Differenciálegyenletek a mindennapokban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Differenciálegyenletek a mindennapokban"

Átírás

1 Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája / 15

2 Pénz, pénz, pénz Valaki T 0 forintot (például 1 forintot) p%-os éves kamatra elhelyez a bankban. Mennyi pénze lesz egy év múlva? L. Csizmadia (Szeged) Kutatók éjszakája / 15

3 Pénz, pénz, pénz Valaki T 0 forintot (például 1 forintot) p%-os éves kamatra elhelyez a bankban. Mennyi pénze lesz egy év múlva? T 0 (1 + p 100 ) L. Csizmadia (Szeged) Kutatók éjszakája / 15

4 Pénz, pénz, pénz Valaki T 0 forintot (például 1 forintot) p%-os éves kamatra elhelyez a bankban. Mennyi pénze lesz egy év múlva? T 0 (1 + p 100 ) Amennyiben havonta tőkésítik a kamatot, úgy egy év alatt több pénz gyűlik össze, hiszen L. Csizmadia (Szeged) Kutatók éjszakája / 15

5 Pénz, pénz, pénz Valaki T 0 forintot (például 1 forintot) p%-os éves kamatra elhelyez a bankban. Mennyi pénze lesz egy év múlva? T 0 (1 + p 100 ) Amennyiben havonta tőkésítik a kamatot, úgy egy év alatt több pénz gyűlik össze, hiszen 1. hónap végén: T 0 (1 + q 12 ), q = p/100; L. Csizmadia (Szeged) Kutatók éjszakája / 15

6 Pénz, pénz, pénz Valaki T 0 forintot (például 1 forintot) p%-os éves kamatra elhelyez a bankban. Mennyi pénze lesz egy év múlva? T 0 (1 + p 100 ) Amennyiben havonta tőkésítik a kamatot, úgy egy év alatt több pénz gyűlik össze, hiszen 1. hónap végén: T 0 (1 + q 12 ), q = p/100; 2. hónap végén: T 0 (1 + q 12 )2 ; L. Csizmadia (Szeged) Kutatók éjszakája / 15

7 Pénz, pénz, pénz Valaki T 0 forintot (például 1 forintot) p%-os éves kamatra elhelyez a bankban. Mennyi pénze lesz egy év múlva? T 0 (1 + p 100 ) Amennyiben havonta tőkésítik a kamatot, úgy egy év alatt több pénz gyűlik össze, hiszen 1. hónap végén: T 0 (1 + q 12 ), q = p/100; 2. hónap végén: T 0 (1 + q 12 )2 ;. 12. hónap végén: T 0 (1 + q 12 )12. L. Csizmadia (Szeged) Kutatók éjszakája / 15

8 Pénz, pénz, pénz Valaki T 0 forintot (például 1 forintot) p%-os éves kamatra elhelyez a bankban. Mennyi pénze lesz egy év múlva? T 0 (1 + p 100 ) Amennyiben havonta tőkésítik a kamatot, úgy egy év alatt több pénz gyűlik össze, hiszen 1. hónap végén: T 0 (1 + q 12 ), q = p/100; 2. hónap végén: T 0 (1 + q 12 )2 ;. 12. hónap végén: T 0 (1 + q 12 )12. Például T 0 = 1, p = 7 esetén az első esetben az számlán lévő összeg 1, 07, míg a második esetben 1, L. Csizmadia (Szeged) Kutatók éjszakája / 15

9 Vágyálom Osszuk az egy évet n egyenlő részre és írjuk jóvá ezen időszakonként a kamatot, mert ekkor L. Csizmadia (Szeged) Kutatók éjszakája / 15

10 Vágyálom Osszuk az egy évet n egyenlő részre és írjuk jóvá ezen időszakonként a kamatot, mert ekkor L. Csizmadia (Szeged) Kutatók éjszakája / 15

11 Vágyálom Osszuk az egy évet n egyenlő részre és írjuk jóvá ezen időszakonként a kamatot, mert ekkor Az év végén, azaz az n. időszak végén a pénzösszeg: T 0 (1 + q n )n. L. Csizmadia (Szeged) Kutatók éjszakája / 15

12 Még, még még! L. Csizmadia (Szeged) Kutatók éjszakája / 15

13 Még, még még! Minden határon túl sűrítjük azon idők számát, amikor kamatjóváírás történik, azaz n T 0 (1 + q n )n? L. Csizmadia (Szeged) Kutatók éjszakája / 15

14 A valóság L. Csizmadia (Szeged) Kutatók éjszakája / 15

15 A valóság L. Csizmadia (Szeged) Kutatók éjszakája / 15

16 A valóság lim (1 + 1 n n )n = e L. Csizmadia (Szeged) Kutatók éjszakája / 15

17 A valóság lim (1 + 1 n n )n = e L. Csizmadia (Szeged) Kutatók éjszakája / 15

18 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban L. Csizmadia (Szeged) Kutatók éjszakája / 15

19 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban T = T (t + h) T (t), t = h L. Csizmadia (Szeged) Kutatók éjszakája / 15

20 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban T = T (t + h) T (t), t = h A tőke nagyságának változási sebessége: lim h 0 T (t + h) T (t) h L. Csizmadia (Szeged) Kutatók éjszakája / 15

21 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban T = T (t + h) T (t), t = h A tőke nagyságának változási sebessége: lim h 0 T (t + h) T (t) h Derivált sebesség L. Csizmadia (Szeged) Kutatók éjszakája / 15

22 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban T = T (t + h) T (t), t = h A tőke nagyságának változási sebessége: lim h 0 T (t + h) T (t) h Derivált sebesség T (t) = dt (t) dt L. Csizmadia (Szeged) Kutatók éjszakája / 15

23 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban T = T (t + h) T (t), t = h A tőke nagyságának változási sebessége: lim h 0 T (t + h) T (t) h Derivált sebesség T (t) = kezdeti érték feladatot: dt (t) dt így a feladatunk megoldani az alábbi L. Csizmadia (Szeged) Kutatók éjszakája / 15

24 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban T = T (t + h) T (t), t = h A tőke nagyságának változási sebessége: lim h 0 T (t + h) T (t) h Derivált sebesség T (t) = kezdeti érték feladatot: dt (t) dt így a feladatunk megoldani az alábbi T = p T, T (0) = T 0 L. Csizmadia (Szeged) Kutatók éjszakája / 15

25 A változás sebessége Folytonos tőkésítés mellett T (t): a tőke nagysága a t. időpillanatban T = T (t + h) T (t), t = h A tőke nagyságának változási sebessége: lim h 0 T (t + h) T (t) h Derivált sebesség T (t) = kezdeti érték feladatot: dt (t) dt így a feladatunk megoldani az alábbi T = p T, T (0) = T 0 Megoldás: T (t) = T 0 e pt. L. Csizmadia (Szeged) Kutatók éjszakája / 15

26 Forró nyomon Egy nyári napon valaki talált egy holttestet. A helyszínen rögzített adatok szerint: L. Csizmadia (Szeged) Kutatók éjszakája / 15

27 Forró nyomon Egy nyári napon valaki talált egy holttestet. A helyszínen rögzített adatok szerint: T h = 25 C - a holttest hőmérséklete T k = 23 C - a levegő hőmérséklete Vajon mióta halott az illető? L. Csizmadia (Szeged) Kutatók éjszakája / 15

28 Forró nyomon Egy nyári napon valaki talált egy holttestet. A helyszínen rögzített adatok szerint: T h = 25 C - a holttest hőmérséklete T k = 23 C - a levegő hőmérséklete Vajon mióta halott az illető? L. Csizmadia (Szeged) Kutatók éjszakája / 15

29 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." L. Csizmadia (Szeged) Kutatók éjszakája / 15

30 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." Both: Newton lehülési törvénye:t arányos a (T T k ) értékkel." L. Csizmadia (Szeged) Kutatók éjszakája / 15

31 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." Both: Newton lehülési törvénye:t arányos a (T T k ) értékkel." Azaz: T = λ(t T k ). L. Csizmadia (Szeged) Kutatók éjszakája / 15

32 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." Both: Newton lehülési törvénye:t arányos a (T T k ) értékkel." Azaz: T = λ(t T k ). Ennek megoldása: T (t) = T k + ce λt. L. Csizmadia (Szeged) Kutatók éjszakája / 15

33 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." Both: Newton lehülési törvénye:t arányos a (T T k ) értékkel." Azaz: T = λ(t T k ). Ennek megoldása: T (t) = T k + ce λt. A kezdeti értékek figyelembevételével: t = 0 (a halál beálta) T h = 36 C c = 13. L. Csizmadia (Szeged) Kutatók éjszakája / 15

34 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." Both: Newton lehülési törvénye:t arányos a (T T k ) értékkel." Azaz: T = λ(t T k ). Ennek megoldása: T (t) = T k + ce λt. A kezdeti értékek figyelembevételével: t = 0 (a halál beálta) T h = 36 C c = óra múlva T h = 30 C e λ = 4 7/13 = 0, L. Csizmadia (Szeged) Kutatók éjszakája / 15

35 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." Both: Newton lehülési törvénye:t arányos a (T T k ) értékkel." Azaz: T = λ(t T k ). Ennek megoldása: T (t) = T k + ce λt. A kezdeti értékek figyelembevételével: t = 0 (a halál beálta) T h = 36 C c = óra múlva T h = 30 C e λ = 4 7/13 = 0, Tehát a test hőmérséklete az idő függvényeként: T (t) = 23 C + 13 (0, 8566) t. L. Csizmadia (Szeged) Kutatók éjszakája / 15

36 A nyomozás Bones: A hulla 4 óra alatt hül 36 C-ról 30 C-ra." Both: Newton lehülési törvénye:t arányos a (T T k ) értékkel." Azaz: T = λ(t T k ). Ennek megoldása: T (t) = T k + ce λt. A kezdeti értékek figyelembevételével: t = 0 (a halál beálta) T h = 36 C c = óra múlva T h = 30 C e λ = 4 7/13 = 0, Tehát a test hőmérséklete az idő függvényeként: T (t) = 23 C + 13 (0, 8566) t. Jelenleg T h = 25 C, ezért kb. t = 12, 09 órával ezelőtt hunyt el. L. Csizmadia (Szeged) Kutatók éjszakája / 15

37 Egy furcsa pár Anna és Béla egy furcsa pár. Béla nehéz természetű: amikor Anna szereti őt, akkor ő kezdi kevésbé szeretni Annát. Anna normális: ha Béla szereti őt, akkor ő is egyre jobban kedveli, ugyanakkor barátságtalanná válik, ha Béla nem szereti. Milyen jövőt jósolunk kettejük kapcsolatának? L. Csizmadia (Szeged) Kutatók éjszakája / 15

38 Jósoljunk t = 0 találkozásuk pillanata a(t) Anna Béla iránti szeretete a t. időpillanatban b(t) Béla Anna iránti szeretete a t. időpillanatban L. Csizmadia (Szeged) Kutatók éjszakája / 15

39 Jósoljunk t = 0 találkozásuk pillanata a(t) Anna Béla iránti szeretete a t. időpillanatban b(t) Béla Anna iránti szeretete a t. időpillanatban a és b is legalább kétszer differenciálható függvények L. Csizmadia (Szeged) Kutatók éjszakája / 15

40 Jósoljunk t = 0 találkozásuk pillanata a(t) Anna Béla iránti szeretete a t. időpillanatban b(t) Béla Anna iránti szeretete a t. időpillanatban a és b is legalább kétszer differenciálható függvények a (t) b(t)-vel arányos, azaz a = A b, L. Csizmadia (Szeged) Kutatók éjszakája / 15

41 Jósoljunk t = 0 találkozásuk pillanata a(t) Anna Béla iránti szeretete a t. időpillanatban b(t) Béla Anna iránti szeretete a t. időpillanatban a és b is legalább kétszer differenciálható függvények a (t) b(t)-vel arányos, azaz a = A b, b (t) a(t)-vel arányos, azaz b = B a, ahol A, B konstansok, legyen mindkettő 1. L. Csizmadia (Szeged) Kutatók éjszakája / 15

42 Jósoljunk t = 0 találkozásuk pillanata a(t) Anna Béla iránti szeretete a t. időpillanatban b(t) Béla Anna iránti szeretete a t. időpillanatban a és b is legalább kétszer differenciálható függvények a (t) b(t)-vel arányos, azaz a = A b, b (t) a(t)-vel arányos, azaz b = B a, ahol A, B konstansok, legyen mindkettő 1. Kezdeti érték feltételek: a(0) = a 0, b(0) = b 0 L. Csizmadia (Szeged) Kutatók éjszakája / 15

43 A megoldandó egyenletrendszer: a = b b = a a(0) = a 0 b(0) = b 0 L. Csizmadia (Szeged) Kutatók éjszakája / 15

44 A megoldandó egyenletrendszer: a = b b = a a(0) = a 0 b(0) = b 0 Ennek megoldása: a(t) = a 0 cos t + b 0 sin t L. Csizmadia (Szeged) Kutatók éjszakája / 15

45 A megoldandó egyenletrendszer: a = b b = a a(0) = a 0 b(0) = b 0 Ennek megoldása: a(t) = a 0 cos t + b 0 sin t b(t) = b 0 cos t a 0 sin t L. Csizmadia (Szeged) Kutatók éjszakája / 15

46 A megoldandó egyenletrendszer: a = b b = a a(0) = a 0 b(0) = b 0 Ennek megoldása: a(t) = a 0 cos t + b 0 sin t b(t) = b 0 cos t a 0 sin t a 0 = b 0 = 1/ 2 esetén a(t) = sin(t + π 4 ), b(t) = cos(t + π 4 ) L. Csizmadia (Szeged) Kutatók éjszakája / 15

47 A megoldandó egyenletrendszer: a = b b = a a(0) = a 0 b(0) = b 0 Ennek megoldása: a(t) = a 0 cos t + b 0 sin t b(t) = b 0 cos t a 0 sin t a 0 = b 0 = 1/ 2 esetén a(t) = sin(t + π 4 ), b(t) = cos(t + π 4 ) L. Csizmadia (Szeged) Kutatók éjszakája / 15

48 a = 2a + b b = a a(0) = a 0 b(0) = b 0 L. Csizmadia (Szeged) Kutatók éjszakája / 15

49 a = 2a + b b = a a(0) = a 0 b(0) = b 0 a 0 = b 0 = 1 választással a megoldások: a(t) = (1 + 2t)e t, L. Csizmadia (Szeged) Kutatók éjszakája / 15

50 a = 2a + b b = a a(0) = a 0 b(0) = b 0 a 0 = b 0 = 1 választással a megoldások: a(t) = (1 + 2t)e t, illetve b(t) = (1 2t)e t L. Csizmadia (Szeged) Kutatók éjszakája / 15

51 a = 2a + b b = a a(0) = a 0 b(0) = b 0 a 0 = b 0 = 1 választással a megoldások: a(t) = (1 + 2t)e t, illetve b(t) = (1 2t)e t L. Csizmadia (Szeged) Kutatók éjszakája / 15

52 a = 2a + b b = a a(0) = a 0 b(0) = b 0 a 0 = b 0 = 1 választással a megoldások: a(t) = (1 + 2t)e t, illetve b(t) = (1 2t)e t Ez a kapcsolat nem működőképes. L. Csizmadia (Szeged) Kutatók éjszakája / 15

53 Newton Másodrendű differenciálegyenlet L. Csizmadia (Szeged) Kutatók éjszakája / 15

54 Newton Másodrendű differenciálegyenlet fizika L. Csizmadia (Szeged) Kutatók éjszakája / 15

55 Newton Másodrendű differenciálegyenlet fizika Newton II. axiómája F = m a L. Csizmadia (Szeged) Kutatók éjszakája / 15

56 Newton Másodrendű differenciálegyenlet fizika Newton II. axiómája F = m a a = dv dt = d 2 s dt 2 F = ms L. Csizmadia (Szeged) Kutatók éjszakája / 15

57 Newton Másodrendű differenciálegyenlet fizika Newton II. axiómája F = m a Egy szép példa a = dv dt = d 2 s dt 2 F = ms L. Csizmadia (Szeged) Kutatók éjszakája / 15

58 Matematikai inga Mozgásegyenlet: ϕ + g l sin ϕ = 0 L. Csizmadia (Szeged) Kutatók éjszakája / 15

59 Matematikai inga Mozgásegyenlet: ϕ + g l sin ϕ = 0 g - gravitációs állandó, l - az inga hossza. L. Csizmadia (Szeged) Kutatók éjszakája / 15

60 Matematikai inga Mozgásegyenlet: ϕ + g l sin ϕ = 0 g - gravitációs állandó, l - az inga hossza. Amennyiben a közegellenállás fékezi (súrlódás), és annak nagysága a sebességgel arányos. L. Csizmadia (Szeged) Kutatók éjszakája / 15

61 Matematikai inga Mozgásegyenlet: ϕ + g l sin ϕ = 0 g - gravitációs állandó, l - az inga hossza. Amennyiben a közegellenállás fékezi (súrlódás), és annak nagysága a sebességgel arányos. A mozgásegyenlet: ml ϕ = mg sin ϕ kl ϕ L. Csizmadia (Szeged) Kutatók éjszakája / 15

62 Matematikai inga Mozgásegyenlet: ϕ + g l sin ϕ = 0 g - gravitációs állandó, l - az inga hossza. Amennyiben a közegellenállás fékezi (súrlódás), és annak nagysága a sebességgel arányos. A mozgásegyenlet: ml ϕ = mg sin ϕ kl ϕ pendulum/index.html L. Csizmadia (Szeged) Kutatók éjszakája / 15

63 Búcsú Az inga mindennapjaink sokrétűen használt tárgya: L. Csizmadia (Szeged) Kutatók éjszakája / 15

64 Búcsú Az inga mindennapjaink sokrétűen használt tárgya: Köszönöm a figyelmet! L. Csizmadia (Szeged) Kutatók éjszakája / 15

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk

Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk Akkor én most bölcsész vagyok?! Avagy: híd, amit matematikának hívunk Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Egyetemi tavasz Szeged, SZTE L. Csizmadia (Szeged) Egyetemi tavasz 2013. 2013.04.20.

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás

Részletesebben

Differenciál egyenletek (rövid áttekintés)

Differenciál egyenletek (rövid áttekintés) Differeniál egyenletek (rövid áttekintés) Differeniálegyenlet: olyan matematikai egyenlet, amely egy vagy több változós ismeretlen függvény és deriváltjai közötti kasolatot írja le. Fontosabb tíusok: közönséges

Részletesebben

Differenciálegyenletek

Differenciálegyenletek a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek Példák differenciálegyenletekre Newton második törvénye Egy tömegpont gyorsulása egyenesen arányos a rá ható erővel és fordítottan arányos

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Fizika alapok. Az előadás témája

Fizika alapok. Az előadás témája Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Populációdinamika kurzus, projektfeladat. Aszimptotikus viselkedés egy determinisztikus járványterjedési modellben. El adó:

Populációdinamika kurzus, projektfeladat. Aszimptotikus viselkedés egy determinisztikus járványterjedési modellben. El adó: Populációdinamika kurzus, projektfeladat Aszimptotikus viselkedés egy determinisztikus járványterjedési modellben El adó: Unger Tamás István okleveles villamosmérnök matematika B.Sc. szakos hallgató Szeged

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.

Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt. Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

Érdekességek az elemi matematika köréből

Érdekességek az elemi matematika köréből Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház

Részletesebben

ODE SOLVER-ek használata a MATLAB-ban

ODE SOLVER-ek használata a MATLAB-ban ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Gazdasági Információs Rendszerek

Gazdasági Információs Rendszerek Gazdasági Információs Rendszerek 1. előadás Bánhelyi Balázs Alkalmazott Informatika Tanszék, Szegedi Tudományegyetem 2009 A pénz időértéke Mit jelent a pénz időértéke? Egy forint (dollár, euró, stb.) ma

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat

GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) y k c S x x m x Adatok m kg c

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések 58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21. Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Kiegészítő feladatok a Többváltozós analízis 2. tárgyhoz tavaszi félév

Kiegészítő feladatok a Többváltozós analízis 2. tárgyhoz tavaszi félév Kiegészítő feladatok a Többváltozós analízis 2. tárgyhoz 218. tavaszi félév 1. Közönséges differenciálegyenletek 1.1 Oldjuk meg a következő szétválasztható változójú differenciálegyenleteket! a) (x + 1)y

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF -

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF - Márkus Zsolt markus.zsolt@qos.hu Tulajdonságok, jelleggörbék, stb. 1 A hatáslánc részegységekből épül fel, melyek megvalósítják a jelátvitelt. A jelátviteli sajátosságok jellemzésére (leírására) létrehozott

Részletesebben

2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja

2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja 2. Másodrendű skaláris differenciálegyenletek 19 2. Másodrendű skaláris differenciálegyenletek Legyen I R egy nyílt intervallum, p, q, f : I R. Az explicit másodrendű inhomogén lineáris skaláris differenciálegyenlet

Részletesebben

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot. 3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

1. Bevezetés Differenciálegyenletek és azok megoldásai

1. Bevezetés Differenciálegyenletek és azok megoldásai . Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma

Részletesebben

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait! Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben