Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje"

Átírás

1 Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) (30) takach 4. konzultáció: Szállítási feladat Mintafeladat. Két raktárban (feladóhelyek) rendre 20 illetve 25 raklap áru van, ezeket kell elszállítani három üzletbe (rendeltetési helyek), amelyek rendre 10, 20 illetve 15 raklap áruratartanak igényt. A szállítási költségek táblázata: F Hogyan szervezzük a szállítást, hogy minimális legyen a szállítási összköltség? Visszavezetés a hozzárendelési feladatra. Ez egy ös hozzárendelési feladat, F 1 -nek 25 sor felel meg, R 1 -nek 10 oszlop, stb. A feladat LP modellje A költségek és kapacitások: F Az LP model: A szállított mennyiségek: F 1 x 11 x 12 x F 2 x 21 x 22 x x 11 + x 12 + x 13 = 20 x 21 + x 22 + x 23 = 25 x 11 + x 21 = 10 x 12 + x 22 = 20 x 13 + x 23 = 15 2x x x x 21 + x x 23 min

2 LP modell általánosan 2 Adott m feladóhely: F 1,..., F m, és n rendeltetési hely: R 1,..., R n. Az i-edik feladóhelyen f i mennyiségű homogén áru áll rendelkezésre, ezeket kell elszállítani a rendeltetési helyekre. A j-edik rendeltetési hely r j árumennyiséget igényel. Feltételezzük, hogy a készletek és az igények összhangban vannak, azaz m f i = i=1 r j. Jelölje c ij az egységnyi áru szállítási költségét az i-edik feladóhelyről a j-edik rendeltetési helyre történő szállításkor: R 1 R 2... R n F 1 c 11 c c 1n F 2 c 21 c c 2n.... F m c m1 c m2... c mn Jelölje x ij az i-edik feladóhelyről a j-edik rendeltetési helyre szállítandó árumennyiséget: R 1 R 2... R n F 1 x 11 x x 1n f 1 F 2 x 21 x x 2n f F m x m1 x m2... x mn f m r 1 r 2... r n A következő feltételek azt fejezik ki, hogy a feladóhelyekről minden árut el kell szállítani, és a rendeltetési helyek igényét ki kell elégíteni: m x ij = R j (j = 1,..., n) i=1 x ij = F i (i = 1,..., m) x ij 0 (i = 1,..., m; j = 1,..., n) A célfüggvény, aminek a minimumát keressük, K = i=m c ij x ij min. Ez egy lineáris programozási feladat: mn változó, m + n feltétel. A mátrixos alak feleslegesen sok nullát tartalmaz, hiszen egy egyenlőtlenségben m vagy n 1-es szerepel, a többi elem nulla. Ezért célszerűbb a bázistáblánál tömörebb írásmód használata: disztribúciós táblázat. Ez nem jelent mást, mint hogy a költségmátrixban bekeretezzük azon viszonylatoknak megfelelő elemeket, ahol szállítunk és azt is melléírjuk, hogy abban a viszonylatban mennyit szállítunk. Tétel. Ha feladóhelyek száma m arendeltetési helyek száma n, akkor az (m+n) (mn)-es együtthatómátrix rangja m+n 1. Bizonyítás. Könyvben (2.1. Tétel). Tétel. A szállítási feladatnak mindig van lehetséges megoldása. Bizonyítás. A bizonyításban módszert is adunk egy lehetséges megoldás megkeresésére. (Disztribúciós módszer)

3 Disztribúciós módszer 3 A mintafeladaton: F F F F F F Disztribúciós módszer Válasszuk ki a C költségmátrix egy c ij elemét, s legyen A c ij elemet bekeretezzük, fölé írva x ij értékét. x ij = min(f i, r j ). Ha f i < r j, azaz x ij = f i, akkor az F i készlete kiürült, míg R j igénye x ij -vel csökkent. Ennek megfelelően az i-edik sort töröljük, r j -t pedig r j f i -re változtatjuk. Ha r j < f i, azaz x ij = r j, akkor az R j igényeit kielégítettük, míg F i készlete x ij -vel csökkent. Ennek megfelelően az j-edik oszlopot töröljük, f i -t pedig f i r j -re változtatjuk. Ha f i = r j : degeneráció, ld. később. Ezt ismételgetve m + n 2 lépés után egyetlen sor és oszlop marad, amit már egyszerre törölhetünk. Tehát mindig m + n 1 viszonylatban fogunk szállítani. Azon c ij ket, ahol szállítunk, kötött elemeknek, a többit szabad elemeknek nevezzük. Megjegyzés. Belátható (kell is, ld Tétel a könyvben), hogy az így kapott megoldás bázismegoldása a szállítási feladathoz tartozó LP feladatnak. Optimum létezése Tétel. A szállítási feladat célfüggvénye korlátos a lehetséges megoldások halmazán. Bizonyítás. Mivel n x ij = f i (i = 1,..., n), ezért K = c ij x ij i=m c ij x ij i=m max c ij x ij = max c ij j j és ez már konstans. = i=m i=m max c ij f i, j i=m x ij = Megjegyzés. A könyvbeli bizonyításban durvább becslés szerepel.

4 Optimális-e az aktuális program? 4 A mintafeladat LP modellje: Duálisának feltételrendszere: x 11 + x 12 + x 13 = 20 x 21 + x 22 + x 23 = 25 x 11 + x 21 = 10 x 12 + x 22 = 20 x 13 + x 23 = 15 2x x x x 21 + x x 23 min u i + v j c ij (i = 1,..., m; j = 1,..., n), ahol az u i -k a sorokhoz, v j -k az oszlopokhoz tartozó változók. Ismert, hogy ezek előjelkötetlen változók, mert egyenleteknek felelnek meg. A feltételrendszer eltérésvektorokkal: u i + v j + δ ij = c ij (i = 1,..., m; j = 1,..., n), ahol δ ij 0. A duál feladat eltérésvektorának azon komponensei nullák lesznek, amelyeknek megfelelő primál változók a programban vannak, azaz ha x ij kötött elem, akkor δ ij = 0, azaz u i + v j = c ij. Módszer. 1. Adjunk meg olyan u i és v j elemeket, hogy a költségmátrix kötött c ij elemeire u i + v j = c ij teljesüljön. Ebben az egyenletrendszerben van egy szabad változó, így egy ismeretlen értéke szabadon választható. Szokásosan: u 1 = Képezzük azt a mátrixot, amelynek elemei Nyilvánvalóan δ ij = 0 a kötött elemeknél. δ ij = c ij u i v j. 3. Ha minden δ ij 0, akkor a duál feladat egy lehetséges megoldásáról van szó, ami azt jelenti, hogy a primál feladat aktuális megoldása, tehát az aktuális szállítási program optimális. Ha nem JAVÍTÁS. Mintafeladat. u i -k és v j -k meghatározása: meghatározása: v 1 = 2 v 2 = 4 v 3 = 5 u 1 = u 2 = δ 11 = c 11 u 1 v 1 = = 0 δ 12 = c 12 u 1 v 2 = = 1. A 1 elem mutatja, hogy az aktuális megoldás nem optimális. = [ ],

5 Hurkok 5 Definíció. Huroknak nevezzük a költségmátrix elemeinek olyan sorozatát, ahol a szomszédos elemek felváltva vannak egy sorban ill. egy oszlopban (az utolsó elem szomszédosnak számít az elsővel), továbbá egyik sorban és oszlopban sincs kettőnél több kiválasztott elem. Tétel. Bármely hurok elemeihez tartozó a ij vektorok lineárisan függő rendszert alkotnak. Ha egy vektort elghagyunk közülük, akkor lineárisan független rendszert kapunk. Bizonyítás. Nem kell. Tétel. Ha egy m n-es disztribúció táblázatban m + n 1 kötött elem van, akkor minden szabad elemet pontosan egy olyan hurok tartalmaz, melynek összes többi eleme kötött Bizonyítás. Nem kell. A program javítása A javítás menete: 1. Válasszunk egy negatív δ ij -t. A költségmátrix ennek megfelelő szabad eleméből kötött elem lesz. 2. Keressük meg a megfelelő hurkot. 3. A hurok mentén felváltva növeljük ill. csökkentsük szállítandó mennyiséget (az új kötött elemen növeljük!). A növelés/csökkentés mértékét a legkisebb csökkentendő mennyiség adja (negatívba nem mehet át!); ez az átalakítás után szabad elem lesz A mintapéldán: = [ ] A 3 és a 2 költségen szállított mennyiség nő, az 1 és az 5 költségen szállított csökken. A szűk keresztmetszetet az jelenti, hogy az 5 költségű viszonylatban 10-nél többel nem lehet csökkenteni. Ez az elem tehát kikerül a programból: OPTIMUM!!! = Disztribúciós módszer (összefoglalás) [ ] 1. Indulóprogram meghatározása 2. u i -k és v j -k meghatározása a kötött elemek segítségével. 3. A mátrix meghatározása az u i -k és v j -k segítségével. 4. Ha -nak nincs negatív eleme, akkor a jelenlegi program optimális. STOP 5. Ha -nak van negatív eleme, akkor a. Keresünk egy hurkot a költségmátrix megfelelő elemén át. b. A hurok mentén javítjuk a programot, majd GOTO 2.

6 Redukálás 6 Tétel. Ha a költségmátrix egy sorának vagy oszlopának minden eleméhez ugyanazt a számot adjuk, vagy abból ugyanazt a számot kivonjuk, ekvivalens feladatot kapunk. Ugyanott lesz az optimum, csak értéke lesz más. Bizonyítás. Ha az i-edik sorból kivonunk c-t, akkor a célfüggvény értéke minden programban cf i -vel csökken, ami független a programtól. Módszer az indulóprogram meghatározására A fenti módszerben tetszőleges volt a költségmátrix elemeinek kiválsztása azokból a sorokból és oszlopokból, amiket még nem húztunk ki. Szeretnénk úgy választani, hogy már az indulóprogram is minél közelebb legyen az optimumhoz. Mohó módszer: mindig a legkisebb költségen szállítunk. Ez nem vált be! Vogel-Korda-módszer: mindig arra az elemre programozunk, amelyre ha nem programoznánk, rossz költségalakulást jelentene. Minden sorra és oszlopra meghatározzuk a legkisebb és a második legkisebb elem különbségét (0 is lehet!), és ahol ez a legnagyobb, arra a minimális elemre programozunk. Rendkívüli esetek. Degeneráció az indulóprogramban. Előfordulhat, hogy az indulóprogram meghatározásakor egy elem sorának és oszlopának aktuális kapacitása megegyezik. Ilyenkor csak a sorát vagy az oszlopát húzzuk ki, a másik kapacitása nulla lesz. Ilyenkor biztosan szükség lesz egy olyan viszonylat kiválasztására, amelyben nulla mennyiségű árut szállítunk. Degeneráció menet közben. Előfordulhat, hogy egy javításkor egy hurokban több helyen is megjelenik a szűk keresztmetszet. Fontos viszont, hogy ilyenkor csak az egyiket vegyük ki a programból, a másikat hagyjuk benne nulla szállított áruval. Mindkét előző esetben előfordulhat, hogy az optimális megoldás már nem lesz degenerált, de az is lehet, hogy az marad. Alternatív optimum. Ha a mátrixban nincs negatív elem, de szabad elemnek megfelelő helyen is van benne nulla, akkor a duál feladat degenerált, azaz a primál szállítási feladatnak altaernatív optimuma van. Ezt úgy lehet megtalálni, ha a "javítást" ennél a szabad elemnél végezzük el. Eltérő kereslet és kínálat. Ha pl. nagyobb a kereslet, mint a kínálat, akkor egy névleges feladóhelyet iktatunk be, akkora kapacitással, minta amekkora a túlkereslet. Azokat az igényeket, amiket innen kellene kielégíteni az optimális megoldásban, nem elégítjük ki. Tiltott viszonylatok. Ha egy feladóhely és egy rendeltetési hely között tilos a szállítás, akkor oda végtelen költséget kell írni. Ilyenkor szokás szerint c =. Korlátozott útvonal. Előfordulhat, hogy egy viszonylatban szállíthatunk ugyan, de csak korlátozott mennyiségben. ld Példa illetve 2.7. Tétel.

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Szállítási feladat_1.

Szállítási feladat_1. Szállítási feladat_. Bevezetés, a vállalkozás bemutatása A vállalkozás 992-ben alakult, mint egyszemélyes vállalkozás, majd évek során kinőtte magát, tevékenysége és vevőköre egyre kiszélesedett, így 2002-ben

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL 1.Példa: Oldjuk meg a következő lineáris egyenletrendszert: 1. Paramétert nem tartalmazó eset x 1 + 3x 2-2x 3 = 2-2x 1-5x 2 + 4x 3 = 0 3x 1

Részletesebben

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT 1.a) Paramétert nem tartalmazó eset A bázistranszformáció egyszerűsített változatában a bázison kívül elhelyezkedő vektorokból amennyit csak

Részletesebben

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Operációkutatás. Glashütter Andrea

Operációkutatás. Glashütter Andrea Glashütter Andrea Mátriok I. Mátriok A mátriok olyan számtáblázatok, amelyek n db sorral és m db oszloppal rendelkeznek. Általános mátri: m n nm n n m m a a a a a a a a a A K M O M M K K Egy tetszleges

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Szállításszervezési módszerek Jármvek optimális kiterhelése 1

Szállításszervezési módszerek Jármvek optimális kiterhelése 1 Jármvek optimális kiterhelése 1 A jármvek megrakását azok teherbírása és raktérfogata (esetleg ez utóbbi helyett rakterülete) korlátozza. A szállítandó jármveknek tömege és térfogata van (ez utóbbit gyakran

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Nappali képzések ALAPKÉPZÉSBEN MEGHIRDETETT SZAKOK: Részidős képzések ALAPKÉPZÉSBEN MEGHIRDETETT SZAKOK:

Nappali képzések ALAPKÉPZÉSBEN MEGHIRDETETT SZAKOK: Részidős képzések ALAPKÉPZÉSBEN MEGHIRDETETT SZAKOK: európai integrációs intézmények, Magyarországra telepített uniós szervezetek, regionális tanácsok és ügynökségek, önkormányzatok,tömegtájékoztatással és hírközléssel foglalkozó intézmények munkatársaiként.

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

Diszkrét matematika II., 1. el adás. Lineáris leképezések

Diszkrét matematika II., 1. el adás. Lineáris leképezések 1 Diszkrét matematika II., 1. el adás Lineáris leképezések Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. február 6 Gyakorlati célok Ezen el adáson,

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott

Részletesebben

Logisztika alapjai 3. Az elosztási logisztika menedzsmentje

Logisztika alapjai 3. Az elosztási logisztika menedzsmentje BME GTK Ipari Menedzsment és Vállalkozásgazdasági Tanszék Menedzser Program Logisztika alapjai 3. Az elosztási logisztika menedzsmentje dr. Tóth Lajos egyetemi docens dr.. Tóth Lajos: Logisztika alapjai

Részletesebben

VBKTO logisztikai modell bemutatása

VBKTO logisztikai modell bemutatása VBKTO logisztikai modell bemutatása Logisztikai rendszerek információs technológiája: Szakmai nyílt nap Pannon Egyetem Műszaki Informatikai Kar 2007. június 6. Tartalom Vagyontárgy nyilvántartó központ

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése 1 /11 (C) http://kgt.bme.hu/ A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése Varian 20.3-6. 21. fejezet Termelési és hasznossági függvény (ismétlés

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra

Részletesebben

Nemlineáris optimalizálás Dr. Házy, Attila

Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Miskolci Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Kivonat Kivonat Nemzeti Fejlesztési Ügynökség http://ujszechenyiterv.gov.hu/

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

OPERÁCIÓKUTATÁS. No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS

OPERÁCIÓKUTATÁS. No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS OPERÁCIÓKUTATÁS No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS Budapest 2002 Komáromi Éva: LINEÁRIS PROGRAMOZÁS OPERÁCIÓKUTATÁS No.2 Megjelenik az FKFP 0231 Program támogatásával a Budapesti Közgazdaságtudományi

Részletesebben

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Az Excel Solver programcsomagjának bemutatásaként két feltételes és egy feltétel nélküli optimalizálási feladatot

Részletesebben

Energiafű ellátási logisztika modellezése a Pannon Hőerőmű Zrt-nél

Energiafű ellátási logisztika modellezése a Pannon Hőerőmű Zrt-nél GreenSky Modeling Energiafű ellátási logisztika modellezése a Pannon Hőerőmű Zrt-nél A kutatást az NKFP 3A 061-04 számú Biomassza projekt keretében végeztük. Torjai László torjai@ktk.pte.hu Az erőmű és

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Gyártórendszerek modellezése zh, 2010. december 7.

Gyártórendszerek modellezése zh, 2010. december 7. Gyártórendszerek modellezése zh, 2010. december 7. A feladatsorban összesen 18 pontnyi feladat van, de a 100%-os ötöshöz elég 15 pontot szerezni. Ponthatárok: 14-15: 5 12-13: 4 10-11: 3 8-9: 2 LP feladatok

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Többszempontú döntési módszerek

Többszempontú döntési módszerek XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Hálózatsemlegesség - egységes internet szolgáltatás-leíró táblázat

Hálózatsemlegesség - egységes internet szolgáltatás-leíró táblázat Hálózatsemlegesség - egységes internet szolgáltatás-leíró táblázat Díjcsomag neve Gergisuli Net I. Net II. Net III. Net IV. Kínált letöltési sebesség (Mbit/s) 0,5 2 3 5 10 Kínált feltöltési sebesség (Mbit/s)

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Függőségek felismerése és attribútum halmazok lezártja

Függőségek felismerése és attribútum halmazok lezártja Függőségek felismerése és attribútum halmazok lezártja Elméleti összefoglaló Függőségek: mezők közötti érték kapcsolatok leírása. A Funkcionális függőség (FD=Functional Dependency): Ha R két sora megegyezik

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

Vállalati modellek. Előadásvázlat. dr. Kovács László

Vállalati modellek. Előadásvázlat. dr. Kovács László Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység

Részletesebben

Egészértékű programozás

Egészértékű programozás Egészértékű programozás Alkalmazott matematika A sorozat kötetei: Kóczy T. László Tikk Domonkos: Fuzzy rendszerek (2000) Elliott, J. R. Kopp, P. E.: Pénzpiacok matematikája (2000) Michelberger Szeidl Várlaki:

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével. Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van

Részletesebben

Hálózatsemlegesség - egységes internet szolgáltatás-leíró táblázat

Hálózatsemlegesség - egységes internet szolgáltatás-leíró táblázat Hálózatsemlegesség - egységes internet szolgáltatás-leíró táblázat Díjcsomag neve Mini Force Alfa Force Silver Béta Force Gold Delta Force HIR Force 60 HIR Force 120 Mini Alfa Béta Delta Kínált letöltési

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Nemlineáris optimalizálás

Nemlineáris optimalizálás Nemlineáris optimalizálás Rapcsák Tamás 2007. 3 Előszó A Nemlineáris optimalizálás című anyag a gazdaságmatematikai elemző közgazdász hallgatók számára készült és egyrészt a matematikai alapozó kurzusokra

Részletesebben

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai Optimalizálási eljárások MSc hallgatók számára 1. Előadás: Az alapfeladat Előadó: Hajnal Péter 2015. tavasz L.V. Kantorovics (1912-1986) Az optimalizálás a matematika legkülönfélébb területeinek találkozási

Részletesebben

Kisimre István A MAGYAR MÓDSZER" ALKALMAZÁSA 1. BEVEZETŐ

Kisimre István A MAGYAR MÓDSZER ALKALMAZÁSA 1. BEVEZETŐ Kisimre István A MAGYAR MÓDSZER" ALKALMAZÁSA 1. BEVEZETŐ Ma már nem engedhetjük meg magunknak azt a fényűzést, hogy a gazdasági problémákat megoldó optimalizáló módszereket csak néhány szakember ismerje

Részletesebben

Magas szintű adatmodellek Egyed/kapcsolat modell I.

Magas szintű adatmodellek Egyed/kapcsolat modell I. Magas szintű adatmodellek Egyed/kapcsolat modell I. Ullman-Widom: Adatbázisrendszerek. Alapvetés. 4.fejezet Magas szintű adatmodellek (4.1-4.3.fej.) (köv.héten folyt.köv. 4.4-4.6.fej.) Az adatbázis modellezés

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Optimalizálás a Microsoft Excel Solver b vítménye segítségével

Optimalizálás a Microsoft Excel Solver b vítménye segítségével Eötvös Loránd Tudományegyetem Természettudományi Kar Optimalizálás a Microsoft Excel Solver b vítménye segítségével Szakdolgozat Tóth Ádám Matematika B.Sc., elemz szakirány Témavezet : Mádi-Nagy Gergely,

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Készletgazdálkodási módszerek ÚTMUTATÓ 1

Készletgazdálkodási módszerek ÚTMUTATÓ 1 Készletgazdálkodási módszerek ÚTMUTATÓ 1 A programozást elvégezték és a hozzá tartozó útmutatót készítették: dr. Gelei Andrea és dr. Dobos Imre, egyetemi docensek, Budapesti Corvinus Egyetem, Logisztika

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

LOGISZTIKA. Anyagmozgatás. Szakálosné Mátyás Katalin

LOGISZTIKA. Anyagmozgatás. Szakálosné Mátyás Katalin LOGISZTIKA Anyagmozgatás Szakálosné Mátyás Katalin F Az anyagáramlás fizikai megvalósulása Feladó Áramló anyag Út Nyelő N Az anyagáramlás objektumai Anyag: az áramló objektum (tárgy, személy, stb.) Forrás:

Részletesebben

Szállításszervezési módszerek Járattípusok 1

Szállításszervezési módszerek Járattípusok 1 Járattípusok 1 A logisztikában a távolság-áthidalás tetemes költségeinek mérséklését alapvetően kétféleképpen érhetjük el: - a szükséges szállítási teljesítmény csökkentésével, - a szállítójárművek jó

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben