a v téfogata vonatoó integáljáho jutun m = N lim Dv 0 = 1 ρ Dv = ρ( ) dv. (1.35) v idő seinti deivált Teintsü egy téfogatban elhelyeedő Q ( t) töltés időbeli váltoását (1.17. ába) ába. időseinti diffeenciálhányados ételmeése Legyen a t 1 időpillanatban a töltés étée Q 1 = Q t 1, a t 2 Q 2 = Q t 2. téfogat töltése D t = t 2 t1 idő alatt D Q = Q 2 Q1 étéel váltoi meg. téfogat töltéséne megváltoásáa a töltés idő seinti diffeenciálhányadosa ad tájéotatást, amely a Dt időegység alatt létejött DQ töltés megváltoás hányadosána aon hatáétéével adható meg, amio a idő Dt növeménye nulláho tat dq dt t = ( ) t = időpillanatban ( ) DQ = lim. (1.36) Dt 0 Dt Ha a ábán a t2 időpillanat megegyei a t 1 időpillanattal, aa Dt nulláho tat, a (1.36) diffeenciálhányados a Q töltés időfüggvényéne időpillanatbeli éintőjét adja. t 1

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

FIZIKA I Villamosságtan

FIZIKA I Villamosságtan FZKA Viamosságtan D. ványi Miósné egyetemi taná 8. óa Készüt az ERFO-DD-Hu-- szeződésszámú pojet támogatásáva, 4. PTE PMMK Műszai nfomatia Tanszé EA-V/ . Foytonossági fetétee-ét mágneses anyag hatáfeüetén

Részletesebben

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

Elektrosztatika (Vázlat)

Elektrosztatika (Vázlat) lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus

Részletesebben

Elektromos áram mágneses erőtere, a Biot Savart-törvény

Elektromos áram mágneses erőtere, a Biot Savart-törvény TÓTH A: Mágneses eőté/ (ibővített óavázlat) 1 Eletomos áam mágneses eőtee, a iot Savat-tövény A mágneses eőtében fellépő eőhatáso számításánál mindig feltételeztü, hogy a té minden pontjában ismejü a mágneses

Részletesebben

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i 0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni

Részletesebben

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát. Oros Gyula, 00. november Emelt sintű érettségi feladatsor Össeállította: Oros Gyula; dátum: 00. október A feladatsorok össeállításánál felhasnáltuk a Nemeti Tankönyvkiadó RT. Gyakorló és érettségire felkésítő

Részletesebben

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög.

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög. 17. tétel kö és észei, kö és egyenes kölcsönös helyzete (elemi geometiai tágyalásban). Keületi szög, középponti szög, látószög. Def: Kö: egy adott ponttól egyenlő távolsága levő pontok halmaza a síkon.

Részletesebben

2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLASZOK EGYETEMI MÉRNÖKHALLGATÓK SZÁMÁRA

2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLASZOK EGYETEMI MÉRNÖKHALLGATÓK SZÁMÁRA 2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLSZK EGYETEMI MÉRNÖKHLLGTÓK SZÁMÁR (1) Mi a mechanika tága? nagi endseek (testek) heletváltotatással jáó mogásainak és a eeket létehoó hatásoknak (e knek) a visgálata. heletváltoást

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

f r homorú tükör gyűjtőlencse O F C F f

f r homorú tükör gyűjtőlencse O F C F f 0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp

Részletesebben

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA Mősimuláció végslm-módsl hái fladat HNGSZÓRÓ LENGŐTEKERCSÉRE HTÓ ERŐ SZÁMÍTÁS Késíttt: Gaamvölgyi Zsolt, 2007 visgált nds ábán látható fogássimmtikus nds komponnsi a kövtkők: állandómágns gyűű fémlmk tkcs

Részletesebben

2. STATIKUS ELEKTROMOS TÉR

2. STATIKUS ELEKTROMOS TÉR . STATIKUS ELEKTROMOS TÉR A nyugvó töltések iőben állanó elektomos teet keltenek amelyet statikus elektomos tének az elektomágneses témoellt elektosztatikus tének nevezzük. Az elektosztatikus té jelenlétét

Részletesebben

Differenciálegyenletek a mindennapokban

Differenciálegyenletek a mindennapokban Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,

Részletesebben

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet! HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem

Részletesebben

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007 ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos

Részletesebben

AXIÁL VENTILÁTOROK MÉRETEZÉSI ELJÁRÁSÁNAK KORREKCIÓJA

AXIÁL VENTILÁTOROK MÉRETEZÉSI ELJÁRÁSÁNAK KORREKCIÓJA DEBECENI MŰSZAKI KÖZLEMÉNYEK 7/ AXIÁL VENTILÁTOOK MÉETEZÉSI ELJÁÁSÁNAK KOEKCIÓJA MOLNÁ Ildió*, SZLIVKA Feenc** Szent Istán Egyetem, Géészmén Ka Könyezetiai endszee Intézet Gödöllő Páte Káoly út. *Ph.D

