1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI"

Átírás

1 / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI

2 Normál feladatok megoldása szimplex módszerrel /

3 / Normál feladatok megoldása szimplex módszerrel Definíció. Egy LP-feladatot normál feladatnak nevezünk, ha feltételrendszere csak relációkat tartalmaz a változók csak nemnegatív értékeket vehetnek fel a célfüggvény maximumát keressük. a feltételek jobboldalán csak nemnegatív konstansok lehetnek.

4 Műveletek a szimplex-táblában /

5 / Műveletek a szimplex-táblában A pivot elem helyére a reciprokát írjuk A pivot elem sorában minden elemet elosztunk a pivotelemmel A pivot elem oszlopában minden elemet elosztunk a pivotelemmel és vesszük az ellentetjét A többi elemet úgy számoljuk, mint a báziscserénél

6 Pivot elem választása 4/

7 4/ Pivot elem választása Olyan oszlopban választjuk a pivot elemet ahol a célsor eleme negatív Pozitív számot választunk pivot elemnek A kiválasztott oszlop pozitív elemeivel osszuk el az utolsó oszlop megfelelő elemeit és azt a számot választjuk pivot elemnek, amelyre ez a hányados a legkisebb (szűk keresztmetszet szabály)

8 4/ Pivot elem választása Olyan oszlopban választjuk a pivot elemet ahol a célsor eleme negatív Pozitív számot választunk pivot elemnek A kiválasztott oszlop pozitív elemeivel osszuk el az utolsó oszlop megfelelő elemeit és azt a számot választjuk pivot elemnek, amelyre ez a hányados a legkisebb (szűk keresztmetszet szabály) A negatív célelemű oszlopok közül az alábbiak alapján választhatunk: A legnagyobb abszolútértékű negatív célelem oszlopából választunk Minden negatív célelemű oszlopban határozzuk meg a pivot elemet és számítsuk ki a célfüggvény növekedését. Válasszuk azt az oszlopot, amelynél a növekedés a legnagyobb Könnyebb számolás érdekében olyan oszlopot választunk, ahol pivot elem -nek adódik. Könnyebb számolás érdekében olyan oszlopot választunk, ahol pivot elem sorában vagy oszlopában -t, vagy -kat találunk.

9 Az algoritmus végetér 5/

10 5/ Az algoritmus végetér ha a célfüggvény sorában nincs negatív elem, ekkor az optimális megoldás és a hozzátartozó célfüggvényérték a táblából kiolvasható ha a negatív célelemek oszlopaiban nincs pozitív elem, ilyenkor a célfüggvény a lehetséges megoldások halmazán tetszőlegesen nagy értéket felvehet Bizonyos esetekben végtelen ciklusra vezet az algoritmus. Az ilyen esetek akkor léphetnek fel, ha a pivot elem sorában az utolsó oszlopban áll. (Ilyen esetekben a célfüggvény érték nem növekszik.) Az általunk használtaknál lényegesen bonyolultabb pivotelem-választási szabályokkal a végtelen ciklus elkerülhető.

11 6/ Példák.a) Oldjuk meg a Horgász-problémát szimplex algoritmussal! x + x + x 4 x + + x 5 x + x + 4x 7 x, x, x x + x + 4x = z max Az induló szimplex-tábla: x x x z 4 u 4 u 5 u 4 7 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [,,, 4, 5, 7], a célfüggvény értéke z =. A táblához tatozó bázis a B =.

12 6/ Példák.a) Oldjuk meg a Horgász-problémát szimplex algoritmussal! x + x + x 4 x + + x 5 x + x + 4x 7 x, x, x x + x + 4x = z max Az induló szimplex-tábla: x x x z 4 u 4 u 5 u 4 7 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [,,, 4, 5, 7], a célfüggvény értéke z =. A táblához tatozó bázis a B =.

13 6/ Példák.a) Oldjuk meg a Horgász-problémát szimplex algoritmussal! x + x + x 4 x + + x 5 x + x + 4x 7 x, x, x x + x + 4x = z max Az induló szimplex-tábla: x x x z 4 u 4 u 5 u 4 7 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [,,, 4, 5, 7], a célfüggvény értéke z =. A táblához tatozó bázis a B =.

14 7/ Elemi bázistranszformációval új bázisra térünk át. Ehhez a pivot elemet a legkisebb negatív célelem oszlopából (. oszlop) választjuk. Az oszlopot a szűk keresztmetszet elve alapján a. sor helyére visszük a bázisba: x x x z 4 u 4 u 5 u 4 7

15 7/ Elemi bázistranszformációval új bázisra térünk át. Ehhez a pivot elemet a legkisebb negatív célelem oszlopából (. oszlop) választjuk. Az oszlopot a szűk keresztmetszet elve alapján a. sor helyére visszük a bázisba: x x x z 4 u 4 u 5 u 4 7

16 7/ Elemi bázistranszformációval új bázisra térünk át. Ehhez a pivot elemet a legkisebb negatív célelem oszlopából (. oszlop) választjuk. Az oszlopot a szűk keresztmetszet elve alapján a. sor helyére visszük a bázisba: x x x x x u z 4 z 4 u 4 u u 5 x u 4 7 u 4 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [,, 5,,, ], a célfüggvény értéke z =. A táblához tatozó bázis a B = 4. 5

17 7/ Elemi bázistranszformációval új bázisra térünk át. Ehhez a pivot elemet a legkisebb negatív célelem oszlopából (. oszlop) választjuk. Az oszlopot a szűk keresztmetszet elve alapján a. sor helyére visszük a bázisba: x x x x x u z 4 z 4 u 4 u u 5 x u 4 7 u 4 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [,, 5,,, ], a célfüggvény értéke z =. A táblához tatozó bázis a B = 4. 5

18 7/ A bejelölt elemet választjuk pivotelemnek, így a. oszlop kerül a. bázisvektor helyére: x x u z 4 u x u 4 5

19 7/ A bejelölt elemet választjuk pivotelemnek, így a. oszlop kerül a. bázisvektor helyére: x x u x u u z 4 z u u x x u 4 x 6 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [, 6, 5,,, ], a célfüggvény értéke z =. A táblához tatozó bázis a B =. 4

20 7/ A bejelölt elemet választjuk pivotelemnek, így a. oszlop kerül a. bázisvektor helyére: x x u x u u z 4 z u u x x u 4 x 6 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [, 6, 5,,, ], a célfüggvény értéke z =. A táblához tatozó bázis a B =. 4

21 7/ A megjelölt elemet választva pivotelemnek, az. oszlopot visszük a bázisba, a. sor helyére: x u u z u x x 6 5 6

22 7/ A megjelölt elemet választva pivotelemnek, az. oszlopot visszük a bázisba, a. sor helyére: x u u x u u z u x x z 9 u x x 5 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [ 5,,,,, ], a célfüggvény értéke z = 9. A táblához tatozó bázis a B =.

23 7/ A megjelölt elemet választva pivotelemnek, az. oszlopot visszük a bázisba, a. sor helyére: x u u x u u z u x x z 9 u x x 5 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [ 5,,,,, ], a célfüggvény értéke z = 9. A táblához tatozó bázis a B =.

24 7/ A megjelölt elemet választva pivotelemnek, az. oszlopot visszük a bázisba, a. sor helyére: x u u x u u z u x x z 9 u x x 5 A szimplex táblából kiolvasható bázismegoldás: [x, u] = [ 5,,,,, ], a célfüggvény értéke z = 9. A táblához tatozó bázis a B = Mivel a célsorban nincs negatív elem, az algoritmus véget ért. A kapott megoldás optimális..

25 8/.b) Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x x x x 6 x x x, x x + x = z max

26 8/.b) Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x x z u u 6 u x x x x 6 x x x, x x + x = z max

27 8/.b) Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x x z u u 6 u x x x x 6 x x x, x x + x = z max

28 8/.b) Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x x x x 6 x x x, x x + x = z max x x z u u 6 u u x z x u 5 u 9

29 8/.b) Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x x z u u 6 x x x x 6 x x x, x x + x = z max u x z x u 5 u u A második táblában a negatív célelem alatt nincs pozitív szám, ezért a célfüggvény tetszőlegesen nagy értékeket felvehet a lehetséges megoldások halmazán. 9

30 8/.b) Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x x z u u 6 x x x x 6 x x x, x x + x = z max u x z x u 5 u u A második táblában a negatív célelem alatt nincs pozitív szám, ezért a célfüggvény tetszőlegesen nagy értékeket felvehet a lehetséges megoldások halmazán. Írjuk fel a kapott táblához tartozó egyenletrendszert: 9

31 9/ u x + z = u x + x = u 5 x + u = 9 u x + u = Az egyes egyenletekből a bázisváltozókat kifejezve: z = u + x x = u + x u = 9 + u + 5 x u = + u + x Az u =, x = d > értékekkel az x = + d, u = d, u = + d lehetséges megoldást kapjuk, amely mellett a célfüggvény értéke z = + d lesz, amely d esetén minden határon túl nő.

32 9/ u x + z = u x + x = u 5 x + u = 9 u x + u = Az egyes egyenletekből a bázisváltozókat kifejezve: z = u + x x = u + x u = 9 + u + 5 x u = + u + x Az u =, x = d > értékekkel az x = + d, u = d, u = + d lehetséges megoldást kapjuk, amely mellett a célfüggvény értéke z = + d lesz, amely d esetén minden határon túl nő.

33 9/ u x + z = u x + x = u 5 x + u = 9 u x + u = Az egyes egyenletekből a bázisváltozókat kifejezve: z = u + x x = u + x u = 9 + u + 5 x u = + u + x Az u =, x = d > értékekkel az x = + d, u = d, u = + d lehetséges megoldást kapjuk, amely mellett a célfüggvény értéke z = + d lesz, amely d esetén minden határon túl nő.

34 9/ u x + z = u x + x = u 5 x + u = 9 u x + u = Az egyes egyenletekből a bázisváltozókat kifejezve: z = u + x x = u + x u = 9 + u + 5 x u = + u + x Az u =, x = d > értékekkel az x = + d, u = d, u = + d lehetséges megoldást kapjuk, amely mellett a célfüggvény értéke z = + d lesz, amely d esetén minden határon túl nő.

35 9/ Feladatok. Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x + x + x + x 5 x + x + x 4 + x 5 8 x + x + x 4 5 x, x, x, x 4, x 5 x + x + x + x 4 + x 5 = z max Megoldás: x = (,,,, 5), u = (,, ) z =

36 / Feladatok. Oldjuk meg a következő LP-feladatot szimplex algoritmussal! Megoldás: x = ( 6 7, 75 7 x 5x 7x + 8x 56 5x + x x, x x + 5x = z max 859 ), u = (777 7,, ) z = 7

37 / Feladatok. Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x + x x x x 8 x + x + x 6 x, x, x 6x + 7x + x = z max Megoldás: x = (9,, ), u = (,, ) z =

38 / Feladatok 4. Oldjuk meg a következő LP-feladatot szimplex algoritmussal! x x + x 8 x + x x 4 x + x x + x 4 x, x, x, x 4, x 5 6x + x + 5x + 7x 4 = z max Megoldás: x = (,, 8, 8), u = (,, ) z = 66

39 / Felhasznált Irodalom [.] Bajalinov Erik - Imreh Balázs: Operációkutatás, Polygon 5. [.] Imreh Balázs: Bevezetés az operációkutatásba, Phare 999. [.] Temesi József - Varró Zoltán: Operációkutatás, Aula 7.

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL 1.Példa: Oldjuk meg a következő lineáris egyenletrendszert: 1. Paramétert nem tartalmazó eset x 1 + 3x 2-2x 3 = 2-2x 1-5x 2 + 4x 3 = 0 3x 1

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Az Excel Solver programcsomagjának bemutatásaként két feltételes és egy feltétel nélküli optimalizálási feladatot

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

OPERÁCIÓKUTATÁS. No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS

OPERÁCIÓKUTATÁS. No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS OPERÁCIÓKUTATÁS No. 2. Komáromi Éva LINEÁRIS PROGRAMOZAS Budapest 2002 Komáromi Éva: LINEÁRIS PROGRAMOZÁS OPERÁCIÓKUTATÁS No.2 Megjelenik az FKFP 0231 Program támogatásával a Budapesti Közgazdaságtudományi

Részletesebben

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT 1.a) Paramétert nem tartalmazó eset A bázistranszformáció egyszerűsített változatában a bázison kívül elhelyezkedő vektorokból amennyit csak

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Operációkutatás. Glashütter Andrea

Operációkutatás. Glashütter Andrea Glashütter Andrea Mátriok I. Mátriok A mátriok olyan számtáblázatok, amelyek n db sorral és m db oszloppal rendelkeznek. Általános mátri: m n nm n n m m a a a a a a a a a A K M O M M K K Egy tetszleges

Részletesebben

Vállalati modellek. Előadásvázlat. dr. Kovács László

Vállalati modellek. Előadásvázlat. dr. Kovács László Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Az adatpontoknak átlaguktól való átlagos abszolút eltérését számítja ki ÁTLAG

Az adatpontoknak átlaguktól való átlagos abszolút eltérését számítja ki ÁTLAG Dr. Zibolen Endre * - Zibolen Erzsébet ** AZ EXCEL TÁBLÁZATKEZELŐ PROGRAM ÉS A MAPLE MATEMATIKAI PROGRAMCSOMAG ALKALMAZÁSI LEHETŐSÉGEI A MATEMATIKA ÉS STATISZTIKA OKTATÁSÁBAN Az Excel táblázatkezelő program

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

13. Utasítást adó jelzőtáblák

13. Utasítást adó jelzőtáblák 13. Utasítást adó jelzőtáblák (1) 47 Az utasítást adó jelzőtáblák: a) 48 Kötelező haladási irány (17 19. ábra); a tábla azt jelzi, hogy az útkereszteződésben a táblán lévő nyíl (nyilak) által jelzett irányban

Részletesebben

Statisztikai táblázatok, kimutatások (Pivot) készítése

Statisztikai táblázatok, kimutatások (Pivot) készítése Statisztikai táblázatok, kimutatások (Pivot) készítése Elméleti összefoglaló Az adatok egy, vagy több szempontú rendezése céljából célszerű azokat táblázatokba foglalni. Tehát az elemi adatokat alapján

Részletesebben

A KVADRATIKUS SZIMPLEX ALGORITMUS VÉGESSÉGE INDEXVÁLASZTÁSI SZABÁLYOK ALKALMAZÁSA ESETÉN

A KVADRATIKUS SZIMPLEX ALGORITMUS VÉGESSÉGE INDEXVÁLASZTÁSI SZABÁLYOK ALKALMAZÁSA ESETÉN Alkalmazott Matematikai Lapok 3 (213), 1-21. A KVADRATIKUS SZIMPLEX ALGORITMUS VÉGESSÉGE INDEXVÁLASZTÁSI SZABÁLYOK ALKALMAZÁSA ESETÉN ILLÉS TIBOR, NAGY ADRIENN Dolgozatunkban bebizonyítjuk a kvadratikus

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths.

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths. www.symhs.hu mk ilágos oldl symhs.hu.lépés: GENERÁLÓ ELEM VÁLASZTÁSA Csk -s oszlopól és -s soról álszhunk gnráló lm, nullá nm álszhunk és lhőlg - gy -- érdms AZ JÁTÉKSZABÁLYAI.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ

Részletesebben

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán Cseppfolyós halmazállapotú közegek hőtranszport-jellemzőinek számítása Gergely Dániel Zoltán Bevezetés Ez a segédlet elsősorban a Pécsi Tudományegyetem Pollack Mihály Műszaki és Informatikai kar Gépészmérnök

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

Szöveges feladatok és Egyenletek

Szöveges feladatok és Egyenletek Szöveges feladatok és Egyenletek Sok feladatot meg tudunk oldani következtetéssel, rajz segítségével és egyenlettel is. Vajon mikor érdemes egyenletet felírni? Van-e olyan eset, amikor nem tanácsos, vagy

Részletesebben

TANSZÉKI ADMINISZTRÁTORI SEGÉDLET: NEPTUN TÁRGYKEZELÉS, KURZUSKEZELÉS

TANSZÉKI ADMINISZTRÁTORI SEGÉDLET: NEPTUN TÁRGYKEZELÉS, KURZUSKEZELÉS TANSZÉKI ADMINISZTRÁTORI SEGÉDLET: NEPTUN TÁRGYKEZELÉS, KURZUSKEZELÉS Kurzus meghirdetése adott félévre Adott félév kurzusainak a meghirdetése a TÁRGYAK 46800 felületen történik. Elérési útvonal a jobboldali

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Függőségek felismerése és attribútum halmazok lezártja

Függőségek felismerése és attribútum halmazok lezártja Függőségek felismerése és attribútum halmazok lezártja Elméleti összefoglaló Függőségek: mezők közötti érték kapcsolatok leírása. A Funkcionális függőség (FD=Functional Dependency): Ha R két sora megegyezik

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

II. Novo-Parts nemzetközi csocsóverseny

II. Novo-Parts nemzetközi csocsóverseny A Szegedi Csocsó Sportegyesület bemutatja: HIVATALOS VERSENYKIÍRÁS II. Novo-Parts nemzetközi csocsóverseny 1 Helyszín: Gold Crown Szabadidőközpont 1110 - Budapest Budafoki út 111/113. http://www.kifor.hu/squash/goldcrown.jsp

Részletesebben

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai Optimalizálási eljárások MSc hallgatók számára 1. Előadás: Az alapfeladat Előadó: Hajnal Péter 2015. tavasz L.V. Kantorovics (1912-1986) Az optimalizálás a matematika legkülönfélébb területeinek találkozási

Részletesebben

Makrodigit programcsomag. Tárgyi eszköz modul. felhasználói ismertető. Makrodigit Informatikai Kft. 2010. Módosítva: 2013. október 22.

Makrodigit programcsomag. Tárgyi eszköz modul. felhasználói ismertető. Makrodigit Informatikai Kft. 2010. Módosítva: 2013. október 22. Makrodigit programcsomag Tárgyi eszköz modul felhasználói ismertető Makrodigit Informatikai Kft. 2010. Módosítva: 2013. október 22. Tartalom A menü és a képernyők kezeléséről... 3 Menü... 3 Lista képernyő...

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

Iceberg ajánlatok a BÉT-en Összefoglalás

Iceberg ajánlatok a BÉT-en Összefoglalás Iceberg ajánlatok a BÉT-en Összefoglalás A Xetra kereskedési rendszer bevezetésével a Budapesti Értéktőzsdén is elérhetővé váltak az iceberg ajánlatok. Az új ajánlattípus bevezetésekor a Kereskedési Bizottságon

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

V. DISZKRÉT OPTIMALIZÁCIÓ

V. DISZKRÉT OPTIMALIZÁCIÓ V. DISZKRÉT OPTIMALIZÁCIÓ El szó Ez a rész a diszkrét optimalizációval foglalkozó fejezeteket tartalmazza. Az elso kötetben jelenik meg az Ütemezéselmélet címu fejezet, amelynek fo témái: egy formális

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Szakdolgozat témák a 2010/11-es oktatási tanévre PTI szakos hallgatók számára

Szakdolgozat témák a 2010/11-es oktatási tanévre PTI szakos hallgatók számára Szakdolgozat témák a 2010/11-es oktatási tanévre PTI szakos hallgatók számára Dr. Bajalinov Erik 1 Adatbázis alapú dinamikus WEB-lapok készítése Delphi rendszerben 2 Adatbázis alapú dinamikus WEB-lapok

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok...2 Orosz szorzás...3 Minimum

Részletesebben

Energiainformációs Adattár Adatgyűjtő alrendszer felhasználói dokumentáció

Energiainformációs Adattár Adatgyűjtő alrendszer felhasználói dokumentáció Energiainformációs Adattár Adatgyűjtő alrendszer felhasználói dokumentáció Bevezető Tisztelt engedélyes! Üdvözöljük Önt a Magyar Energia Hivatal Energiainformációs Adattár - Adatgyűjtő alrendszerének felhasználói

Részletesebben

Optimalizálás a Microsoft Excel Solver b vítménye segítségével

Optimalizálás a Microsoft Excel Solver b vítménye segítségével Eötvös Loránd Tudományegyetem Természettudományi Kar Optimalizálás a Microsoft Excel Solver b vítménye segítségével Szakdolgozat Tóth Ádám Matematika B.Sc., elemz szakirány Témavezet : Mádi-Nagy Gergely,

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Szállítási feladat_1.

Szállítási feladat_1. Szállítási feladat_. Bevezetés, a vállalkozás bemutatása A vállalkozás 992-ben alakult, mint egyszemélyes vállalkozás, majd évek során kinőtte magát, tevékenysége és vevőköre egyre kiszélesedett, így 2002-ben

Részletesebben