Számítógépes döntéstámogatás. Genetikus algoritmusok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számítógépes döntéstámogatás. Genetikus algoritmusok"

Átírás

1 BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

2 BLSZM-10 p. 2/18 Bevezetés as évek biológiai evolúció - mérnöki problémák - optimalizálási feladatok Darwini evolúciós elmélet Genetika Evolúciós módszerek Genetikus algoritmusok - John Holland (1975) Többpontos, párhuzamos keresés - robosztusság

3 BLSZM-10 p. 3/18 Optimalizációs feladatok az ellenállás meghatározása a mért áramerősség és feszültség segítségével a sebesség számítása a mért időből és a megtett távolságból a napi beosztások megtervezése két város között az optimális út megkeresése adott erőforrások mellett az eredmény maximalizálása adott gazdasági cél mellett a ráfordítás minimalizálása menükészítés

4 BLSZM-10 p. 4/18 Optimalizálási feladatok Az optimalizálási feladatok során egy adott halmazon (keresési tér, S) definiált függvény (fitnesz függvény, f) maximumhelyét (vagy minimumhelyét) keressük. Vannak hagyományos módszerek: hegymászó módszer (gradiens módszer) véletlen pontot választunk a keresési térben, szimulált lágyítás (szimulált lehűtés) véletlenszerűen választjuk meg a lépés irányát a keresési térben Evolúciós algoritmusok: evolúciós stratégia evolúciós programozás genetikus algoritmusok genetikus programozás

5 Általános evolúciós algoritmus pszeudó-kódja t := 0 {kezdeti idő beállítása} initpopulacio P t {kezdeti populáció létrehozása} fitneszszamit P t {fitneszértékek kiszámítása} while amíg nincs kész do P t := szulokivalasztas P t {szülők választása} keresztez P t {a szülők génjeinek keresztezése} mutacio P t {véletlen mutáció} fitneszszamit P t {az új fitnesz kiszámítása} P t+1 := tulelo(p t,p t) {az új populációba kerülnek az egyedek} t := t + 1 end while Az algoritmus konvergál. BLSZM-10 p. 5/18

6 BLSZM-10 p. 6/18 Genetikus algoritmusok 1975 John Holland a megoldásokat nem az eredeti feladatnak megfelelő formában tárolja - kromoszóma a műveleteket a kromoszómákon hajtjuk végre szelekció rekombináció mutáció egyedek fitneszértéke

7 BLSZM-10 p. 7/18 GA jellemzői több pontos keresést valósítanak meg flexibilisek robosztusak biztosítják, hogy elfogadható időn belül elfogadhatóan jó megoldást találjunk a problémának nem egy, hanem több különböző, közel optimális megoldását nyújthatja, amelyek közül a felhasználó kiválaszthatja a neki leginkább megfelelőt

8 A genetikus algoritmus működési sémája BLSZM-10 p. 8/18

9 BLSZM-10 p. 9/18 Az egyedek ábrázolási formája Bináris vektor Genotípus formát jelent Jelölje az (x 1,x 2,...,x n ) valós (egész) vektor az egyed tulajdonságait. Bináris ábrázolásban az egyed egy sztringként jelenik meg: x 1,x 2,...,x i,...,x n az x i változó kódolt értékei

10 BLSZM-10 p. 10/18 Szelekció Rulett szelekció: Fitnesz arányos szelekció, amely az egyedeket fitnesz értékük abszolut értékének arányában választja ki a szelekciós állományból. Visszatevéses művelet Egy egyed kiválasztását a szelekciós valószínűség határozza meg: P(E i ) = f(e i) n j=1 f(e j) f a fitnesz függvény, E i (i = 1,...,n) az egyedek

11 BLSZM-10 p. 11/18 Rulett szelekció veszünk egy rulettet feleltessünk meg minden E i egyednek valamely kiindulási pontból folyamatosan egy-egy körszeletet generálunk egy [0, 1]-beli véletlen számot, a véletlen számot ívhossznak tekintjük azt az egyedet választjuk, amelynek körszeletében az ív végződik egy µ elemű szelekciós halmazból a választást µ-ször kell megismételni, amíg kialakul a szülők állománya A kiválasztott egyedek közt µ p(e i ) (i = 1,...,n) várható számú másolata lesz az E i egyednek.

12 BLSZM-10 p. 12/18 Versengő szelekció Az egyedek fitnesz értékeinek sorrendjét használja fel. Nem fog növekedni az egyed duplikációk száma. Több egyedből a legjobb fitnesz értékű egyedet választja ki. (Biológiai szelekciót modellezi.)

13 BLSZM-10 p. 13/18 Versengő szelekció Lépések: 1. Input: A szelekciós állomány E i elemei és f(e i ) fitnesz értékei (i = 1,..., n), tour paraméter 2. Output: A populáció a szelekció után (szülők állománya): E i (i = 1,..., n) 3. for i = 1 to µ do 4. for k = 1 to tour do 5. válasszunk egy j {1,..., n} indexet véletlenszerűen 6. T k = E j 7. od 8. E i = T j ha f(t j ) = max(f(t 1 ),..., f(t tour )) 9. od A kiválasztott egyedek közt µ p(e i ) (i = 1,..., n) várható számú másolata lesz az E i egyednek.

14 BLSZM-10 p. 14/18 Rekombináció szelekció után keletkező szülő állomány tartalmazhat ismétlődéseket részben vagy egészben azonos lehet a populációval kettő-több szülő felhasználásával képez utódot (jellemzően kettőből egyet vagy kettőt) célja: a szülőkből minél jobb, újabb megoldások összeállítása az átvett, "örökölt" tulajdonságok alapján formáját befolyásolja a változók típusa és a problémák sajátosságai P r 0,7

15 BLSZM-10 p. 15/18 Bináris sztringek rekombinációja Egypontos keresztezés két szülőből két utód véletlenszerűen választunk keresztezési pontot az {1,2,...,L 1} pozíciók közül Többpontos keresztezés két szülőből két utód n számú keresztezési pontot választunk a kapott keresztezési pontokat növekvő sorrendbe rendezzük, majd a megfelelő, egymás után következő keresztezési pontok közti bitsorozatokat rendre más-más szülőtől választjuk

16 BLSZM-10 p. 16/18 Mutáció A rekombináció nem alkalmas finom közelítések megvalósítására. A mutáció az utód közvetlen környezetében keres jobb megoldásokat. P m 0,01 Bináris típusú változók mutációja az egyed egy bitsorozat, melynek egyes bitjeit mutációval változtatjuk a mutáció egy x i változónál a következő: z i = { x i,ha Rnd > P m 1 x i,ha Rnd P m

17 BLSZM-10 p. 17/18 Az EA ciklus kialakítása stratégiai paraméterek megadása populáció mérete a rekombináció alkalmazásának P r valószínűsége a mutáció alkalmazásának P m valószínűsége az utódképzési ráta értéke a visszahelyezési ráta értéke kezdő populáció kialakítása véletlenszerű előállítás előző feladat eredményeinek felhasználása korábbi eredmények módosított felhasználása

18 BLSZM-10 p. 18/18 Az EA ciklus kialakítása megállási feltétel maximális generációszám elérése maximális futási idő elérése adott idő alatt nem javul a megoldás minősége hasonlóak az egyedek előre adott érték megközelítése fitnesz kiértékelés A problémák legtöbbjénél ismerünk egy célfüggvényt, amely az értelmezési tartomány, azaz a keresési tér pontjaihoz egy valós számot vagy vektort rendel. Az esetek többségében a fitneszfüggvényt azonosnak választjuk a célfüggvénnyel. Sokszor nincs célfüggvényünk és a fitneszfüggvény megfogalmazása a probléma megoldásának egyik fontos kulcseleme. Konkrét formája függ a reprezentációtól.

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű optimálásának általános és robosztus módszere A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia

Részletesebben

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9 ... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus

Részletesebben

Dr. habil. Maróti György

Dr. habil. Maróti György infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu

Részletesebben

Genetikus algoritmusok az L- rendszereken alapuló. Werner Ágnes

Genetikus algoritmusok az L- rendszereken alapuló. Werner Ágnes Genetikus algoritmusok az L- rendszereken alapuló növénymodellezésben Werner Ágnes Motiváció: Procedurális modellek a növénymodellezésben: sok tervezési munka a felhasználónak ismerni kell az eljárás részleteit

Részletesebben

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése Heurisztikák algoritmusok ütemezési problémákra 1. Állapottér és a megoldások kezelése Számos nehéz ütemezési probléma esetén az exponenciális idejű optimális megoldást adó algoritmusok rendkívül nagy

Részletesebben

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus

Részletesebben

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL OLÁH Béla A TERMELÉSÜTEMEZÉS MEGFOGALMAZÁSA Flow shop: adott n számú termék, melyeken m számú

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet

Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok GyRDin-02 p. 1/20 Gyártórendszerek Dinamikája Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

Részletesebben

Intelligens technikák k a

Intelligens technikák k a Intelligens technikák k a döntéstámogatásban Döntések fuzzy környezetben Starkné Dr. Werner Ágnes 1 Példa: Alternatívák: a 1,a 2,a 3 Kritériumok: k 1,k 2, k 3,k 4 Az alternatívák értékelését az egyes kritériumok

Részletesebben

Intelligens technikák k a

Intelligens technikák k a Intelligens technikák k a döntéstámogatásban Genetikus algoritmusok Starkné Dr. Werner Ágnes Bevezetés A 60-as években merült fel először az a gondolat, hogy az evolúcióban megfigyelhető szelekciós folyamatok

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Szakdolgozat. Miskolci Egyetem. A genetikus algoritmus alkalmazási lehetőségei. Készítette: Biró Szilárd 5. Programtervező informatikus

Szakdolgozat. Miskolci Egyetem. A genetikus algoritmus alkalmazási lehetőségei. Készítette: Biró Szilárd 5. Programtervező informatikus Szakdolgozat Miskolci Egyetem A genetikus algoritmus alkalmazási lehetőségei Készítette: Biró Szilárd 5. Programtervező informatikus Témavezető: Dr. Körei Attila Miskolc, 2013 Miskolci Egyetem Gépészmérnöki

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

HÁROM KÖR A HÁROMSZÖGBEN

HÁROM KÖR A HÁROMSZÖGBEN Debreceni Egyetem Informatikai Kar HÁROM KÖR A HÁROMSZÖGBEN Konzulens: dr. Aszalós László egyetemi adjunktus Készítette: Király Péter programtervező matematikus szakos hallgató DEBRECEN, 008 Tartalomjegyzék

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése

Részletesebben

Borgulya I. PTE KTK 1. Fuzzy-rendszerek. Fuzzy rendszerekről általában

Borgulya I. PTE KTK 1. Fuzzy-rendszerek. Fuzzy rendszerekről általában Borgulya I. PTE KTK 1 Fuzzy-rendszerek Fuzzy rendszerekről általában Fuzzy-rendszerek Témák 1. Fuzzy rendszerekről általában 2. Fuzzy halmazelmélet Fuzzy halmazműveletek 3. Fuzzy logika Fuzzy logika műveletek

Részletesebben

Adatmanipuláció, transzformáció, szelekció SPSS-ben

Adatmanipuláció, transzformáció, szelekció SPSS-ben Adatmanipuláció, transzformáció, szelekció SPSS-ben Statisztikai szoftver alkalmazás Géczi-Papp Renáta Számított változó A már meglévő adatokból (változókból) további adatokat származtathatunk. munkavállalók.sav

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer SZDT-07 p. 1/20 Számítógépes döntéstámogatás Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)

Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok

Részletesebben

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Fuzzy-rendszerek. Fuzzy halmazm veletek. Fuzzy logika m veletek. Borgulya I. PTE KTK 2. 1.Fuzzy rendszerekr l általában

Fuzzy-rendszerek. Fuzzy halmazm veletek. Fuzzy logika m veletek. Borgulya I. PTE KTK 2. 1.Fuzzy rendszerekr l általában Fuzzy-rendszerek Fuzzy rendszerekrl általában Fuzzy-rendszerek Témák 1. Fuzzy rendszerekrl általában 2. Fuzzy halmazelmélet Fuzzy halmazmveletek 3. Fuzzy logika Fuzzy logika mveletek 4. Fuzzy közelít következtetés

Részletesebben

Dinamikus programozás - Szerelőszalag ütemezése

Dinamikus programozás - Szerelőszalag ütemezése Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea

Részletesebben

Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert

Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert Zenegenerálás, majdnem természetes zene Bernád Kinga és Roth Róbert Tartalom 1. Bevezető 2. Eddigi próbálkozások 3. Módszerek 4. Algoritmus bemutatása 5. Összefoglaló (C) Bernád Kinga, Roth Róbert 2 1.

Részletesebben

Algoritmus fogalma. Mi az algoritmus? HF: Al Khwarizmi. Egy adott probléma megoldásának leírása elemi lépések sorozatával

Algoritmus fogalma. Mi az algoritmus? HF: Al Khwarizmi. Egy adott probléma megoldásának leírása elemi lépések sorozatával Algoritmusok Algoritmus fogalma Mi az algoritmus? Egy adott probléma megoldásának leírása elemi lépések sorozatával HF: Al Khwarizmi Követelmények Véges: nem állhat végtelen sok lépésből Teljes: teljes

Részletesebben

Mesterséges Intelligencia alapjai

Mesterséges Intelligencia alapjai Mesterséges Intelligencia alapjai Evolúciós algoritmusok - neurális hálózatok Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / Budapest

Részletesebben

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ).

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ). Paláncz Béla - Numerikus Módszerek - 211-4. Optimalizálás 4 Optimalizálás Bevezetés Az optimalizáció, egy függvény szélsőértéke helyének meghatározása, talán a legfontosabb numerikus eljárások közé tartozik.

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Genetikus algoritmusok megvalósítása MATLAB segítségével

Genetikus algoritmusok megvalósítása MATLAB segítségével Genetikus algoritmusok megvalósítása MATLAB segítségével Werner Ágnes A Matlab genetikus algoritmusokat használó eszköztára Kétféle módon használhatjuk fel az eszköztár lehetőségeit: 1. Parancssorból 2.

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

Számítógépes döntéstámogatás. Bevezetés és tematika

Számítógépes döntéstámogatás. Bevezetés és tematika SZDT-01 p. 1/18 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/18 SZDT-01

Részletesebben

Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer

Programozási módszertan. Függvények rekurzív megadása Oszd meg és uralkodj elv, helyettesítő módszer, rekurziós fa módszer, mester módszer PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek

Részletesebben

ANALÍZIS TANSZÉK Szakdolgozati téma. Piezoelektromos mechanikai redszer rezgését leíró parciális

ANALÍZIS TANSZÉK Szakdolgozati téma. Piezoelektromos mechanikai redszer rezgését leíró parciális Piezoelektromos mechanikai redszer rezgését leíró parciális di erenciálegyenlet el½oállítása és megoldása Témavezet½o: Dr. Kovács Béla Rugalmas és pizoelektromos rétegekb½ol álló összetett mechanikai rendszer

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Automatikus tesztgenerálás formális protokollspecifikáció alapján

Automatikus tesztgenerálás formális protokollspecifikáció alapján Automatikus tesztgenerálás formális protokollspecifikáció alapján VINCZE GÁBOR Budapesti Mûszaki és Gazdaságtudományi Egyetem, Távközlési és Médiainformatikai Tanszék vincze@alpha.ttt.bme.hu Reviewed Kulcsszavak:

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11. Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció

Részletesebben

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat IGYR p. 1/17 Integrált gyártórendszerek Ágens technológia - ágens rendszer létrehozása Gyakorlat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu IGYR

Részletesebben

DOKTORI (PhD) ÉRTEKEZÉS BALOGH SÁNDOR KAPOSVÁRI EGYETEM GAZDASÁGTUDOMÁNYI KAR

DOKTORI (PhD) ÉRTEKEZÉS BALOGH SÁNDOR KAPOSVÁRI EGYETEM GAZDASÁGTUDOMÁNYI KAR DOKTORI (PhD) ÉRTEKEZÉS BALOGH SÁNDOR KAPOSVÁRI EGYETEM GAZDASÁGTUDOMÁNYI KAR 2009 KAPOSVÁRI EGYETEM GAZDASÁGTUDOMÁNYI KAR Informatika Tanszék A doktori iskola vezetője: PROF. DR. UDOVECZ GÁBOR az MTA

Részletesebben

Gráfszínezés adaptív evolúciós algoritmusokkal

Gráfszínezés adaptív evolúciós algoritmusokkal Szegedi Tudományegyetem Informatikai Tanszékcsoport Gráfszínezés adaptív evolúciós algoritmusokkal Diplomamunka Készítette: Veress Krisztián programtervező matematikus szakos hallgató Témavezető: Dr. Blázsik

Részletesebben

Fordító részei. Fordító részei. Kód visszafejtés. Izsó Tamás szeptember 29. Izsó Tamás Fordító részei / 1

Fordító részei. Fordító részei. Kód visszafejtés. Izsó Tamás szeptember 29. Izsó Tamás Fordító részei / 1 Fordító részei Kód visszafejtés. Izsó Tamás 2016. szeptember 29. Izsó Tamás Fordító részei / 1 Section 1 Fordító részei Izsó Tamás Fordító részei / 2 Irodalom Izsó Tamás Fordító részei / 3 Irodalom Izsó

Részletesebben

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak.

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Evolúció Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Latin eredetű szó, jelentése: kibontakozás Időben egymást

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása

A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

5. Gyakorlat. 5.1 Hálós adatbázis modell műveleti része. NDQL, hálós lekérdező nyelv:

5. Gyakorlat. 5.1 Hálós adatbázis modell műveleti része. NDQL, hálós lekérdező nyelv: 5. Gyakorlat 5.1 Hálós adatbázis modell műveleti része NDQL, hálós lekérdező nyelv: A lekérdezés navigációs jellegű, vagyis a lekérdezés megfogalmazása során azt kell meghatározni, hogy milyen irányban

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Programozás alapjai (ANSI C)

Programozás alapjai (ANSI C) Programozás alapjai (ANSI C) 1. Előadás vázlat A számítógép és programozása Dr. Baksáné dr. Varga Erika adjunktus Miskolci Egyetem, Informatikai Intézet Általános Informatikai Intézeti Tanszék www.iit.uni-miskolc.hu

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben