A DÖNTÉSELMÉLET ELEMEI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A DÖNTÉSELMÉLET ELEMEI"

Átírás

1 A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc Stevenson, W. J., Operation management, McGraw-Hill, Irvin, 2008 Decision theory: web Google keresés= 87,2 millió találat Döntéselmélet: web Google keresés= 22,6 ezer találat Döntéselmélet néhány területe: orvosi, jogi, bírói, közgazdasági, m szaki, egyéb. Módszerek és a kapcsolódó fontosabb szoftverek AHP analytic hierarchy process (Saaty, 1980, EC expert choice) PROMETHEE preference ranking organization method for enrichment evaluation (Brans, 1982, Decision Lab) GAIA geometric analysis for interactive assistance (Marechal, Brans, 1988,Decision Lab) WINGDSS, Sztaki WinQSB (Quantitative System for Business) decision analysis (Yih-Long Chang, Georgia Institute of Technology) 1

2 2 1. ALAPFOGALMAK (ld. Temesi J.: A döntéselmélet alapjai, 11-13) 1.1 Néhány jellemz döntési probléma Cselekvéseinket döntések irányítják. Nagyon gyakran kerülünk döntési (kényszer)- helyzetbe. Néha azonnal kell dönteni, máskor lehet ségünk van (s t kényszerítve vagyunk) átgondolt, indokolt döntéseket hozni. 1. Termelési feladat: többféle termék el állításának mennyiségér l döntünk. Cél a maximális prot, vagy maximális prot minimális környezeti károsítással, vagy maximális prot minimális munkaer felhasználásával. 2. Befektetési feladat: maximális hozamot biztosító portfolio kiválasztása. Korlátok: pénzügyi, szempontok: óvatosság vagy kockázat, befektetés id tartama. 3. Iskola választási probléma: új lakóhelyre költözünk és keressük a legjobb iskolát. Szempontok: lakástól való távolság, iskola színvonala, tandíj, zsúfoltság, iskola felszereltsége: sport, számítógépes hálózat. 4. Szemétéget telepítése. Szempontok: technológia, helyi munkaer, költségek, környezeti feltételek, lakossági hozzáállás. 5. Közbeszerzési pályázat kiértékelése. Pl. banki számítógépes tender értékelése. Szempontok: ár, hardver min sége, szolgáltatási feltételek, garanciális feltételek, betanítás. Minden esetben a cél egyetlen cselekvés (a legjobb termelési terv, legjobb befektetés, iskola stb.) kiválasztása.

3 1.2 Matematikai programozás, feltételes széls értékszámítás 3 Döntési változók: x = (x 1,..., x n ) R n egy n-dimenziós vektorba foglalva, Feltételek leírása: adott g i : R n R i = 1,..., k + l függvények segítségével g i (x) = 0 g j (x) 0 (i = 1,..., k); k < n egyenl ség típusú feltételek (j = k + 1,..., k + l); egyenl tlenség típusú feltételek Döntési halmaz: alternatívák halmaza X = { x R n : g i (x) = 0, i = 1,..., k, g j (x) 0 j = k + 1,..., k + l. } Egyetlen célfüggvény: f(x) = max ha, x X Mivel f(x) = min f(x) = max, ha, x X, ezért elegend csak max keresésével foglalkozni. Megoldás: lineáris vagy egész programozás, feltételes széls értékszámítás. Példa lineáris programozásra (két változó, grakus megoldás):(eload1.lpp) x 1, x 2 0, x 1 + 2x 2 6 x 2 x 1 3 x 1 + x x 1 3x 2 = z max vagy min

4 4 Megoldás: Az egyenl tlenségrendszernek elegettev pontok halmaza egy sokszög mely az ábrán színezve van. A 2x 1 3x 2 = z egyeneseket valamely z = konstans esetén ábrázolva párhuzamos egyeneseket kapunk (ábránkon a z = 20, 6, 12, 5 egyeneseket rajzoltuk be. z maximális értékét akkor kapjuk, ha az egyenes átmegy a (10, 0) csúcsponton, minimális értékét pedig akkor kapjuk, ha az egyenes átmegy a (3, 5, 6, 5) csúcsponton, z max = 20, z min = 12, 5.

5 Több változó esetén a szimplex módszert használhatjuk. Példaként tekintsük a következ LP feladatot: 5 z = 5x 1 + 4x 2 + 3x 3 = maximum, feltéve, hogy 2x 1 + 3x 2 + x 3 5 4x 1 + x 2 + 2x x 1 + 4x 2 + 2x 3 8 x 1, x 2, x 3 0 Vezessük be a s 1, s 2, s 3 hiányváltozókat (a feltételi egyenl tlenségek jobb- és baloldalának különbségét (angolul: slack variable, slack=er tlen, laza, pangó, slacks=hosszú nadrág, pantalló). Ezek segítségével az eredetivel ekvivalens probléma: z = 5x 1 + 4x 2 + 3x 3 = maximum, feltéve, hogy s 1 = 5 2x 1 3x 2 x 3 s 2 = 11 4x 1 x 2 2x 3 s 3 = 8 3x 1 4x 2 2x 3 x 1, x 2, x 3, s 1, s 2, s 3 0 Itt a s 1, s 2, s 3 változókat bázisváltozóknak, x 1, x 2, x 3 -at nembázis változóknak nevezük. Induljunk ki az x 1 = x 2 = x 3 = 0 megoldásból, ekkor s 1 = 5, s 2 = 11, s 3 = 8 és a célfüggvény z = 0.Próbáljunk egy jobb megoldást keresni. Mivel a célfüggvényben x 1 együtthatója pozitív, ezért x 1 értékét megnövelve z értéke n. De x 1 értékét nem növelhetjük akármekkorára, mert a hiányváltozóknak nemnegatíveknek kell maradniuk. Ha x 1 0, x 2 = x 3 = 0 akkor az s 1 = 5 2x 1 0 x = 2, 5 s 2 = 11 4x 1 0 x = 2, 75 s 3 = 8 3x 1 0 x = 2, 66.. egyenl tlenségek mindegyikének teljesülnie kell ezért0 x 1 2, 5 azaz x 1 -et legfeljebb 2, 5-re növelhetjük. Legyen tehát z értéke x 1 = 5 2, x 2 = x 3 = 0 akkor s 1 = 0, s 2 = 1, s 3 = 1 2 = 12, 5-re n tt.

6 6 Hogyan tovább? Mivel most s 1 = x 2 = x 3 = 0 így x 1 szerepét s 1 veszi át, a célfüggvényt és a feltételeket át kell írnunk ennek megfelel en. A s 1 deníciójából x 1 = 2, 5 0, 5s 1 1, 5x 2 0, 5x 3 ezt a célfüggvénybe, s 2, s 3 -ba helyettesítve kapjuk, hogy z = 5 (2, 5 0, 5s 1 1, 5x 2 0, 5x 3 ) + 4x 2 + 3x 3 = 12, 5 2, 5s 1 3, 5x 2 + 0, 5x 3 s 2 = 11 4 (2, 5 0, 5s 1 1, 5x 2 0, 5x 3 ) x 2 2x 3 = 1 + 2s 1 + 5x 2 s 3 = 8 3 (2, 5 0, 5s 1 1, 5x 2 0, 5x 3 ) 4x 2 2x 3 = 0, 5 + 1, 5s 1 + 0, 5x 2 0, 5x 3 Az új változókkal a problémánk: z = 12, 5 2, 5s 1 3, 5x 2 + 0, 5x 3 = maximum, feltéve, hogy x 1 = 2, 5 0, 5s 1 1, 5x 2 0, 5x 3 s 2 = 1 + 2s 1 + 5x 2 s 3 = 0, 5 + 1, 5s 1 + 0, 5x 2 0, 5x 3 s 1, x 2, x 3, x 1, s 2, s 3 0 Ismét látható, hogy s 1 = x 2 = x 3 = 0 esetén x 1 = 2, 5, s 2 = 1, s 3 = 0, 5 és z = 12, 5. Mivel most a célfüggvényben egyedül x 3 együtthatója pozitív, ennek növelésével növelhetjük a célfüggvényt. Mennyivel növelhetjük? Az x 3 0, s 1 = x 2 = 0-nál az x 1, s 2, s 3 0 feltételekb l x 1 = 2, 5 0, 5x 3 0 x 3 5 s 2 = 1 0 ez minden x 3 esetén teljesül s 3 = 0, 5 0, 5x 3 0 x 3 1 ezért x 3 = 1 s 3 = 0 és s 1 = x 2 = 0, a célfüggvény 0, 5 1 = 0, 5-del n, 13-ra. Az új (nembázis, vagy független) változók s 1, x 2, s 3, az x 3 szerepét s 3 veszi át. Mivel a s 3 = 0, 5 + 1, 5s 1 + 0, 5x 2 0, 5x 3 egyenletb l x 3 = 1 + 3s 1 + x 2 2s 3 ezt behelyettítve z, x 1, s 2 -be (végezze el a számításokat!) kapjuk, az új változókkal felírt problémát: z = 13 s 1 3x 2 s 3 = maximum, feltéve, hogy x 1 = 2 2s 1 2x 2 + s 3 s 2 = 1 + 2s 1 + 5x 2 s 3 = 1 + 3s 1 + x 2 2s 3 s 1, x 2, s 3, x 1, s 2, x 3 0

7 Most már nincs pozitív együttható z képletében, nem tudjuk z-t növelni. Mivel s 1, x 2, s 3 0 ezért z = 13 s 1 3x 2 s 3 13, de s 1 = x 2 = s 3 = 0 (míg x 1, s 2, x 3 értékeit az el z képletekb l számolhatjuk) mellett z = 13 így az optimális megoldás z = 13. Az el z kben tárgyalt feladat szimplex táblája az s 1, s 2, s 2 hiányváltozók bevezetése utáni rendszer 2x 1 + 3x 2 + x 3 + s 1 = 5 4x 1 + x 2 + 2x 3 + s 2 = 11 3x 1 + 4x 2 + 2x 3 + s 3 = 8 5x 1 4x 2 3x 3 + z = 0 (ahol x 1, x 2, x 3, s 1, s 2, s 3 0 és a z maximumát keressük) együtthatóinak mátrixából áll: x 1 x 2 x 3 s 1 s 2 s 3 z s s s z A táblázat sorainak, oszlopainak jelölését, a célfüggvényt és az egyenletek jobboldalán álló számokat egy-egy vonallal elválasztottuk. 1. lépés. El ször megkeressük a pivot elemet (pivot= forgó, forgócsap, to pivot on forog vmi körül), a belép változót és az elhagyott változót. Kiválasztjuk az alsó sor "legnegativabb" elemét (azaz a legnagyobb abszolút érték negatív elemet) ez példánkban 5. Ha több ilyen is van akkor nem számít melyiket választjuk. Ennek az oszlopa lesz a pivot oszlop. Ezután a az utolsó oszlop minden elemét osztjuk a pivot oszlop megfelel elemével, a hányadosokat az utolsó oszlop után írtuk be: x 1 x 2 x 3 s 1 s 2 s 3 z h. s = 2, 5 pivot sor 7 s = 2, 75 s z = 2, 66 A hányadosok közül megkeressük a legkisebbiket (ha több ilyen is van, akkor mindegy melyiket vesszük) ennek sora a pivot sor nálunk a legkissebb hányados 2,5 az els

8 8 sorban így a pivot sor az els sor. A pivot elem a pivot sorban és pivot oszlopban lév elem, nálunk 2. A belép változó a pivot oszlopnak megfelel változó (nálunk x 1 ), a kilép változó a pivot sornak megfelel változó (nálunk s 1 ). 2. lépés. Most a pivotálás következik. A pivot sor elemeit elosztjuk a pivot elemmel: x 1 x 2 x 3 s 1 s 2 s 3 z h. s 1 1 1, 5 0, 5 0, , s = 2, 5 pivot sor = 2, 75 s z = 2, 66 majd e sor alkalmas többszöröseit a többi sorból levonva elérjük, hogy a pivot oszlop többi elemei zérusok legyenek. Nálunk az els sor négyszeresét kell levonni a második sorból, majd az els sor háromszorosát kell levonni a harmadik sorból, végül az els sor ötszörösét kell az utolsó sorhoz hozzáadni. A kilép változó nevét a belép vel kell helyettesíteni. Az így kapott táblázat x 1 x 2 x 3 s 1 s 2 s 3 z x 1 1 1, 5 0, 5 0, , 5 s s 3 0 0, 5 0, 5 1, , 5 z 0 3, 5 0, 5 2, , 5 Ezután ismételjük az 1. és 2. lépést az új táblázattal mindaddig amíg az utolsó sor elemei nemnegatívak vagy zérusok lesznek. Ekkor az optimális megoldás a jobboldali oszlopból olvasható le. Táblázatunkban a -0,5 oszlopa lesz a pivot oszlop, a pivot sort pedig ismét az utolsó oszlop és a pivot oszlop megfelel elemeinek hányadosai közül a legkisebb hányados sora adja (csak pozitív elemekkel osztunk), esetünkben a harmadik sor. A belép változó a pivot oszlopnak megfelel változó (nálunk x 3 ), a kilép változó a pivot sornak megfelel változó (nálunk s 3 ).

9 9 x 1 x 2 x 3 s 1 s 2 s 3 z h. x 1 1 1, 5 0, 5 0, , 5 2,5 0,5 = 5 s s 3 0 0, 5 0, 5 1, , 5 0,5 0,5 = 1 pivot sor z 0 3, 5 0, 5 2, , 5 A harmadik sort 0,5-tel elosztjuk, majd az így kapott sor 0,5-szeresét az els b l levonjuk és az utolsó sorból is levonjuk. A kapott táblázat (melyb l az utolsó oszlop hányadosait lehagytuk) x 1 x 2 x 3 s 1 s 2 s 3 z x s x z Mivel az utolsó oszlopban már nincs negatív elem, ezért a megoldás befejez dött, z maximális értéke 13, és a baloldali oszlopban szerepl változók optimális értékeit a z oszlopból olvashatjuk le azaz most x 1 = 2, s 2 = 1, x 3 = 1 a többi változó optimális értéke zérus, azaz x 2 = s 1 = s 3 = 0. Több változó (szimplex módszer, ill.megoldás komputerrel, szoftver pl WinQSB) El ször bemutatjuk a fenti feladat azaz a z = 5x 1 + 4x 2 + 3x 3 = maximum, feltéve, hogy 2x 1 + 3x 2 + x 3 5 4x 1 + x 2 + 2x x 1 + 4x 2 + 2x 3 8 x 1, x 2, x 3 0 LP feladat megoldását a WinQSB szoftverrel. Az adatbevitel (mátrixos formában) és a megoldás táblázata:

10 10 (öt változó, megoldás WinQSB-vel ):(ELOAD1B.LPP) x 1, x 2, x 3, x 4, x 5 0, x 1 + 2x 3 2x 4 + 3x 5 60 x 1 + 3x 2 + x 3 + x 5 12 x 2 + x 3 + x x 1 + 2x x 1 + 4x 2 + 5x 3 + 3x 4 2x 5 = z max vagy min Bevitel a WinQSB-be mátrixos formátumban:

11 11 A megoldás táblázata: A megoldás táblázatában a redukált költség nulla érték célváltozóknál szerepel, és azt mutatja, hogy hogyan változik a célfüggvény értéke, ha az illet célváltozóra pozitív értéket követelünk meg. Például, x 3 = 0-nál a redukált költség 1, ami azt jelenti, hogy ha x 3 0 helyett x 3 a 3 (> 0)-t követeljük meg, akkor az célfüggvény értéke (közelít leg) a 3 -mal változik. Egy feltételnél szerepl árnyékár azt mutatja meg, hogy a feltétel jobboldalán álló konstans változása hogyan hat a célfüggvény értékére. Például, a C 3 feltételnél az árnyékár 3, ami azt jelenti, hogy ha C 3 jobboldalát b 3 -mal megnöveljük, (esetünkben 10 + b 3 -ra) akkor az célfüggvény értéke (közelít leg) 3b 3 -mal n.

12 12 Az utolsó két oszlop fels 1-5 sorai azt mutatják, hogy a célfüggvényben az illet célváltozó együtthatója milyen határok között változhat ahhoz, hogy még létezzen optimális megoldás. Az utolsó két oszlop utolsó 4 sora azt mutatja, hogy a korlátozó feltételek jobboldalai milyen határok között változhatnak, ahhoz, hogy még létezzen optimális megoldás. További megjegyzések: El fordulhat az, hogy a lineáris programozási feladatnak több megoldása van. Példaként tekintsük a (ELOAD2.LPP) x 1, x 2, x 3, x 4 0 x 1 x 2 + x 3 8 x 2 + x 3 x 4 11 x 1 + 2x 2 x 3 + x 4 10 z = 6x 1 + 2x 2 + 5x 3 + 7x 4 max feladatot. Ennek két bázismegoldása van (0, 0, 8, 18) és (0, 7, 15, 11) és nyilván ezek konvex kombinációja, azaz λ(0, 0, 8, 18)+(1 λ)(0, 7, 15, 11) bármely λ [0, 1] mellett is megoldás. Megtörténhet az is, hogy nincs megoldás, erre példa a (ELOAD3.LPP) x 1, x 2 0 x 1 + x x x x feladat. z = 14x 1 + 6x 2 max Így el fordulhat, hogy a döntési probléma megoldáshoz pótlólagos információra van szükségünk, vagy pedig a feltételeinken kell enyhítenünk. Ez vezetett el a célprogramozáshoz, ahol a célokat ket részre osztjuk, egy részük szigorúan betartandó, a másik részü csak egy bizonyos szinten tartandó be. Egy másik lehet ség a többcélú programozás. Ha több célfüggvényünk van, melyeket egy vektorba foglalunk f(x) = (f 1 (x), )f 2 (x),..., f k (x))

13 akkor a 13 max x X f(x) maximumprobléma megoldása egy un. Pareto-optimális megoldás ez olyan x vektort (vagy vektorokat) jelent melyekhez nem tudunk megadni (nem létezik) olyan ˆx X, hogy f(ˆx) f(x ) és f(ˆx) f(x ) teljesül (vektorok egyenl tlensége koordinánként értend ). Mivel a Pareto optimális megoldások halmaza gyakran végtelen, így annak megkeresése nem adja meg a döntési probléma megoldását. Ezért egy un. kompromisszumos megoldást keresünk súlyozásos módszerrel, lexikográkus módszerrel, korlátok módszerével, kompromisszumprogramozás elvével. Súlyozásnál az egyes célfüggvényeket fontossági súlyokkal látjuk el, és pl. súlyozott átlagként vagy összegként egyetlen célfüggvényt alkotunk. Lexikográkus módszernél el ször a legfontosabb cél szerint értékelünk, ha egy megoldás van akkor készen is vagyunk, ha több akkor ezeket a fontosságban következ szempont szerint értékeljük, és így tovább. A korlátok módszerénél egy kivételével az összes többi célt valamely kívánatos korlát segítségével beépítjük a feltételi rendszerbe. A kompromisszumprogramozásban olyan döntést választunk, mely az ideális (minden cél szerint a legjobb, és általában nem létez ) változathoz legközelebb esik. 1.3 Alapfogalmak (ld. Temesi J.: A döntéselmélet alapjai, 18-20) Alternatívák: a különböz döntési lehet ségek, ezek halmaza a döntési tér. Leírásuk: explicit (pl. felsorolás), vagy implicit. Jellemz ik: számosság, számszer síthet ség, kölcsönkapcsolatok (függetlenség), bizonytalanság (véletlent l való függés).

14 14 Célok (kritériumok,értékelési tényez k): azok az irányok, amerre a rendszert vinni szeretnénk. Ezek sok esetben nem feltétlenül elérhet, vagy számszer síthet kívánságokat jelentenek. Hierarchikusan elrendezve ket, a legmagasabb szinten lev k általában kevésbé operácionálisak, az alacsonyabban lév kritériumok már kezelhet k, míg a legalacsonyabb szinten lév k, mint számszer értékelési tényez k jelennek meg. Az értékelési tényez knek rendelkezniük kell az alábbi tulajdonságokkal: teljesség (egyetlen fontos tényez se maradjon ki), operácionalizálhatóság (elemzésre alkalmas legyen), felbonthatóság (az alternatívákat az adott tényez szerint külön is vizsgálhassuk), redundancia kisz rése (felesleges, ismétl d szempont elhagyása), minimalitás (ne legyen ugyanolyan jó, de kisebb elemszámú tényez halmaz), Döntéshozók: azok a személyek, akik felel sek az információk megadásáért, az alternatívák meghatározásáért, kiértékeléséért, a megoldás realizálásáért. Döntéshozó magatartása: racionális (optimalizálásra törekszik), vagy irracionális. A döntéshozó a problémák egy részét objektíven látja (együtthatók, mérések eredményei, számított értékek), másik részét preferenciák adják. Magatartástudomány: a döntéshozókra a korlátozott racionalitás elve érvényesül. Döntési folyamat: döntési szituáció keletkezése (koniktus feloldása), döntési probléma megfogalmazása, döntési probléma formalizálása (pl. matematikailag), döntési probléma módszerének megválasztása, megoldás: egyetlen cselekvés kiválasztása, adaptálás, értékelés, elemzés: helyes volt-e a döntés, vagy újra kell kezdeni.

A DÖNTÉSELMÉLET ELEMEI

A DÖNTÉSELMÉLET ELEMEI A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation

Részletesebben

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat. orvosi,

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat. orvosi, 0. BEVEZETÉS Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat Döntéselmélet néhány területe: orvosi, ogi, bírói, közgazdasági, műszaki, egyéb. Módszerek

Részletesebben

Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot:

Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot: Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot: z = 5x 1 + 4x 2 + 3x 3 2x 1 + 3x 2 + x 3 5 4x 1 + x 2 + 2x 3 11 3x 1 + 4x 2 + 2x 3 8 x 1, x 2, x 3 0 = maximum, feltéve, hogy

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Döntéselméleti modellek

Döntéselméleti modellek Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Optimumkeresés számítógépen

Optimumkeresés számítógépen C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények

Részletesebben

A szimplex algoritmus

A szimplex algoritmus . gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

1. Bevezetés. Decision theory: web Google keresés= 10 millió találat Döntéselmélet: web Google keresés= 8 ezer találat. orvosi,

1. Bevezetés. Decision theory: web Google keresés= 10 millió találat Döntéselmélet: web Google keresés= 8 ezer találat. orvosi, A DÖNTÉSELMÉLET ELEMEI (Irodalom: Temesvári J.: A döntéselmélet alapai, Stevenson W. J.: Operations management) (Software: WinQSB (Quantitative System for Business), http://www.econ.unideb.hu/sites/download/winqsb.zip)

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

Döntéselőkészítés. XII. előadás. Döntéselőkészítés

Döntéselőkészítés. XII. előadás. Döntéselőkészítés XII. előadás Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) A többszempontú döntési feladatok megoldásának lépései: A döntési feladat felépítése: a) a cél megfogalmazása, b) az

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Nem-lineáris programozási feladatok

Nem-lineáris programozási feladatok Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Kétfázisú szimplex algoritmus és speciális esetei

Kétfázisú szimplex algoritmus és speciális esetei 5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Bázistranszformáció és alkalmazásai

Bázistranszformáció és alkalmazásai Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI 1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.

5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6. A pivotálás hasznáról és hatékony módjáról Adott M mátrixra pivotálás alatt a következ½ot értjük: Kijelölünk a mátrixban egy nemnulla elemet, melynek neve pivotelem, aztán az egész sort leosztjuk a pivotelemmel.

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

1. szemináriumi. feladatok. Ricardói modell Bevezetés

1. szemináriumi. feladatok. Ricardói modell Bevezetés 1. szemináriumi feladatok Ricardói modell Bevezetés Termelési lehetőségek határa Relatív ár Helyettesítési határráta Optimális választás Fogyasztási pont Termelési pont Abszolút előny Komparatív előny

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor

Részletesebben

S Z Á L L Í T Á S I F E L A D A T

S Z Á L L Í T Á S I F E L A D A T Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből

Részletesebben

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat

0. BEVEZETÉS. Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the watermark 0. BEVEZETÉS Decision theory: web Google keresés= 27 millió találat Döntéselmélet: web Google keresés= 12 ezer találat Döntéselmélet

Részletesebben

1. Homogén lineáris egyenletrendszer megoldástere

1. Homogén lineáris egyenletrendszer megoldástere X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39 5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

1. A k-szerver probléma

1. A k-szerver probléma 1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok 1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 017/018-as tanév. forduló Haladók II. kategória Megoldások és javítási útmutató 1. Egy tanár kijavította egy 1 f s csoport dolgozatait.

Részletesebben

Példatár a bevezetés a Matlab programozásába tárgyhoz

Példatár a bevezetés a Matlab programozásába tárgyhoz Példatár a bevezetés a Matlab programozásába tárgyhoz Sáfár Orsolya 1 Ciklusszervezés 1. Írjunk egy olyan szorzotabla(n,m) nev függvényt, melynek bemenete n és m pozitív egészek, és a kimenete egy mátrix,

Részletesebben

Függvények növekedési korlátainak jellemzése

Függvények növekedési korlátainak jellemzése 17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása

Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Bozóki Sándor 1,2, Fülöp János 1,3 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Óbudai Egyetem XXXI. Magyar Operációkutatási Konferencia

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Fogalmak Navigare necesse est

Fogalmak Navigare necesse est Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

4. sz. Füzet. A hibafa számszerű kiértékelése 2002.

4. sz. Füzet. A hibafa számszerű kiértékelése 2002. M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy

Részletesebben

Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET

Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET MIKROÖKONÓMIA I. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. B STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET K hegyi Gergely, Horn Dániel, Major Klára Szakmai felel s: K hegyi Gergely 2010.

Részletesebben

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció 7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes. 1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr

Részletesebben

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim. Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2

Részletesebben

Diszkrét idej rendszerek analízise az id tartományban

Diszkrét idej rendszerek analízise az id tartományban Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;

Részletesebben