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

A MÁGNESES VEKTORPOTENCIÁL, MINT VALÓSÁGOSAN LÉTEZÔ VEKTORMEZÔ. A hazai mûhely A FIZIKA TANÍTÁSA

A MÁGNESES VEKTORPOTENCIÁL, MINT VALÓSÁGOSAN LÉTEZÔ VEKTORMEZÔ. A hazai mûhely A FIZIKA TANÍTÁSA Rejtõ ándo Geleji ándo Kovács István haai mûhely Véül meemlítem a silád testek plastikus defomációját és a dislokációk kontinuum-modelljét kutató Kovács István (1911) fiikust, a Eötvös Loánd Tudományeyetem

Részletesebben

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag, Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása Numeikus módszeek A. Egyenletek gyökeinek numeikus meghatáozása A1) Hatáozza meg az x 3 + x = egyenlet (egyik) gyökét éintı módszeel. Kezdje a számítást az x = helyen! Megoldás: x 1, Megoldás 3 A függvény

Részletesebben

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú

Részletesebben

É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í

Részletesebben

ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö

Részletesebben

É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á

Részletesebben

ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH : ielektikumok (kibővített óavázlat) z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alaptövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez

Elméleti összefoglaló a IV. éves vegyészhallgatók Poláris molekula dipólusmomentumának meghatározása című méréséhez lméleti összefoglaló a I. éves vegyészhallgatók oláis molekula dipólusmomentumának meghatáozása című mééséhez 1.1 ipólusmomentum Sok molekula endelkezik pemanens dipólus-momentummal, ugyanis ha a molekulát

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É

Részletesebben

ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö

Részletesebben

Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü

Részletesebben

í ő ľ ü ó ľ ľ ő ľ ü Ü Ü Ł ľ ü ľ ü ľ ö ľü íľ ő ő ź ő í ó ü ľ ö ü ü ó ő ö ľĺ ó ľó ő ő ö ź í ö ő źą ö í ő ü ö ö ü ő í ľ ó ó ó ü ó ó ó ő ö í ó í ü ö í ő ę í ö ü ą í ľ ó ő í ú í ó ő ö ó ó ő ü í ó ľ í ľź ľ ú

Részletesebben

Zaj és rezgésvédelem

Zaj és rezgésvédelem OMKT felsőfokú munkavédelmi szakiányú képzés Szekesztette: Mákus Miklós zaj- és ezgésvédelmi szakétő Lektoálta: Mákus Péte zaj- és ezgésvédelmi szakétő Budapest 2010. febuá Tatalomjegyzék Tatalomjegyzék...

Részletesebben

BUDAPESTI MSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR. Dr. Gausz Tamás H- ÉS ÁRAMLÁSTAN II ÁRAMLÁSTAN (TERVEZETT JEGYZET!

BUDAPESTI MSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR. Dr. Gausz Tamás H- ÉS ÁRAMLÁSTAN II ÁRAMLÁSTAN (TERVEZETT JEGYZET! BUDAPESI MSZAKI ÉS GAZDASÁGUDOMÁNYI EGYEEM KÖZLEKEDÉSMÉRNÖKI KAR D. Gaus amás H- ÉS ÁRAMLÁSAN II ÁRAMLÁSAN (EREZE JEGYZE!) 003 BEEZEÉS E jeget a áamlástan alapismeeteivel és néhán, egsebb alkalmaással

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Tevékenység: Olvassa el a jegyzet oldalain található tananyagát! Tanulmányozza át a segédlet 11. fejezetében lévı kidolgozott feladatot!

Tevékenység: Olvassa el a jegyzet oldalain található tananyagát! Tanulmányozza át a segédlet 11. fejezetében lévı kidolgozott feladatot! 3.2. Lánchajtások Tevékenység: Olvassa el a jegyet 163-173 oldalain található tananyagát! Tanulmányoa át a segédlet 11. fejeetében lévı kidolgoott feladatot! A tananyag tanulmányoása köben a alábbiakra

Részletesebben

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát

Részletesebben

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

ω ε R S Forgó tömegek kiegyensúlyozása Adott: A forgórész geometriája és a külső erőrendszer: G,

ω ε R S Forgó tömegek kiegyensúlyozása Adott: A forgórész geometriája és a külső erőrendszer: G, 5 Forgó tömegek kiegyensúlyoása l x F B B ε O R ξ ζ r G F y η dott: forgórés geometriája és a külső erőrendser: G ξ η ζ a serkeet (forgórés) ponti tehetetlenségi főtengelyei Feladat: támastóerők meghatároása

Részletesebben

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

Á É É Á Á Á ő ő ő ő É Ó Á Á Á ő Á Ú Ú ő É Á ő Á ő Á ő ő Á É ő Á ő Á É Á É Á Á É É ű ő ű É Ú ő Á Ú Ó Á Á Ó ő Á É ő Á Ó É Ó É Ó Ú Á Á Á Ü ű ő É Á É ő Á ő ő É É É É Á Á É Á Á Á É É ű É Á Á ő É É Á Á Á Á ű

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

Készletek - Rendelési tételnagyság számítása -1

Készletek - Rendelési tételnagyság számítása -1 Készlete - Rendelési tételnagyság számítása -1 A endelési tételnagyság meghatáozása talán a legészletesebben tágyalt édésö a észletgazdálodási szaiodalomban. Enne nagyészt az az oa, hogy mind az egyszee

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

Mobilszerkezetek mechatronikája

Mobilszerkezetek mechatronikája Mobilszekezetek mechatonikája A közeljövő új navigációs endszeei Ütközés-megelőzés Kocsi követés Automatikus pakolás Ütközés-megelőzés Az adaptív menetvezélés (ACC egyik alapvető feltétele a jámű megfelelő

Részletesebben

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban

Részletesebben

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE Íta: Hajdu Ende Egy pénzémének vagy egyéb lemezidomnak saját síkjában töténő elmozgathatósága meggátolható oly módon, hogy a lemez peeme mentén, alkalmasan megválasztott

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

Fogaskerék hajtások I. alapfogalmak

Fogaskerék hajtások I. alapfogalmak Fogaskeék hajtások I. alapfogalmak A fogaskeekek csopotosítása A fogaskeékhajtást az embeiség évszázadok óta használja. A fogazatok geometiája má a 8-9. században kialakult, de a geometiai és sziládsági

Részletesebben

Fizika és 14. Előadás

Fizika és 14. Előadás Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A

Részletesebben

Matematikai összefoglaló

Matematikai összefoglaló Mtemt össefoglló Vetoro Ngon so oln mennség vn, mel nem ellemehető egetlen sámml. A len mennségre legegserű és mnden áltl ól smert péld, vlmel pontn helete téren. Amor táéoódun és eg pont heletét meg ru

Részletesebben

Segédlet a Tengely gördülő-csapágyazása feladathoz

Segédlet a Tengely gördülő-csapágyazása feladathoz Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

A REAKCIÓKINETIKA ALAPJAI

A REAKCIÓKINETIKA ALAPJAI A REAKCIÓKINETIKA ALAPJAI Egy kémiai reakció sztöchiometriai egyenletének általános alakja a következő formában adható meg k i=1 ν i A i = 0, (1) ahol A i a reakcióban résztvevő i-edik részecske, ν i pedig

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 izika ménm nök k infomatikusoknak 1. BNxE-1 Mechanika 6. előadás D. Geetovszky Zsolt 2010. októbe 13. Ismétl tlés Ütközések tágyalása Egymáshoz képest mozgó vonatkoztatási endszeek egymáshoz képest EVEM-t

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

Ú Á Ü É ő ö ó ó ő Ü ö Ó ő ú ó ö ő ú ű ű ö ú ö ó ü ö ő öü ő Ú ö Ü ű ó ü ű ő ö ő óü ó ó ő Á Á ó ó Ü ó ó ü Ü ö Á ő ő ó ö ó ü ő ö ó ö ő ó ú ú ó ő ó ó ú ü Ú Á Á É Ü É Ú ü Á É ő ü ÉÉ É Ü ó Ö ó ó ö ö ő óü ó ü

Részletesebben

Lencsék fókusztávolságának meghatározása

Lencsék fókusztávolságának meghatározása Lencsék fókusztávolságának meghatáozása Elméleti összefoglaló: Két szabályos, de legalább egy göbe felület által hatáolt fénytöő közeget optikai lencsének nevezünk. Ennek speciális esetei a két gömbi felület

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával

Részletesebben

Az EM tér energiája és impulzusa kovariáns alakban. P t

Az EM tér energiája és impulzusa kovariáns alakban. P t LDIN 4- A té enegá és mpls ováns lbn β ε δ β BBβ β μ (, β,,) μ B ( g) P t t ( ε ) S A negtív előelne töténelm o vnn S μ B g S ε B ε μ B ésesé nnsene elen tében P ε g t S t Cs eletomágneses teet ttlm 4-es

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

0. Matematika és mértékegységek

0. Matematika és mértékegységek . Matematka és métékegységek Defnált fogalom Meghatáozás Kö keülete, teülete K = π [m], = π [m ] églalap keülete, teülete K = (a+b) [m], = ab [m ] Deékszögű háomszög keülete, teülete K = a+b+c [m], = ab

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Kettős és többes integrálok

Kettős és többes integrálok Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Elektrodinamika. Bevezetés

Elektrodinamika. Bevezetés Elektodinamika Bevezetés A Kíséleti Fizika tantágyban má megismekedtünk a Mawell egyenletekkel amelyek segítségével megéteni és magyaázni tudjuk a hétköznapjainkban tapasztalható elektomágneses jelenségeket.

Részletesebben