Hidraulikus hálózatok robusztusságának növelése
|
|
- Ernő Székely
- 6 évvel ezelőtt
- Látták:
Átírás
1 Dr. Dulovics Dezső Junior Szimpózium Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba
2 Az előadás vázlata Célkitűzések Hidraulikai modellezés A nyomásérzékenység fogalma A robusztusság fogalma A vizsgálati módszer kiválasztása Optimumkereső algoritmusok Trendek feltárása Eredmények ismertetése Egy kisközség víziközmű hálózatán Egy kisváros víziközmű hálózatán Összefoglalás, kitekintés 2
3 Nyomásérzékenység: Fogyasztásváltozás hatására bekövetkező nyomásingadozások mértéke Célkitűzések Szolgáltató szemszögéből: Bevétel kiesés az eladható vízmennyiség csökkenése által A nagy nyomásérzékenység hátrányai: Felhasználó szemszögéből: Komfortcsökkenés Cél: A hidraulikus hálózat fogyasztásváltozásokkal szembeni robusztusságának növelése egy új csőszakasz beépítése által 3
4 1D hálózati szimuláció Hidraulikai modellezés Staci programcsomag Az egyenletek: Ahol: 4
5 A nyomásérzékenység fogalma Az érzékenységi mátrix A hidraulikus hálózat leíró egyenletrendszere: 5
6 A robusztusság fogalma Lokális érzékenység Két állapot közötti érzékenységkülönbségre átírva Csúcsérzékenység Átlagos érzékenység 6
7 Miért nem működik a direkt optimalizáció? Célfüggvény Kísérletek globális kereső algoritmusokkal Differenciális evolúció Genetikus algoritmus Esetünkben a célfüggvény alakja Tapasztalat: A globális keresők rendkívül érzékenyek a célfüggvény rendezettségére 7
8 Trendek feltérképezése Kiindulási koncepció Egy szabályos célfüggvény lehetővé tenné a hatékony optimalizációt Sejtés: Az elérhető érzékenységcsökkenés kapcsolatban áll az újonnan bekötött csőszakasz kezdő és végcsomópontjának érzékenységével A feltételezés vizsgálata mintahálózatokon (kör, lineáris, rács) Minden csőszakasz egyforma hosszú, átmérőjű és érdességű, beleértve az újonnan behelyezettet is Az x tengely kiszámítása,,olcsó, az y tengelyt meghatározni viszont,,drága Teljes kiértékelés: Az összes lehetséges csőkötés által okozott érzékenységcsökkenés kiszámítása 8
9 Trendek feltérképezése Hipotézis: A lehető legnagyobb átlag és csúcsérzékenység csökkenés, a legnagyobb érzékenységkülönbséggel rendelkező csomópontpár összekötése esetén adódik. A hipotézis valósabb hálózatokon történő ellenőrzése A csőhossz a csomópontok koordinátái alapján kerül kiszámításra A hipotézis sérül kiegészítésre szorul, viszont a trend továbbra is megfigyelhető 9
10 Átkötés hossz korlátozásának hatása Kör hálózat Lineáris hálózat Rács hálózat A hipotézis felülvizsgálata: Megkötött hossz esetén a hipotézis igaz A túl hosszú csőkötés sem előnyös Lehetőség egy új módszer megalkotására 10
11 Az alkalmazott módszer Egy hálózati érzékenységvizsgálat kiszámítása Egy kisváros víziközműhálózata Csomópontok száma: 400 Lakosság: 1000 fő A lehetséges csomópontpárok kiválogatása a megengedett maximális csőhossz alapján (minden olyan csomópontpár elvetésre kerül melyek közé egy új csőszakasza bekötése hosszabb csőszakaszt igényel a megengedettnél) A legnagyobb érzékenységkülönbségű csomópontpárok kiválasztása, a maximális csőhossz környezetében 11
12 Egy kisközség hidraulikus hálózata A módszer ellenőrzése teljes kiértékelés Az algoritmus által talált megoldás: L = 102,5 m (max 120 m)
13 Egy kisközség hidraulikus hálózata Elért csökkenés: A javasolt csőkötés után 13
14 Egy kisváros hidraulikus hálózata Csomópontok száma: 2700 A lakosság mérete: 3500 fő A javasolt csőkötés után Az algoritmus által talált megoldás: L = 94,5 m (max 120 m) 14
15 Összefoglalás Összefoglalás: Trendet fedeztünk fel a csomópontok érzékenységkülönbsége és az elérhető átlagérzékenység csökkenés között Új módszert alkottunk, mely a két csomópont egy kiértékelés alapján meghatározható tényezői alapján lehetőséget biztosít azon optimális csőkötés meghatározására, mely adott anyagi ráfordítás (csőhossz korlátozása) mellett a legnagyobb robusztusságnövekedést eredményezi A módszer további fejlesztési lehetőségei: Tanulmány az anyagi ráfordítás és megtérülési idő kapcsolat meghatározására Több csőszakasz behelyezése Nagyobb hálózatokon való tesztelése Szivattyú jelleggörbék figyelembe vétele 15
16 Köszönöm a megtisztelő figyelmet! 16
17 17
18 A differenciális evolúciós algoritmus A módszer globális kereső Az alapmódszer mutánsképzési metódusa A módszer előnyei: A minimumhelyek nem jelentek akadályt a módszer számára Nem igényli a függvény gradiensének ismeretét A módszer hátrányai: Lassú konvergencia Folytonos optimumkereső F - Falánksági faktor 18
19 Az optimumkereső kibővítése Lényegi változtatás A mutáns képzés szakaszán Radikális diverzitás vesztés Rossz konvergencia Részmegoldás: Sztochasztikus F paraméter Javuló, de lassú konvergencia nagyobb keresési tartomány esetén Alapötlet F értékének változtatása, hogy a jelölt tag minden esetben egész számokkal feltöltött vektorokat eredményezzen. A futásidő előre haladtával növekvő eséllyel bekövetkező sztochasztikus mutációk Szabályozott genetikus sodródás 19
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Dr. habil. Maróti György
infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu
Optimális mérési elrendezés hidraulikus hálózatokon
Optimális mérési elrendezés hidraulikus hálózatokon MaSzeSz Juniuor Szimpózium Wéber Richárd PhD hallgató, III. félév BME, GPK, Hidrodinamikai Rendszerek Tanszék Budapest, 2018, egyetemi docens Tartalom
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban
Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban Dr. Halász Gábor 1 Dr. Hős Csaba 2 1 Egyetemi tanár, halasz@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Hidrodinamikai
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe
Hálózat hidraulikai modell integrálása a térinformatikai rendszerébe Hálózathidraulikai modellezés - Szakmai nap MHT Vízellátási Szakosztály 2015. április 9. Térinformatikai rendszer bemutatása Működési
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Projektfeladatok 2014, tavaszi félév
Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:
Kvalitatív elemzésen alapuló reakciómechanizmus meghatározás
Kvalitatív elemzésen alapuló reakciómechanizmus meghatározás Varga Tamás Pannon Egyetem, Folyamatmérnöki Intézeti Tanszék IX. Alkalmazott Informatika Konferencia ~ AIK 2011 ~ Kaposvár, Február 25. Tartalom
Nagyméretű közúti közlekedési hálózatok analízise, 3D vizualizációja
Nagyméretű közúti közlekedési hálózatok analízise, 3D vizualizációja Fazekas Sándor Témavezető: dr. Péter Tamás Közlekedés és járműirányítás workshop BME 2011 ISBN 978-963-420-975-1 Köszönet nyilvánítás
Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.
Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal
Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
A SOPRON TÉRSÉGI VÍZELLÁTÓ RENDSZER FŐNYOMÓ VEZETÉKEINEK REKONSTRUKCIÓJÁT MEGALAPOZÓ HIDRAULIKAI VIZSGÁLAT
A SOPRON TÉRSÉGI VÍZELLÁTÓ RENDSZER FŐNYOMÓ VEZETÉKEINEK REKONSTRUKCIÓJÁT MEGALAPOZÓ HIDRAULIKAI VIZSGÁLAT Csernyi Róbert Kárász Tibor XXI. Ifjúsági Napok Mosonmagyaróvár 2014. szeptember 18-19. Előadó:
Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek
Kvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2017/18 2. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága
@ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok
Rendszámfelismerő rendszerek
Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció
Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével
GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés
Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés Hazay Máté hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája
Laboratóriumi vizsgálatok összehasonlító elemzése 2010-2013
Laboratóriumi vizsgálatok összehasonlító elemzése 2010-2013 dr. Kramer Mihály tanácsadó Magyar Diagnosztikum Gyártók és Forgalmazók Egyesülete (HIVDA) 2014.08.30 MLDT 57 Nyíregyháza 1 Célkitűzések Négy
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
KÖSZÖNTJÜK HALLGATÓINKAT!
2010. november 10. KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth Zoltán Módszerek, amelyek megváltoztatják a világot A számítógépes szimuláció és optimalizáció jelentősége c. előadását hallhatják! 1 Módszerek,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Értékáram elemzés szoftveres támogatással. Gergely Judit 2013. 03. 01. Lean-klub
Értékáram elemzés szoftveres támogatással Gergely Judit 2013. 03. 01. Lean-klub Tartalom Az Értékáram és elemzésének szerepe a Leanben Értékáram modellezés és elemzés Esetpélda: termelő folyamat Képzeletbeli
Érzékenységvizsgálat
Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális
Soros felépítésű folytonos PID szabályozó
Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A
GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
XVII. econ Konferencia és ANSYS Felhasználói Találkozó
XVII. econ Konferencia és ANSYS Felhasználói Találkozó Hazay Máté, Bakos Bernadett, Bojtár Imre hazay.mate@epito.bme.hu PhD hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Tartószerkezetek Mechanikája
A klímamodellek eredményei mint a hatásvizsgálatok kiindulási adatai
A klímamodellek eredményei mint a hatásvizsgálatok kiindulási adatai Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR projekt 2. konzultációs workshopja 2016. február 19. TARTALOM
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Geofizikai kutatómódszerek I.
Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
EFOP DISZRUPTÍV TECHNOLÓGIÁK KUTATÁS-FEJLESZTÉSE AZ E-MOBILITY TERÜLETÉN ÉS INTEGRÁLÁSUK A MÉRNÖKKÉPZÉSBE
SZTE Innovációs nap Szeged, 2017 május 30. EFOP-3.6.1-16-2016-00014 DISZRUPTÍV TECHNOLÓGIÁK KUTATÁS-FEJLESZTÉSE AZ E-MOBILITY TERÜLETÉN ÉS INTEGRÁLÁSUK A MÉRNÖKKÉPZÉSBE Dr. Weltsch Zoltán Pallasz Athéné
Vannak-e légtelenítő légbeszívó szelepek a nyomott víziközmű vezetékeken, és ha igen, miért nincsenek?
Vannak-e légtelenítő légbeszívó szelepek a nyomott víziközmű vezetékeken, és ha igen, miért nincsenek? Jogszabályi/Szabvány háttér 2011. évi CCIX. Törvény a víziközmű-szolgáltatásról: közvetlen hivatkozás
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Intelligens Rendszerek Elmélete IRE 4/32/1
Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3
Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20
Teljesítmény Mérés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés 2013 1 / 20 Tartalomjegyzék 1 Bevezetés 2 Visual Studio Kód metrikák Performance Explorer Tóth Zsolt
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
Képrekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
KOMPOZITLEMEZ ORTOTRÓP
KOMPOZITLEMEZ ORTOTRÓP ANYAGJELLEMZŐINEK MEGHATÁROZÁSA ÉS KÍSÉRLETI IGAZOLÁSA Nagy Anna anna.nagy@econengineering.com econ Engineering econ Engineering Kft. 2019 H-1116 Budapest, Kondorosi út 3. IV. emelet
Az RCMTéR projekt: új éghajlati szcenáriók a Kárpát-medencére
Az RCMTéR projekt: új éghajlati szcenáriók a Kárpát-medencére Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR projekt nyitórendezvénye 2015. április 27. TARTALOM 1. Motiváció
Mátrixhatvány-vektor szorzatok hatékony számítása
Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis
Matematika III előadás
Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz Szekér Szabolcs 1, Dr. Fogarassyné dr. Vathy Ágnes 2 1 Pannon Egyetem Rendszer- és Számítástudományi Tanszék, szekersz@gmail.com
Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9
... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...
ANALÍZIS TANSZÉK Szakdolgozati téma. Piezoelektromos mechanikai redszer rezgését leíró parciális
Piezoelektromos mechanikai redszer rezgését leíró parciális di erenciálegyenlet el½oállítása és megoldása Témavezet½o: Dr. Kovács Béla Rugalmas és pizoelektromos rétegekb½ol álló összetett mechanikai rendszer
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra
Systeemitekniikan Laboratorio Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra Bene József HDR, Dr. Hős Csaba HDR, Dr. Enso Ikonen SYTE,
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34. Meteorológiai Tudományos Napok Az előadás vázlata
ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA
TÁMOP-2.4.8-12/1-2012-0001 A munkahelyi egészség és biztonság fejlesztése, a munkaügyi ellenőrzés fejlesztése ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA Előadó: Szentesi Fekete
A tervezett Bük-Szakonyi vízellátó rendszer hálózathidraulikai modellezése
A tervezett Bük-Szakonyi vízellátó rendszer hálózathidraulikai modellezése Bevezetés A víziközmű-rendszerek tervezése, kialakítása, fejlesztése kapcsán olyan megoldást kell előnyben részesíteni, amely
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
Képrekonstrukció 6. előadás
Képrekonstrukció 6. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Diszkrét tomográfia (DT) A CT-hez több száz vetület szükséges időigényes költséges károsíthatja
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
Napenergia kontra atomenergia
VI. Napenergia-hasznosítás az épületgépészetben és kiállítás Napenergia kontra atomenergia Egy erőműves szakember gondolatai Varga Attila Budapest 2015 Május 12 Tartalomjegyzék 1. Napelemmel termelhető
Szakmérnöki továbbképzés. Épületgépészeti szabályozástechnika. Dr. Magyar Zoltán
Szakmérnöki továbbképzés Épületgépészeti szabályozástechnika Dr. Magyar Zoltán Tartalom 1. Épületgépészeti rendszerek üzemeltetése Beüzemelés, commissioning tevékenység Épületek belsı légállapotának kritériumai
MUNKAERŐ FLUKTUÁCIÓ VIZSGÁLATA MAGYARORSZÁGON
Via Futuri Nemzetközi Konferencia, Fenntarthatóság Versenyképesség Regionális fejlődés MUNKAERŐ FLUKTUÁCIÓ VIZSGÁLATA MAGYARORSZÁGON KÉRDŐÍVES FELMÉRÉS 480 Válasz 207 Érvényes válasz A KUTATÁS KITERJEDÉSE
Intelligens beágyazott rendszer üvegházak irányításában
P5-T6: Algoritmustervezési környezet kidolgozása intelligens autonóm rendszerekhez Intelligens beágyazott rendszer üvegházak irányításában Eredics Péter, Dobrowiecki P. Tadeusz, BME-MIT 1 Üvegházak Az
A napsugárzás mérések szerepe a napenergia előrejelzésében
A napsugárzás mérések szerepe a napenergia előrejelzésében Nagy Zoltán 1, Dobos Attila 2, Rácz Csaba 2 1 Országos Meteorológiai Szolgálat 2 Debreceni Egyetem Agrártudományi Központ Könnyű, vagy nehéz feladat
Pénz-és kockázatkezelés
Pénz-és kockázatkezelés X-Trade Brokers Magyarországi Fióktelepe Soós Róbert Egy befektetési stratégia elemei 1. Meg kell határozni a belépési és zárási pozíciókat. 2. Pénz-és kockázatkezelés 3. Pszichológia
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Síklapokból álló üvegoszlopok laboratóriumi. vizsgálata. Jakab András, doktorandusz. BME, Építőanyagok és Magasépítés Tanszék
Síklapokból álló üvegoszlopok laboratóriumi vizsgálata Előadó: Jakab András, doktorandusz BME, Építőanyagok és Magasépítés Tanszék Nehme Kinga, Nehme Salem Georges Szilikátipari Tudományos Egyesület Üvegipari
Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása
Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása Szépszó Gabriella Országos Meteorológiai Szolgálat Éghajlati Osztály, Klímamodellezı Csoport Együttmőködési lehetıségek a hidrodinamikai
Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására
VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
Bevezetés az operációkutatásba A lineáris programozás alapjai
Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.
Korrodált acélszerkezetek vizsgálata
Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
HULLADÉKGAZDÁLKODÁS ipari hulladékgazdálkodás 03. dr. Torma András Környezetmérnöki Tanszék
HULLADÉKGAZDÁLKODÁS ipari hulladékgazdálkodás 03 dr. Torma András Környezetmérnöki Tanszék Tartalom Készítette: dr. Torma A. Készült: 2012.09. 2 1. Tervezés áttekintése 2. Műszaki-gazdasági tervezés 3.
A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN
44. Meteorológiai Tudományos Napok Budapest, 2018. november 22 23. A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN Kis Anna 1,2, Pongrácz
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Digitális Domborzat Modellek (DTM)
Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfiai modellje Cél: tetszőleges pontban
Természetes szelekció és adaptáció
Természetes szelekció és adaptáció Amiről szó lesz öröklődő és variábilis fenotípus természetes szelekció adaptáció evolúció 2. Természetes szelekció Miért fontos a természetes szelekció (TSZ)? 1. C.R.
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Megerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
Elfedett pulzációk vizsgálata a KIC fedési kettősrendszerben
Elfedett pulzációk vizsgálata a KIC 3858884 fedési kettősrendszerben Bókon András II. éves Fizikus MSc szakos hallgató Témavezető: Dr. Bíró Imre Barna tudományos munkatárs, 216. 11. 25. Csillagok pulzációja
Tartalomjegyzék. Typotex Kiadó, 2010
Tartalomjegyzék 15. Elliptikus egyenletek 7 15.1. Bevezetés: Elliptikus egyenletek alkalmazott feladatokban... 7 15.2. Elméleti háttér.......................... 9 15.3. Véges dierencia eljárások II...................
A függvényekről tanultak összefoglalása /9. évfolyam/
A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens