Dinamikus programozás - Szerelőszalag ütemezése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dinamikus programozás - Szerelőszalag ütemezése"

Átírás

1 Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal elkerüli az ismételt számítást, ha a részfeladat megint felmerül. A dinamikus programozást optimalizálási feladatok megoldására használjuk. Ilyen feladatoknak sok megengedett megoldása lehet. Egy dinamikus programozási algoritmus kifejlesztése lépésre bontható fel:. Jellemezzük az optimális megoldás szerkezetét.. Rekurzív módon definiáljuk az optimális megoldás értékét.. Kiszámítjuk az optimális megoldás értékét alulról felfelé történő módon.. A kiszámított információk alapján megszerkesztünk egy optimális megoldást. A -. lépések jelentik az alapját annak, ahogy a dinamikus programozás meg tud oldani egy feladatot. Egy autógyár autókat állít elő az egyik gyárában, amelynek két szerelőszalagja van. Mindkét szerelőszalag elején egy alváz jelenik meg, melyhez adott számú állomáson hozzászerelik az alkatrészeket, majd a szalag végén távozik a kész autó. Mindegyik szalagnak n állomása van, melyek indexei j=,,, n. S ij jelöli az i-edik (i= vagy ) szalag j-edik állomását. Az első szalag j-edik állomása (S j ) ugyanazt a funkciót látja el, mint a második szalag j-edik állomása (S j ). A szalagokat különböző időpontokban különböző technológiával építették, ezért előfordulhat, hogy a két szalag azonos állomásán a terméknek különböző időt kell eltöltenie. Az S ij állomáson a műveleti időt a ij jelöli.. szerelőszalag S állomás a S állomás a S,n- állomás a,n- S n állomás a n e t t,n- x az alváz belép t t,n- a kész autó kilép e x. szerelőszalag a a a,n- a n S állomás S állomás S,n- állomás S n állomás Ahhoz is kell egy bizonyos idő, hogy az alváz a szalagra kerüljön, és ahhoz is, hogy az elkészült autó elhagyja a szalagot. Ezeket az i-edik szalag esetén e i, illetve x i jelöli. Ha szeretnénk a megrendeléseket minél gyorsabban teljesíteni, a két szalag munkáját össze kell hangolni. Az i-edik szalag S ij állomása után az alváznak a másik szalagra való átrakása t ij időbe kerül j=,,, n- (mivel n állomás után a kocsi már kész). A feladat az, hogy meghatározzuk, mely állomásokat érintse az egyik és melyeket a másik szalagon, hogy az átfutási idő minimális legyen.

2 Példa a szerelőszalag feladatára. Feltüntettük a különböző költségeket. A vastagon rajzolt út a legrövidebb.. szerelőszalag S állomás S állomás S állomás S állomás S 5 állomás az alváz belép a kész autó kilép. szerelőszalag S állomás S állomás S állomás S állomás S 5 állomás A teljes leszámlálás számítási ideje Ω( n ). Ez nagy n mellett elfogadhatatlan.. lépés: a legrövidebb gyártási út szerkezete Tekintsük a lehetséges legrövidebb utat, ahogy egy alváz a kiindulási helyzetből túljut az S j állomáson. Ha j=, akkor csak egy lehetőség van, és így könnyű meghatározni a szükséges időt. j=,,,n esetén két lehetőség van: az alváz érkezhet közvetlenül az S,j- állomásról, amikor ugyanannak a szalagnak a (j-)-edik állomásáról a j-edik állomására való átszállítás ideje elhanyagolható. Az alváz S,j- felől érkezik, az átszállítás ideje t,j-. Tegyük fel, hogy az S j állomáson való túljutás leggyorsabb módja az, hogy oda az S,j- felől érkezünk. Az alváznak a legrövidebb módon kell túljutnia az S,j- állomáson, mert ha volna egy gyorsabb mód, hogy az alváz túljusson a S,j- állomáson, akkor ezt használva magán S,j - n is hamarabb jutna túl, ami ellentmondás. Hasonlóképpen tegyük fel, hogy a leggyorsabb út az, amikor az alváz S,j- felől érkezik. Ekkor a kiindulási ponttól indulva a legrövidebb módon kell túljutnia S,j- -en. Ha volna egy gyorsabb mód, hogy az alváz túljusson az állomáson, akkor ezt használva magán S,j- -n is hamarabb jutna túl, ami ismét ellentmondás. Általánosabban fogalmazva azt mondhatjuk, hogy a szerelőszalag ütemezésének (hogy megtaláljuk a legrövidebb módot az S ij állomáson való túljutásra) optimális megoldása tartalmazza egy részfeladat (vagy az S,j- vagy az S,j- állomáson való leggyorsabb áthaladás) optimális megoldását. Erre a tulajdonságra optimális részstruktúraként fogunk hivatkozni. Azaz részfeladatok optimális megoldásaiból megszerkeszthető a feladat optimális megoldása. Ha a leggyorsabb módon túljutunk az S j állomáson, akkor túl kell jutnunk a (j-)-edik állomáson vagy az első vagy a második szalagon. Ezért a leggyorsabb út az S j állomáson keresztül vagy

3 a leggyorsabb út az S,j- állomáson keresztül és onnan közvetlenül megyünk az S j állomásra, vagy a leggyorsabb út az S,j- állomáson keresztül, ahonnan az alvázat át kell szállítani az első szalag S j állomására. Mindkét esetben el kell végezni a munkát az S j állomáson. Hasonlóképpen a leggyorsabb út az S j állomáson keresztül vagy a leggyorsabb út az S,j- állomáson keresztül és onnan közvetlenül megyünk az S j állomásra, vagy a leggyorsabb út az S,j- állomáson keresztül, ahonnan az alvázat át kell szállítani a második szalag S j állomására. Ahhoz, hogy bármelyik szalag j-edik állomásán keresztülvezető legrövidebb utat megtaláljuk, mindkét szalag (j-)-edik állomásán keresztüli legrövidebb út megkeresésére van szükség.. lépés: a rekurzív megoldás Az optimális megoldás értékét a részfeladatok optimális értékeiből rekurzívan fejezzük ki. A részfeladatok legyenek mindkét szalag j-edik állomásán való leggyorsabb áthaladás megkeresésének a feladatai j=,,, n mellett. Jelölje f i [j] azt a legrövidebb időt, ami alatt az alváz túl tud jutni az S ij állomáson. Célunk annak a legrövidebb időnek a meghatározása, ami alatt az alváz az egész üzemen keresztül tud haladni. Ezt az időt f* jelöli. Az alváznak át kell haladnia az első vagy a második szalag n-edik állomásán, és utána el kell hagynia a gyárat. Mivel a két lehetőség közül a gyorsabbik az egész üzemen átvezető leggyorsabb lehetőség, azt kapjuk, hogy f* = min{ f [n] +x, f [n] +x } Mindkét szalag esetében az első állomáson való keresztülhaladás azt jelenti, hogy az alváz egyenesen erre az állomásra kerül, azaz f [] = e +a f [] = e +a Hogyan kell kiszámolni az f i [j]-t j=,,,n és i=, esetén? ha j=,,,n. Ehhez hasonlóan ha j=,,,n. A következő rekurzív egyenletet kapjuk: f [j] = min{f [j-]+a j, f [j-]+ t,j- +a j }, f [j] = min{ f [j-]+a j, f [j-]+ t,j- +a j }, f [j] = e +a, ha j=, min{ f [j-]+a j, f [j-]+ t,j- +a j }, ha j

4 f [j] = e +a, ha j=, min{ f [j-]+a j, f [j-]+ t,j- +a j }, ha j Példánkban: f*= j 5 f [j] f [j] 6 6 Az f i [j] mennyiségek a részfeladatok optimális érékei. Annak érdekében, hogy vissza tudjuk keresni a legrövidebb utat, definiáljuk l i [j]-t mint azt a szerelőszalagot, amelyiknek a j--edik állomását használtuk az S ij -n való leggyorsabb keresztülhaladáskor. Itt i=, és j=,,,n. (Nem definiáljuk l i []-et, mert S i -t egyik szalagon sem előzi meg másik állomás.) Az l* szalag definíció szerint az, amelyiknek az utolsó állomását használjuk az egész üzemen való áthaladáskor. Az l i [j] értékek segítségével lehet nyomon követni a legrövidebb utat. Példánkban: l* = j 5 l [j] l [j] Mivel l* =, ezért az S 5 állomást használjuk. Mivel l [5]=, ezért ide az S állomásról érkeztünk. Így folytatva az l []=az S, l []= az S, l []= az S állomás használatát jelenti.. lépés: a legrövidebb átfutási idő kiszámítása Sokkal jobban járunk, ha az f i [j] értékeket más sorrend szerint számoljuk, mint az a rekurzív módszerből adódik. Vegyük észre, hogy j esetén f i [j] csak f [j-] -től és f [j-] -től függ. Ha az f i [j] értékeket az állomások j indexének növekvő sorrendjében számoljuk, akkor a legrövidebb átfutási idő meghatározása Θ(n) ideig tart. Az eljárás bemenő paraméterei az a ij, t ij, e i és x i értékek, valamint mindkét szalag állomásainak n száma.

5 ALGORITMUS(a,t,e,x,n). f [] := e +a. f [] := e +a. for j:= to n. do if f [j-]+a j =< f [j-]+ t,j- +a j 5. then f [j]:= f [j-]+a j 6. l [j]:= 7. else f [j]:= f [j-]+ t,j- +a j 8. l [j]:= 9. if f [j-]+a j =< f [j-]+ t,j- +a j 0. then f [j]:= f [j-]+a j. l [j]:=. else f [j]:= f [j-]+ t,j- +a j. l [j]:=. if f [n] +x =< f [n] +x 5. then f*=f [n] +x 6. l*= 7. else f*=f [n] +x 8. l*= f i [j] és l i [j] kiszámítását úgy is tekinthetjük, hogy kitöltjük egy táblázat elemeit. Az f i [j]-t és l i [j]-t tartalmazó táblát balról jobbra és oszloponként felülről lefelé töltjük ki. f i [j] kiszámításához csak f [j-]-re és f [j-]-re van szükségünk. Ezeket már kiszámítottuk, az adott pillanatban a meghatározásuk mindössze abból áll, hogy kiolvassuk azokat a táblázatból.. lépés: a legrövidebb átfutási idejű út megszerkesztése f i [j], f*, l i [j] és l* kiszámítását követően meg kell szerkeszteni az üzemen való legrövidebb áthaladást biztosító utat. Az alábbi eljárás az út állomásait az indexek csökkenő sorrendjében nyomtatja ki. ALGORITMUS(l,n). i:= l*. print i -edik szalag n -edik állomás. for j:= n downto. do i:= l i [j] 5. print i -edik szalag ( j- )-edik állomás Eredmény a példánkban:. szalag 5. állomás. szalag. állomás. szalag. állomás. szalag. állomás. szalag. állomás 5

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Integrált gyártórendszerek

Integrált gyártórendszerek IGYR-7 p. 1/4 Integrált gyártórendszerek Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel, dinamikus

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer

Programozási módszertan. Függvények rekurzív megadása Oszd meg és uralkodj elv, helyettesítő módszer, rekurziós fa módszer, mester módszer PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes. 1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

Dinamikus programozás vagy Oszd meg, és uralkodj!

Dinamikus programozás vagy Oszd meg, és uralkodj! Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk). Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés

Részletesebben

Példa. Job shop ütemezés

Példa. Job shop ütemezés Példa Job shop ütemezés Egy üzemben négy gép működik, és ezeken 3 feladatot kell elvégezni. Az egyes feladatok sorra a következő gépeken haladnak végig (F jelöli a feladatokat, G a gépeket): Az ütemezési

Részletesebben

Eljárások, függvények

Eljárások, függvények Eljárások, függvények Tartalomjegyzék Az alprogramok...2 Kérdések, feladatok...2 Kérdések, feladatok...3 Eljárások...3 Kérdések, feladatok...4 Érték és cím szerinti paraméterátadás...5 Kérdések, feladatok...6

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1.

4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1. 4.Lecke / 1. 4. Lecke Körök és szabályos sokszögek rajzolása Az előző fejezetekkel ellentétben most nem újabb programozási utasításokról vagy elvekről fogunk tanulni. Ebben a fejezetben a sokszögekről,

Részletesebben

S Z Á L L Í T Á S I F E L A D A T

S Z Á L L Í T Á S I F E L A D A T Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből

Részletesebben

Optimalizációs stratégiák 1.

Optimalizációs stratégiák 1. Optimalizációs stratégiák 1. Nyers erő, Oszd meg és uralkodj, Feljegyzéses, Dinamikus, Mohó előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János

Részletesebben

Ütemezés gyakorlat. Termelésszervezés

Ütemezés gyakorlat. Termelésszervezés Ütemezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Általános ütemezés Egygépes ütemezési problémák Párhuzamos erőforrások ütemezése Flow-shop és job-shop ütemezés

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

GLOBÁLIZÁLT BESZERZÉS ÉS ELOSZTÁS A LOGISZTIKÁBAN

GLOBÁLIZÁLT BESZERZÉS ÉS ELOSZTÁS A LOGISZTIKÁBAN GOBÁIZÁT BESZERZÉS ÉS EOSZTÁS A OGISZTIKÁBAN A globalizációjának, a késleltetett következménye, hogy két kapcsolódó láncszem a beszerzés és elosztás is globalizálódik. A globalizált beszerzésnek és elosztásnak

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Mesterséges Intelligencia I. (I602, IB602)

Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 201/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória 1. feladat: Metró (20 pont) Egy metróállomásra

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

VBKMSE Etikai Kódex. 1.. A VBKMSE teljességgel független minden politikai párttól, mozgalomtól és társaságtól.

VBKMSE Etikai Kódex. 1.. A VBKMSE teljességgel független minden politikai párttól, mozgalomtól és társaságtól. VBKMSE Etikai Kódex 1.. A VBKMSE teljességgel független minden politikai párttól, mozgalomtól és társaságtól. 2.. Bárki, vallási, politikai vagy egyéb megkülönböztetés nélkül tagja lehet a baráti körnek.

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Ütemezés tervezése A leghátrányosabb helyzet kistérségek fejlesztési és együttm ködési kapacitásainak meger

Ütemezés tervezése A leghátrányosabb helyzet kistérségek fejlesztési és együttm ködési kapacitásainak meger Ütemezés tervezése A leghátrányosabb helyzetű kistérségek fejlesztési és együttműködési kapacitásainak megerősítése ÁROP-1.1.5/C A Tokajii Kistérség Fejlesztési és Együttműködési Kapacitásának Megerősítése

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

Adatbázis-kezelés az Excel 2013-ban

Adatbázis-kezelés az Excel 2013-ban Molnár Mátyás Adatbázis-kezelés az Excel 2013-ban Magyar nyelvi verzió Csak a lényeg érthetően! www.csakalenyeg.hu Csak a lényeg érthetően! Microsoft Excel 2013 Kimutatás készítés relációs adatmodell alapján

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A 2012/201 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja INFORMATIKÁBÓL II. (programozás) kategóriában Munkaidő: 300 perc Elérhető pontszám: 150

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Bevezetés. Párhuzamos vetítés és tulajdonságai

Bevezetés. Párhuzamos vetítés és tulajdonságai Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

A PROGRAMOZÁS ALAPJAI 3. Készítette: Vénné Meskó Katalin

A PROGRAMOZÁS ALAPJAI 3. Készítette: Vénné Meskó Katalin 1 A PROGRAMOZÁS ALAPJAI 3 Készítette: Vénné Meskó Katalin Információk 2 Elérhetőség meskokatalin@tfkkefohu Fogadóóra: szerda 10:45-11:30 Számonkérés Időpontok Dec 19 9:00, Jan 05 9:00, Jan 18 9:00 egy

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

OKTV 2006/2007. Informatika II. kategória döntő forduló Feladatlap

OKTV 2006/2007. Informatika II. kategória döntő forduló Feladatlap Feladatlap Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció pontos betartása. Ha például a feladat szövege adatok valamilyen

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Gyártórendszerek dinamikája

Gyártórendszerek dinamikája GYRD-7 p. 1/17 Gyártórendszerek dinamikája Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel Werner Ágnes

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Beszállítás AR Gyártási folyamat KR

Beszállítás AR Gyártási folyamat KR 3. ELŐADÁS TERMELÉSI FOLYAMATOK STRUKTURÁLÓDÁSA 1. Megszakítás nélküli folyamatos gyártás A folyamatos gyártás lényege, hogy a termelési folyamat az első művelettől az utolsóig közvetlenül összekapcsolt,

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

Átkeléses feladatok 1.) 2.) 3.) 4.)

Átkeléses feladatok 1.) 2.) 3.) 4.) Átkeléses feladatok 1.) Van egy folyó, amin egy csónak segítségével egy embernek át kell vinnie az egyik partról a másikra egy farkast, egy kecskét és egy káposztát. A csónakba az emberen kívül csak egyvalami

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

1. ábra. Számláló rendezés

1. ábra. Számláló rendezés 1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

Erdélyi Magyar TudományEgyetem (EMTE

Erdélyi Magyar TudományEgyetem (EMTE TARTALOM: Általánosságok Algoritmusok ábrázolása: Matematikai-logikai nyelvezet Pszeudokód Függőleges logikai sémák Vízszintes logikai sémák Fastruktúrák Döntési táblák 1 Általánosságok 1. Algoritmizálunk

Részletesebben

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x

Részletesebben

Dinamikus programozás

Dinamikus programozás 12. ábra: A téglák kiválasztása a portok mellett Könyvészet http://botbench.com/blog/2013/01/08/comparing-the-nxt-and-ev3-bricks/ http://education.lego.com/es-es/products http://en.wikipedia.org/wiki/arm9

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai

Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai Logisztikai hálózatok funkcionális elemekre bontása intralogisztikai rendszerekben Minden rendszer, és így a logisztikai hálózatok is egymással meghatározott kapcsolatban lévő rendszerelemekből, illetve

Részletesebben

egy szisztolikus példa

egy szisztolikus példa Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus

Részletesebben

Puritan Bennett. 800-as sorozatú ventilátor kompresszor kocsihoz 800-as sorozatú ventilátorállvány kocsihoz. Ellenőrizze a csomag tartalmát

Puritan Bennett. 800-as sorozatú ventilátor kompresszor kocsihoz 800-as sorozatú ventilátorállvány kocsihoz. Ellenőrizze a csomag tartalmát Szerelési útmutató Puritan Bennett TM 800-as sorozatú ventilátor kompresszor kocsihoz 800-as sorozatú ventilátorállvány kocsihoz Ellenőrizze a csomag tartalmát Ellenőrizze, hogy a csomagban benne van-e

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

1. ábra Modell tér I.

1. ábra Modell tér I. 1 Veres György Átbocsátó képesség vizsgálata számítógépes modell segítségével A kiürítés szimuláló számítógépes modellek egyes apró, de igen fontos részletek vizsgálatára is felhasználhatóak. Az átbocsátóképesség

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

29. Visszalépéses keresés 1.

29. Visszalépéses keresés 1. 29. Visszalépéses keresés 1. A visszalépéses keresés algoritmusa Az eddig megismert algoritmusok bizonyos értelemben nyílegyenesen haladtak elôre. Tudtuk, hogy merre kell mennünk, és minden egyes lépéssel

Részletesebben

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év).

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év). 1. fejezet AWK 1.1. Szűrési feladatok 1. Készítsen awk szkriptet, ami kiírja egy állomány leghosszabb szavát. 2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét,

Részletesebben

A technológiai berendezés (M) bemenő (BT) és kimenő (KT) munkahelyi tárolói

A technológiai berendezés (M) bemenő (BT) és kimenő (KT) munkahelyi tárolói 9., ELŐADÁS LOGISZTIKA A TERMELÉSIRÁNYÍTÁSBAN Hagyományos termelésirányítási módszerek A termelésirányítás feladata az egyes gyártási műveletek sorrendjének és eszközökhöz történő hozzárendelésének meghatározása.

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi

Részletesebben

Szállításszervezési módszerek

Szállításszervezési módszerek Szállításszervezési módszerek 1 Néhány alapvet szempontot a járatkapcsolás eltt figyelembe kell venni. 1. Akkor célszer$ a járatokat összekapcsolni, ha ezzel költséget (távolságot, idt, járm$vet stb.)

Részletesebben

Objektum Orientált Szoftverfejlesztés (jegyzet)

Objektum Orientált Szoftverfejlesztés (jegyzet) Objektum Orientált Szoftverfejlesztés (jegyzet) 1. Kialakulás Kísérletek a szoftverkrízisből való kilábalásra: 1.1 Strukturált programozás Ötlet (E. W. Dijkstra): 1. Elkészítendő programot elgondolhatjuk

Részletesebben