Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem"

Átírás

1 Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem

2 Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi alternatívával szemben győztesen kerül ki a párosösszahsonĺıtásból. Condorcet vesztes: Az az alternatíva, amely az összes többi alternatívával szemben vesztesen kerül ki a párosösszahsonĺıtásból. Condorcet rendezés: A 1, A 2,..., A n az alternatívák egy Condorcet rendezése, ha i 1,..., n igaz, hogy az A i bármely a sorrendben utána lévő A j (i < j n) alternatívával szemben győztesen kerül ki a párosösszehasonĺıtásból.

3 Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Növekvő sorozat-független rangsor: Az a rangsor, melyben az első p elem sorrendje (,ahol p {1,..., n}) nem változik, ha töröljük a rangsorból valamely A j, p < j n elemet. Csökkenő sorozat-független rangsor: Az a rangsor, melyben az utolsó p elem sorrendje (,ahol p {1,..., n}) nem változik, ha töröljük a rangsorból valamely A j, 1 j < p elemet. Ammenyiben a rangsorból egy elem törlése a többi elem sorrendjének változásához vezet rangsorfordulásról beszélünk.

4 Definíciók Példa rangsorfordulásra

5 Rangsor módszer Olyan egyéni döntést segítő eljárás, amikor a döntéshozó nem ad meg értékelő függvényt az egyes szempontok szerint, hanem csak az alternatívák sorrendjét. A módszerek csak a szempontok szerinti rangsort alapul véve döntenek az alternatívák rangsoráról. A szavazási eljárások módszereit alkalmazhatjuk, mint rangsormódszereket.

6 Példa A követlező rangsor táblázat áll rendelkezésre: C 1 C 2 C 3 C 4 C 5 C 6 C 7 A a B a C b D b E b a 4., 5. helyen holtverseny b 1., 2., 3. helyen holtverseny

7 alkalmazása, mint rangsormódszer A pontszámokat a szempontok szerint kiosztjuk a sorrendnek megfelelően, majd összeadjuk az alternatívák különböző szempontok szerint kapott pontszámait.

8 alkalmazása, mint rangsormódszer A pontszámokat a szempontok szerint kiosztjuk a sorrendnek megfelelően, majd összeadjuk az alternatívák különböző szempontok szerint kapott pontszámait. C 1 C 2 C 3 C 4 C 5 C 6 C 7 Ö: A B C D E

9 alkalmazása, mint rangsormódszer A pontszámokat a szempontok szerint kiosztjuk a sorrendnek megfelelően, majd összeadjuk az alternatívák különböző szempontok szerint kapott pontszámait. Sorrend: D; C; E; B; A C 1 C 2 C 3 C 4 C 5 C 6 C 7 Ö: A B C D E

10 alkalmazása, mint rangsormódszer Ellenzési szintek minimalizálása magyar módszerrel. A Cook-Seiford mátrix alakja: d ij := r ik j, ahol r ik : A i C k szerinti rangszáma. Azaz, d ij az k A i j. helyezéstől vett távolsága.

11 alkalmazása, mint rangsormódszer Ellenzési szintek minimalizálása magyar módszerrel. A Cook-Seiford mátrix alakja: d ij := r ik j, ahol r ik : A i C k szerinti rangszáma. Azaz, d ij az k A i j. helyezéstől vett távolsága A B C D E

12 alkalmazása, mint rangsormódszer Ellenzési szintek minimalizálása magyar módszerrel. A Cook-Seiford mátrix alakja: d ij := r ik j, ahol r ik : A i C k szerinti rangszáma. Azaz, d ij az k A i j. helyezéstől vett távolsága A B C D E A hozzárendelési feladatot megoldva a kapott sorrend: C; D; E; B; A

13 A egy másik felfogása, miszerint az elégedettséget szeretnénk maximalizálni. Bernardo mátrix felépítése: m ij := a szempontok darabszáma, amelyek szerin A i a j. pozícióra kerül. A feladatot, mint maximalizációs hozzárendelési feladatot oldjuk meg.

14 A egy másik felfogása, miszerint az elégedettséget szeretnénk maximalizálni. Bernardo mátrix felépítése: m ij := a szempontok darabszáma, amelyek szerin A i a j. pozícióra kerül. A feladatot, mint maximalizációs hozzárendelési feladatot oldjuk meg A B C D E

15 A egy másik felfogása, miszerint az elégedettséget szeretnénk maximalizálni. Bernardo mátrix felépítése: m ij := a szempontok darabszáma, amelyek szerin A i a j. pozícióra kerül. A feladatot, mint maximalizációs hozzárendelési feladatot oldjuk meg. A feladatot megoldva a sorrend: C; D; E; B; A A B C D E

16 A módszer outranking mátrixának felépítése: k ij := A i hány szempont szerint előzi meg A j -t. Köhler módszer Arrow & Raynaud módszer A helyezések kiosztása 1.-től A helyezések kiosztása n.-től Primal Dual Primal Dual max{min k ij } min{max k ij } min{max k ij } max{min k ij } i j j i i j j i

17 Köhler módszer Primal A B C D E Min A B C D E max: 3

18 Köhler módszer Primal 1. helyen: C; D. A B C D E Min A B C D E max: 3

19 Köhler módszer Primal A B E Min A B E max: 6

20 Köhler módszer Primal 2. helyen: E. A B E Min A B E max: 6

21 Köhler módszer Primal A B Min A B 5-5 max: 5

22 Köhler módszer Primal 3. helyen: B. 4. helyen: A. A B Min A B 5-5 max: 5

23 Köhler módszer Primal 3. helyen: B. 4. helyen: A. A B Min A B 5-5 max: 5 A sorrend: C;D;E;B;A vagy D;C;E;B;A

24 Köhler módszer Dual A B C D E A B C D E Min: Max:

25 Köhler módszer Dual 1. helyen: C; D. A B C D E A B C D E Min: Max:

26 Köhler módszer Dual A B E A B 5-1 E Min: Max:

27 Köhler módszer Dual 2. helyen: E. A B E A B 5-1 E Min: Max:

28 Köhler módszer Dual A B A - 1 B 5 - Min: Max: 5 1 1

29 Köhler módszer Dual A B A - 1 B 5 - Min: Max: helyen: B. 4. helyen: A.

30 Köhler módszer Dual 3. helyen: B. 4. helyen: A. A B A - 1 B 5 - Min: Max: A sorrend: C;D;E;B;A vagy D;C;E;B;A

31 Arrow & Raynaud módszer Primal A B C D E Max A B C D E min: 1

32 Arrow & Raynaud módszer Primal 5. helyen: A. A B C D E Max A B C D E min: 1

33 Arrow & Raynaud módszer Primal B C D E Max B C D E min: 1

34 Arrow & Raynaud módszer Primal 4. helyen: B. B C D E Max B C D E min: 1

35 Arrow & Raynaud módszer Primal C D E Max C D E min: 1

36 Arrow & Raynaud módszer Primal 3. helyen: E. C D E Max C D E min: 1

37 Arrow & Raynaud módszer Primal C D Max C D 3-3 min: 3

38 Arrow & Raynaud módszer Primal 1. helyen: C;D C D Max C D 3-3 min: 3

39 Arrow & Raynaud módszer Primal C D Max C D 3-3 min: 3 1. helyen: C;D A sorrend: C;D;E;B;A vagy D;C;E;B;A

40 Arrow & Raynaud módszer Dual A B C D E A B C D E Max: Min:

41 Arrow & Raynaud módszer Dual 5. helyen: A. A B C D E A B C D E Max: Min:

42 Arrow & Raynaud módszer Dual B C D E B C D E Max: Min:

43 Arrow & Raynaud módszer Dual 4. helyen: B. B C D E B C D E Max: Min:

44 Arrow & Raynaud módszer Dual C D E C D 3-6 E Max: Min:

45 Arrow & Raynaud módszer Dual 3. helyen: E. C D E C D 3-6 E Max: Min:

46 Arrow & Raynaud módszer Dual C D C - 3 D 3 - Max: Min: 3 3 3

47 Arrow & Raynaud módszer Dual 1. helyen: C;D C D C - 3 D 3 - Max: Min: 3 3 3

48 Arrow & Raynaud módszer Dual C D C - 3 D 3 - Max: Min: helyen: C;D A sorrend: C;D;E;B;A vagy D;C;E;B;A

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

A Borda-szavazás Nash-implementálható értelmezési tartományai

A Borda-szavazás Nash-implementálható értelmezési tartományai A Borda-szavazás Nash-implementálható értelmezési tartományai Tasnádi Attila 2007. június 8. Alapfogalmak Jelölések: X az alternatívák véges nem üres halmaza (q = X ). Alapfogalmak Jelölések: X az alternatívák

Részletesebben

Többszempontú döntési módszerek

Többszempontú döntési módszerek XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint

Részletesebben

Szavazási eljárások Fejezetek a döntéselméletből

Szavazási eljárások Fejezetek a döntéselméletből Szavazási eljárások Fejezetek a döntéselméletből Rebák Örs 2013. november 26. 1. Bevezetés A bevezetésben tárgyaltakat ismertnek teszem fel, közlésük csupán a teljesség kedvéért történik, illetve mert

Részletesebben

1. Egészségügy szakmacsoport Egészségügyi alapismeretek

1. Egészségügy szakmacsoport Egészségügyi alapismeretek 1. Egészségügy szakmacsoport Egészségügyi alapismeretek 1.1. A verseny részei Első forduló Második forduló Interaktív versenyrész Írásbeli versenyrész Szóbeli versenyrész 180 perc 180 perc 20 perc 100

Részletesebben

Döntéselemzés, avagy operációkutatás a turizmus szak mesterképzésen. Első tapasztalatok a BGF KVI karon.

Döntéselemzés, avagy operációkutatás a turizmus szak mesterképzésen. Első tapasztalatok a BGF KVI karon. Döntéselemzés, avagy operációkutatás a turizmus szak mesterképzésen. Első tapasztalatok a BGF KVI karon. Lőrincz Sándor BGF KVIK MAFIOK 2010. Békéscsaba 1 2009/2010. tanév, 1. félév Levelező szak 4 x 2

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

A logikai táblázat módszere III.

A logikai táblázat módszere III. A logikai táblázat módszere III. 1. feladat: Rifi, Röfi és Rufi, három kismalac, egy tortaevő versenyen vett részt. A nagymama előtte a következőket mondta: a) Rifi a második díjat szerzi meg b) Röfi nem

Részletesebben

Budapest 2013-14. évi mini Felkészülési tornáinak keretében szervezett 3. leány kismini tornájának forgatókönyve

Budapest 2013-14. évi mini Felkészülési tornáinak keretében szervezett 3. leány kismini tornájának forgatókönyve Budapest 2013-14. évi mini Felkészülési tornáinak keretében szervezett 3. leány kismini tornájának forgatókönyve Időpont: Helyszín: Rendező: Elérhetőség: 2014. január 25. (szombat), 9 órától Dunakeszi,

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV

FELHASZNÁLÓI KÉZIKÖNYV többszempontú csoportos döntéstámogató szoftver EGY A ÉS WINGDSS PÉLDAFELADAT A KIÉRTÉKELÉS FÜGGELÉK 4.1 RENDSZERBEN FELÉPÍTÉSE LÉPÉSEI FELHASZNÁLÓI KÉZIKÖNYV Operációkutatás MTA és Döntési SZTAKI Rendszerek

Részletesebben

Értékelési szempontok

Értékelési szempontok Értékelési szempontok Településképet meghatározó épületek külső rekonstrukciója, többfunkciós közösségi tér létrehozása, fejlesztése, energetikai korszerűsítés A felhívás kódszáma: VP6-7..1.1-1 Kiválasztási

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

kategóriák Az év kisvállalkozása díj Az év vállalkozása díj Az év környezetvédelmi díja Az év középvállalkozása díj Üzleti innovációs díj

kategóriák Az év kisvállalkozása díj Az év vállalkozása díj Az év környezetvédelmi díja Az év középvállalkozása díj Üzleti innovációs díj kategóriák Az év vállalkozása díj Sikerkritérium, hogy a vállalkozás mennyire növelte piaci potenciálját és nyereségességét az elmúlt év során, illetve hogy tevékenysége milyen pozitív hatást gyakorolt

Részletesebben

Miben új az új Kbt.? Szakmai nap és konzultáció. 2015. október 21. Értékelési szempontok változásai Erdei Gábor

Miben új az új Kbt.? Szakmai nap és konzultáció. 2015. október 21. Értékelési szempontok változásai Erdei Gábor Szakmai nap és konzultáció 2015. október 21. Értékelési szempontok változásai Erdei Gábor Uniós politikák a közbeszerzésben Szerződések odaítélése Az eljárási szakaszok (alkalmasság vizsgálata-értékelés)

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

ÚJ JAPÁN CSODA, VAGY AZ ÉRTÉKMÓDSZERTAN

ÚJ JAPÁN CSODA, VAGY AZ ÉRTÉKMÓDSZERTAN Quality Function Deployment Target Costing folyamatmodell ÚJ JAPÁN CSODA, VAGY AZ ÉRTÉKMÓDSZERTAN REINKARNÁCIÓJA SCHANDL ANNA, AVS BME GTK Pénzügy, Számvitel Msc anna.schandl@gmail.com QFD TC folyamatmodell

Részletesebben

Résztvevő csapatok: 1/5

Résztvevő csapatok: 1/5 Budapest 2013/2014. évi Mini felkészülési tornáinak első szakaszának keretében szervezett verseny 2. leány kismini torna Időpont: 2013. november 30. (szombat), 11:00-tól Helyszín: Rendező: Elérhetőség:

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

II. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

II. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK Mérési Utasítás Linux/Unix jogosultságok és fájlok kezelése Linux fájlrendszerek és jogosultságok Linux alatt, az egyes fájlokhoz való hozzáférések szabályozása érdekében a fájlokhoz tulajdonost, csoportot

Részletesebben

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor Kereső függvények és használatuk a Microsoft Excel programban dr. Nyári Tibor FKERES, VKERES melyik táblában kell keresni az értéket a tábla azon oszlopának táblán belüli sorszáma, amelyből az eredményt

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

MATEMATIKA II. A VIZSGA LEÍRÁSA

MATEMATIKA II. A VIZSGA LEÍRÁSA MATEMATIKA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Egy téma összefüggő II. I. II. kifejtése megadott 135 perc szempontok szerint I. 45 perc Definíció, ill. tétel kimondása

Részletesebben

Többszempontú döntési problémák

Többszempontú döntési problémák Budapesti Corvinus Egyetem MTA Számítástechnikai és Automatizálási Kutató Intézetébe kihelyezett Gazdasági Döntések Tanszék Rapcsák Tamás Többszempontú döntési problémák Egyetemi oktatáshoz segédanyag

Részletesebben

Programozás I. zárthelyi dolgozat

Programozás I. zárthelyi dolgozat Programozás I. zárthelyi dolgozat 2013. november 11. 2-es szint: Laptopot szeretnénk vásárolni, ezért írunk egy programot, amelynek megadjuk a lehetséges laptopok adatait. A laptopok árát, memória méretét

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

P Á L Y A V Á L A S Z T Á S I

P Á L Y A V Á L A S Z T Á S I SZÜLŐI ELÉGEDETTSÉGMÉRÉS P Á L Y A V Á L A S Z T Á S I T E V É K E N Y S É G, P Á L Y A I R Á N Y Í T Á S EGRY JÓZSEF ÁLTALÁNOS ISKOLA ÉS ALAPFOKÚ MŰVÉSZETOKTATÁSI INTÉZMÉNY KESZTHELY 2 0 1 1-2 0 1 2 Készítette:

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

FIGYELEM VÁLTOZÁS!!! Tisztelt Szülők!

FIGYELEM VÁLTOZÁS!!! Tisztelt Szülők! Tisztelt Szülők! Ezúton is szeretnénk megköszönni, hogy gyermekük számára továbbtanulási céllal valamely ünket választották. Iskolánk iránti töretlen és növekvő népszerűségét jelzi, hogy a tavalyi 600

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

POLITIKAI GAZDASÁGTAN

POLITIKAI GAZDASÁGTAN POLITIKAI GAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

II. Hévízi Derby (C0 - A2)

II. Hévízi Derby (C0 - A2) II. Hévízi Derby (C0 - A2) Verseny ideje: 2008.06.06-2008.06.08 Típusa: A - kategória Hévíz, Kossuth u. Helyszíne: Labdarúgó edzőpálya és környéke Nevezés # lezárása 1 2008.06.02.nap 22:00 2 2008.06.02.nap

Részletesebben

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Az alábbiakban részletezzük, hogy a Modulo Átlag módosítási kérvényén belül található adatok pontosan mit jelentenek.

Részletesebben

Animációk, effektusok

Animációk, effektusok Áttűnések Előadásunk látványosabb, ha áttűnéseket, effektusokat használunk. Ismerkedjünk meg az áttűnésekkel. Az áttűnésekkel tudjuk megadni az átváltást az egyik diánkról a másikra. Az áttűnéseket érdemes

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Táblázatok. Táblázatok beszúrása. Cellák kijelölése

Táblázatok. Táblázatok beszúrása. Cellák kijelölése Táblázatok Táblázatok beszúrása A táblázatok sorokba és oszlopokba rendezett téglalap alakú cellákból épülnek fel. A cellák tartalmazhatnak képet vagy szöveget. A táblázatok használhatók adatok megjelenítésére,

Részletesebben

SPORT XXI. RÖPLABDA SZEGED KUPA SZUPER MINI-MINI-GYERMEK TORNA SZEGED 2016.MÁRCIUS 19-20.(LEÁNY) ÉS ÁPRILIS 2.(FIÚ)

SPORT XXI. RÖPLABDA SZEGED KUPA SZUPER MINI-MINI-GYERMEK TORNA SZEGED 2016.MÁRCIUS 19-20.(LEÁNY) ÉS ÁPRILIS 2.(FIÚ) SPORT XXI. RÖPLABDA SZEGED KUPA SZUPER MINI-MINI-GYERMEK TORNA SZEGED 2016.MÁRCIUS 19-20.(LEÁNY) ÉS ÁPRILIS 2.(FIÚ) Kedves Barátaink! Ezúttal 127 csapattal bonyolítjuk le hagyományos tornánkat. Reméljük

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt

Részletesebben

Hétköznapi Sakk Csapatbajnokság

Hétköznapi Sakk Csapatbajnokság Levélcím: Dancs Tibor 1213 Cirmos sétány 11. II.9. e-mail: dancs.tibor@upcmail.hu A 2014/2015 évi Hétköznapi 8 fős csapatbajnokság versenykiírása 1. A bajnokság célja: az amatőr csapatok közötti erőviszonyok

Részletesebben

Tartalomjegyzék 2. RENDSZER FELÉPÍTÉSE... 3

Tartalomjegyzék 2. RENDSZER FELÉPÍTÉSE... 3 Tartalomjegyzék 1. BEVEZETŐ... 2 2. RENDSZER FELÉPÍTÉSE... 3 2.1. FELÜLET... 3 2.2. FELHASZNÁLÓI FUNKCIÓK... 4 2.2.1. Modulok... 4 2.2.2. Előzmények... 4 2.2.3. Lekérdezés működése, beállítások... 5 2.2.4.

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

STEEL DARTS NEMZETI BAJNOKSÁG ÉS MAGYAR KUPA NŐI ÉS FÉRFI EGYÉNI VERSENYKIÍRÁSA A 2016. VERSENYÉVADRA

STEEL DARTS NEMZETI BAJNOKSÁG ÉS MAGYAR KUPA NŐI ÉS FÉRFI EGYÉNI VERSENYKIÍRÁSA A 2016. VERSENYÉVADRA STEEL DARTS NEMZETI BAJNOKSÁG ÉS MAGYAR KUPA NŐI ÉS FÉRFI EGYÉNI VERSENYKIÍRÁSA A 2016. VERSENYÉVADRA Budapest, 2015. október. 6. oldal 1 I. A verseny célja A Magyar Darts Szövetség (a továbbiakban: MDSZ)

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

ÉRTÉKELÉSI ÚTMUTATÓ A KÖZÉPSZINTŰ SZÓBELI VIZSGÁHOZ

ÉRTÉKELÉSI ÚTMUTATÓ A KÖZÉPSZINTŰ SZÓBELI VIZSGÁHOZ ÉRTÉKELÉSI ÚTMUTATÓ A KÖZÉPSZINTŰ SZÓBELI VIZSGÁHOZ Általános útmutató 1. A szóbeli feladatok értékelése központilag kidolgozott analitikus skálák segítségével történik. Ez az eljárás meghatározott értékelési

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

6. Cordial kupa. Budapest, 2012. szeptember 29. C-csoport

6. Cordial kupa. Budapest, 2012. szeptember 29. C-csoport 6. Cordial kupa Budapest, 2012. szeptember 29. A-csoport B-csoport C-csoport D-csoport DALNOKI AKADÉMIA SE BP. HONVÉD FC GYŐRI ETO FC FERENCVÁROSI TC VIDEOTON FC DIÓSGYŐRI VTK SZEAC-SZEGED FC SC SOPRON

Részletesebben

TERVEZET. A mezőgazdasági vízgazdálkodási ágazat fejlesztése

TERVEZET. A mezőgazdasági vízgazdálkodási ágazat fejlesztése Tervezett meghirdetés Beadási határidő Rendelkezésre álló forrás Támogatási intenzitás Jogosultak Kizáró okok Támogatás max. összege Támogatható pályázatok száma Vállalási feltételek 2015. december 34,0

Részletesebben

31 582 21 0001 31 04 Hűtő-, klíma- és hőszivattyúberendezés-szerelő. Épületgépészeti rendszerszerelő

31 582 21 0001 31 04 Hűtő-, klíma- és hőszivattyúberendezés-szerelő. Épületgépészeti rendszerszerelő Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/10. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8)

Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8) Alap függvények Szum( ; ): a paraméterlistában megadott számokat összeadja. Pl.: Szum(a2:a8) Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8) Max( ; ): a paraméterlistában

Részletesebben

Felsıoktatási felvételi eljárás

Felsıoktatási felvételi eljárás Felsıoktatási felvételi eljárás Dr. Bakos Károly vezetı fıtanácsos Alapelvek A felsıoktatásba egységes rangsorolás alapján a legjobban felkészült és legjobb teljesítményt nyújtó jelentkezık kerüljenek

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit.

Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit. Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit. A verseny rendezője: Magyar Atlétikai Szövetség megbízásából a Szombathelyi Egyetemi Sportegyesület Közreműködő

Részletesebben

6. Cordial kupa. Budapest, 2012. szeptember 29. C-csoport

6. Cordial kupa. Budapest, 2012. szeptember 29. C-csoport 6. Cordial kupa Budapest, 2012. szeptember 29. A-csoport B-csoport C-csoport D-csoport DALNOKI AKADÉMIA SE BP. HONVÉD FC GYŐRI ETO FC FERENCVÁROSI TC VIDEOTON FC DIÓSGYŐRI VTK SZEAC-SZEGED FC SC SOPRON

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Gyakorlatias tanácsok PLA fejlesztőknek

Gyakorlatias tanácsok PLA fejlesztőknek Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.

Részletesebben

ÚJ ELEMEK A ROMÁNIAI REGIONÁLIS FEJLŐDÉSBEN

ÚJ ELEMEK A ROMÁNIAI REGIONÁLIS FEJLŐDÉSBEN ÚJ ELEMEK A ROMÁNIAI REGIONÁLIS FEJLŐDÉSBEN Dr. TÖRÖK Ibolya Babeş-Bolyai Tudományegyetem Földrajz Kar Magyar Földrajzi Intézet A magyar ugaron a XXI. században 2013. november 9 Tartalom Regionális egyenlőtlenségek

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Statisztikai táblázatok, kimutatások (Pivot) készítése

Statisztikai táblázatok, kimutatások (Pivot) készítése Statisztikai táblázatok, kimutatások (Pivot) készítése Elméleti összefoglaló Az adatok egy, vagy több szempontú rendezése céljából célszerű azokat táblázatokba foglalni. Tehát az elemi adatokat alapján

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Az önkormányzati tulajdonú víziközművek az új víziközmű törvény szabályozásában Dr. Szabó Iván Ügyvédi Iroda www.drszaboivan.hu

Az önkormányzati tulajdonú víziközművek az új víziközmű törvény szabályozásában Dr. Szabó Iván Ügyvédi Iroda www.drszaboivan.hu Az önkormányzatinyzati tulajdonú víziközművek az új víziközmű törvény szabályoz lyozásában Dr. Szabó Iván Ügyvédi Iroda www.drszaboivan.hu A szabályoz lyozáss alkotmányjogi alapjai ALAPTÖRV RVÉNY P) cikk

Részletesebben

Órarendkészítő szoftver

Órarendkészítő szoftver SchoolTime Órarendkészítő szoftver 2.0 verzió Tartalomjegyzék: 1., Belépés a programba...3 2., Órarend főtábla...3 3., Tanátok...4 3.1., Új tanár felvitele, módosítása...4 3.2., Tanár törlése...4 3.3.,

Részletesebben

Excel 2010 függvények

Excel 2010 függvények Molnár Mátyás Excel 2010 függvények Csak a lényeg érthetően! Tartalomjegyzék FÜGGVÉNYHASZNÁLAT ALAPJAI 1 FÜGGVÉNYEK BEVITELE 1 HIBAÉRTÉKEK KEZELÉSE 4 A VARÁZSLATOS AUTOSZUM GOMB 6 SZÁMÍTÁSOK A REJTETT

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

DIÁKOLIMPIAI 2013/2014

DIÁKOLIMPIAI 2013/2014 DIÁKOLIMPIAI 2013/2014 www.fodisz.hu KAPKODD a LÁBAD! JÁTÉKOS SOR- és VÁLTÓVERSENY ZALAEGERSZEG, 2014. ÁPRILIS 11-12. Általános Tudnivalók Csapatok érkezése: 2014. április.11. /péntek/ 14.00-ig Cím: Zalaegerszeg

Részletesebben

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE KÖRUTAZÁSI MODELL AVAGY AZ UTAZÓÜGYNÖK PROBLÉMÁJA Induló

Részletesebben

FELHÍVÁS GÉPJÁRMŰ SZERVÍZELÉSI MUNKÁLATOKRA

FELHÍVÁS GÉPJÁRMŰ SZERVÍZELÉSI MUNKÁLATOKRA FELHÍVÁS GÉPJÁRMŰ SZERVÍZELÉSI MUNKÁLATOKRA AZ AJÁNLATKÉRŐ ADATAI Név: Győr-Moson-Sopron Megyei Kormányhivatal Székhely: 9021 Győr, Árpád út 32. Képviselő: Széles Sándor kormánymegbízott Kapcsolattartó:

Részletesebben

Deutsche Telebank besorolása

Deutsche Telebank besorolása 1. feladat Függvény segítségével számítsa ki az átlagokat és azt, hogy hány ország kapta meg a maximális 10 pontot. Az EU tagállamokat átlag pontszámuk alapján minősítik. Az alábbi segédtáblázat alapján

Részletesebben

FÖLDRAJZ II. A VIZSGA LEÍRÁSA

FÖLDRAJZ II. A VIZSGA LEÍRÁSA FÖLDRAJZ II. A VIZSGA LEÍRÁSA A vizsga részei Írásbeli vizsga Írásbeli vizsga 120 perc 1 perc 240 perc 20 perc 100 pont 0 pont 100 pont 0 pont A vizsgán használható segédeszközök A vizsgázó biztosítja

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés

Részletesebben

Nemzeti Közszolgálati Egyetem

Nemzeti Közszolgálati Egyetem Nemzeti Közszolgálati Egyetem Felvételi eljárás, ösztöndíjak Jelentkezés módja Kizárólag e-felvételi keretében, amelyet a www.felvi.hu honlapon, regisztráció után lehet benyújtani. Felvételi Tájékoztató

Részletesebben

POP tanulmányi verseny 2011. (POPTV)

POP tanulmányi verseny 2011. (POPTV) POP tanulmányi verseny 2011. (POPTV) Segédlet a POP programban részt vevő diákok és tanárok részére Tartalom Mi a POPTV? Szabályok Ki vehet részt a versenyben? Milyen tudásra van szükség a sikeres szerepléshez?

Részletesebben

Hasonlóságelemzés COCO használatával

Hasonlóságelemzés COCO használatával Hasonlóságelemzés COCO használatával Miért a CoCo?? Mire használhatom a CoCo-t?! Például megállapíthatom, hogy van-e a piacon olyan cég, amely az árhoz és a többiekhez képest kevesebbet vagy többet teljesít.?

Részletesebben

SZONEK Liszt Ferenc Utcai Óvoda és Bölcsőde. Informatikai stratégia 2010.06.21.

SZONEK Liszt Ferenc Utcai Óvoda és Bölcsőde. Informatikai stratégia 2010.06.21. SZONEK Liszt Ferenc Utcai Óvoda és Bölcsőde Informatikai stratégia 2010.06.21. 0 1. Alapvetések A stratégia célja, az óvoda informatikai jövő képe, stratégia célterületei: Olyan IKT-val támogatott jól

Részletesebben

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt!

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! valós adatokat növekvő sorrendbe rendezi és egy sorba kiírja

Részletesebben

RÖVIDPÁLYÁS GYORSKORCSOLYÁZÓ DIÁKOLIMPIA 2015/2016. TANÉVI ORSZÁGOS DÖNTŐ. 2016. március 04 06. Jászberény VERSENYKIÍRÁS

RÖVIDPÁLYÁS GYORSKORCSOLYÁZÓ DIÁKOLIMPIA 2015/2016. TANÉVI ORSZÁGOS DÖNTŐ. 2016. március 04 06. Jászberény VERSENYKIÍRÁS RÖVIDPÁLYÁS GYORSKORCSOLYÁZÓ DIÁKOLIMPIA 2015/2016. TANÉVI ORSZÁGOS DÖNTŐ 2016. március 04 06. Jászberény VERSENYKIÍRÁS A Magyar Diáksport Szövetség a Magyar Országos Korcsolyázó Szövetséggel együtt 2015/2016-os

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 846A Szélsebesség Mérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Használat előtti megjegyzések... 2 3. Kezelőszervek... 3 4. LCD kijelző... 3 5. Műszaki jellemzők... 4 6. Mérések... 5

Részletesebben

KISPEST OPEN 2012. STRANDRÖPLABDA BAJNOKSÁG VERSENYKIÍRÁS

KISPEST OPEN 2012. STRANDRÖPLABDA BAJNOKSÁG VERSENYKIÍRÁS KISPEST OPEN 2012. STRANDRÖPLABDA BAJNOKSÁG VERSENYKIÍRÁS 1. Célja: I. osztályú férfi versenysorozatunkat kísérleti jelleggel indítjuk, melyen keresztül kívánunk felkészülési, szintfelmérési lehetőséget

Részletesebben

Magyar Pétanque Szövetség

Magyar Pétanque Szövetség Magyar Pétanque Szövetség Fédération Hongroise de Pétanque Hungarian Federation of Pétanque H-7396 Magyarszék, Kossuth L. u. 33. Tel: +3630 405-4511 Fax: +3672 521-006 2014. évi válogató versenysorozat

Részletesebben