Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
|
|
- Botond Balla
- 6 évvel ezelőtt
- Látták:
Átírás
1 Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István
2 Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek (BitTorrent, stb), Okostelefon alkalmazások Grid, stb Ezek számára speciális adatbányász algoritmusokat kell kifejleszteni! Ajánló rendszerek, spam szűrés, stb 2
3 Rendszermodell Nagyon sok (több millió) eszköz (számítógép) Ezentúl csomópontnak hívjuk őket (node) Csomagkapcsolt hálózat segítségével kommunikálnak Minden csomópont hálózati címmel rendelkezik A cím ismeretében a csomópont számára üzenet küldhető bármely másik csomópontból Az üzenetek a hálózatban késhetnek, és el is veszhetnek, sorrendjük sem garantált Formalizálhatjuk is, pl. a kaotikus modell érdekes és releváns 3
4 Adatmodell Minden csomóponton kevés, esetleg csak egy adatrekord (innen feltesszük hogy pont egy) Nem engedjük meg az adat mozgatását, csak lokális feldolgozást Privacy preservation (magánélet tisztelete) Az előállított modellek használata olcsó és minden csomópont számára elérhető legyen Demokratikus feltétel 4
5 Illusztráció: átlagolás
6 Illusztráció: átlagolás 12 3 kérés
7 Illusztráció: átlagolás 12 3 válasz
8 Illusztráció: átlagolás (126)/2=9 8
9 Osztályozási probléma Adott (x i,y i ) példák egy halmaza, ahol y i x i osztálya (y i pl. 1 vagy 1, kétosztályos esetben) Egy f() modellt szeretnénk, amelyre f(x i )=y i (ill. f(x i ) y i ) minden ire f() gyakran paraméterekkel addott: f w (), így a tanulási probléma hibaminimalizálásra vezethető vissza wben. A hiba gyakran a példák feletti hibák összege 9
10 10 Osztályozás lineáris modellel
11 Teljesen elosztott osztályozás A probléma tehát olyan optimalizáló algoritmust találni, amely jól illeszkedik a rendszer és adatmodellünkbe A legtöbb ismert módszer erősen szinkronizált, és felteszi az olcsó véletlen hozzáférést a teljes adatbázishoz Az online módszerek kivételt képeznek! Egyszerre csak egy adatrekordhoz férnek hozzá Ezzel a rekorddal frissítik a modellt A sztochasztikus gradiens módszer egy gyakori online módszer, ezt alkalmazzuk a lineáris modellekre (az SVM módszer hibafüggvényének primál alakjára) 11
12 Sztochasztikus gradiens Tegyük fel hogy a hiba: Ennek gradiense: Tehát a teljes gradiens módszer az lenne hogy: De csak egy példát veszünk egyszerre, szóval a módszer: n Err w = i=1 Err w w n = i=1 n w t 1 =w t t i=1 Err w, x i Err w, x i w Err w, x i w w t 1 =w t t Err w, x i w 12
13 A pletyka tanulás 13
14 A merge függvény Legyen z=merge(x,y)=(xy)/2 (x, y lineáris modellek) Adaline perceptron stochasztikus gradiens módszerével z frissítése egy példával u.olyan hatású mint x és y frissítése az adott példával, majd ezek átlagolása zvel predikálni u.az, mint x és y predikcióját súlyozottan átlagolni Ez azt jeleni, hogy effektíve egy exponenciálisan növekvő számú modellt propagálunk, és ezek szavaztatása a predikciónk! Az lineáris SVM algoritmusra ez nem teljesül pontosan, de a hasonlóság heurisztikusan motiválja a módszert 14
15 Lokális predikció Csak helyben meglévő modelleket használunk Vagy csak az aktuális modellt Vagy az ingyen összegyűlt modellek szavaztatását is elvégezhetjük 15
16 Kísérleti kiértékelés Az ismert Pegasos algoritmust alkalmaztuk (lineáris SVM sztochasztikus gradiens módszerrel) a pletyka keretben Ismert adatbázisokon értékeltük ki a módszert Teljesen elosztott adatmodell, egy rekord egy csomóponton Extrém kísérleti beállításokat is használtunk a robosztusság tesztelésére (kaotikus modell) 50% üzenetvesztés 110 ciklusnyi késleltetés 16
17 Tanuló adatbázisok A kísérletekben felhasznált adatbázisok statisztikái Néhány ismert algoritmus teljesítménye 17
18 Véletlen séta alapú módszer 18
19 Átlagolt modellek 19
20 Megjegyzések Ha a megvalósított véletlen séta garantáltan uniform, akkor az összes modell bizonyíthatóan az optimális modellhez konvergál Ha a késleltetés és üzenetvesztés statisztikailag független a csomópontoktól, akkor függetlenül a késleltetésektől és az üzenetvesztés mértékétől a véletlen séta továbbra is uniform marad A gyakorlatban természetesen nem kritikus az uniformitás, de ez függ az adatbázis komplexitásától, a hálózat méretétől, és a bias természetétől is 20
Kollektív tanulás milliós hálózatokban. Jelasity Márk
Kollektív tanulás milliós hálózatokban Jelasity Márk 2 3 Motiváció Okostelefon platform robbanásszerű terjedése és Szenzorok és gazdag kontextus jelenléte, ami Kollaboratív adatbányászati alkalmazások
Teljesen elosztott adatbányászat alprojekt
Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és
Peer-to-peer (P2P) gépi tanulás. Hegedűs István
Peer-to-peer (P2P) gépi tanulás Hegedűs István Motiváció Adatokban rejlő információk kinyerésének fontossága adatbányászat, gépi-tanulás, modell építés Különböző módszerekkel összegyűjtött adatok feldolgozása
SZTE Eötvös Loránd Kollégium. 2. Móra György: Információkinyerés természetes nyelvű szövegekből
2010/2011 tavaszi félév SZTE Eötvös Loránd Kollégium 1. Dombi József: Fuzzy elmélet és alkalmazásai 2011. március 3. 19:00 2. Móra György: Információkinyerés természetes nyelvű szövegekből 2011. március
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Teljesen elosztott adatfeldogozás és adatbányászat
Teljesen elosztott adatfeldogozás és adatbányászat Vinkó Tamás SZTE Jelen kutatást a futurict.hu nevű, TÁMOP-4.2.2.C-11/1/KONV-2012-0013 azonosítószámú projekt támogatta az Európai Unió és az Európai Szociális
BitTorrent felhasználók értékeléseinek következtetése a viselkedésük alapján. Hegedűs István
BitTorrent felhasználók értékeléseinek következtetése a viselkedésük alapján Hegedűs István Ajánló rendszerek Napjainkban egyre népszerűbb az ajánló rendszerek alkalmazása A cégeket is hasznos információval
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására
VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti
Pletykaalapú gépi tanulás teljesen elosztott környezetben
Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban
Gépi tanulás a gyakorlatban SVM
Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
Support vektor alapú tanulás alkalmazásai
Support vektor alapú tanulás alkalmazásai Ormándi Róbert A témavezetők Prof. János Csirik és Dr. Márk Jelasity Magyar Tudományos Akadémia és a Szegedi Tudományegyetem Mesterséges Intelligencia Kutatócsoportja
Support vektor alapú tanulás alkalmazásai
Support vektor alapú tanulás alkalmazásai Ormándi Róbert A témavezetők Prof. János Csirik és Dr. Márk Jelasity Magyar Tudományos Akadémia és a Szegedi Tudományegyetem Mesterséges Intelligencia Kutatócsoportja
JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN
JAVASLAT A TOP-K ELEMCSERÉK KERESÉSÉRE NAGY ONLINE KÖZÖSSÉGEKBEN Supporting Top-k item exchange recommendations in large online communities Barabás Gábor Nagy Dávid Nemes Tamás Probléma Cserekereskedelem
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Az INTRO projekt. Troposzféra modellek integritásvizsgálata. Rédey szeminárium Ambrus Bence
Az INTRO projekt Troposzféra modellek integritásvizsgálata Rédey szeminárium Ambrus Bence A projekt leírása Célkitűzés: troposzféra modellek maradék hibáinak modellezése, a modellek integritásának vizsgálata
Megkülönböztetett kiszolgáló routerek az
Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)
Hidraulikus hálózatok robusztusságának növelése
Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
Bokor Péter. DECOS Nemzeti Nap október 15. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Beépített diagnosztika Bokor Péter Tartalom 1. Elosztott diagnosztika: a feladat 2. A diagnosztika kihívása 3. A tagság mint diagnosztika 4. A DECOS diagnosztikai szolgáltatások 5. Kapcsolódó feladatok:
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Budapesti Műszaki és Gazdaságtudományi Egyetem december 2.
Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2008. december 2. Útvonalválasztás Cél egy hálózatban két csomópont között a legrövidebb útvonal kiválasztása.
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Gépi tanulás a Rapidminer programmal. Stubendek Attila
Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció
Tudásalapú információ integráció
Tudásalapú információ integráció (A Szemantikus Web megközelítés és a másik irány) Tanszéki értekezlet, 2008. május 14. 1 Miért van szükségünk ilyesmire? WWW: (Alkalmazások) Keresés a weben (pl. összehasonlítás
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
API-MÁGIA MILLIÓ SORNYI ADAT ÚJRARENDEZÉSE. Előadó: Jaksa Zsombor, drungli.com
API-MÁGIA MILLIÓ SORNYI ADAT ÚJRARENDEZÉSE Előadó: Jaksa Zsombor, drungli.com MIRŐL FOG SZÓLNI AZ ELŐADÁS? Hogyan működik a drungli.com?# Adatok gyűjtése, stratégiák# Ha marad időm még mesélek HOGYAN MŰKÖDIK
Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként
Pletykaalapú gépi tanulás teljesen elosztott környezetben
Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Témavezető Dr. Jelasity Márk MTA-SZTE Mesterséges Intelligencia Kutatócsoport Informatika Doktori Iskola Szegedi Tudományegyetem
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Hálózati réteg. WSN topológia. Útvonalválasztás.
Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)
Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Adatbázis rendszerek I
Normalizálás 1NF 2NF BCNF Adatbázis rendszerek I 20111201 1NF 2NF BCNF Ha BCNF 2NF A B B A 2NF BCNF 2NF részkulcsból indul ki FD létezik FD, amely nem jelölt kulcsból indul ki Jelölt kulcs olyan mezőcsoport
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Operációs rendszerek II. Folyamatok ütemezése
Folyamatok ütemezése Folyamatok modellezése az operációs rendszerekben Folyamatok állapotai alap állapotok futásra kész fut és várakozik felfüggesztett állapotok, jelentőségük Állapotátmeneti diagram Állapotátmenetek
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Parametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
dimenziója Szirmay-Kalos László N= 1/r D D= (logn) / (log 1/r) D= (log4) / (log 3) = 1.26 N = 4, r = 1/3 Vonalzó ( l ) db r =1/3 N = 4 r 2 N 2 N m r m
Fraktálok Hausdorff dimenzió Fraktálok N = N = 4 N = 8 Szirmay-Kalos László r = r = r = N= /r D D= (logn) / (log /r) Koch görbe D= (log4) / (log 3) =.6 N = 4, r = /3 Nem önhasonló objektumok dimenziója
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20
Teljesítmény Mérés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés 2013 1 / 20 Tartalomjegyzék 1 Bevezetés 2 Visual Studio Kód metrikák Performance Explorer Tóth Zsolt
Szoftver-mérés. Szoftver metrikák. Szoftver mérés
Szoftver-mérés Szoftver metrikák Szoftver mérés Szoftver jellemz! megadása numerikus értékkel Technikák, termékek, folyamatok objektív összehasonlítása Mér! szoftverek, programok CASE eszközök Kevés szabványos
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Függvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
A könyv tartalomjegyzéke
A könyv tartalomjegyzéke Elıszó Bevezetés Adatbázis-kezelı rendszerek Adatmodellezés Alapfogalmak Egyedhalmaz, egyed Kapcsolat, kapcsolat-elıfordulás, kapcsolat típusa Tulajdonság, tulajdonságérték, értékhalmaz
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Informatika ismeretek érettségi szóbeli témakörök
Informatika ismeretek érettségi szóbeli témakörök Szent Benedek Általános Iskola, Középiskola, Alapfokú Művészeti Iskola és Kollégium Kiskunfélegyházi PG Tagintézménye 2019. május-júniusi vizsgaidőszak
ELTE TáTK Közgazdaságtudományi Tanszék OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia. Szakmai felelős: Varga Júlia június
OKTATÁSGAZDASÁGTAN OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék,
Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
Elosztott Hash Táblák. Jelasity Márk
Elosztott Hash Táblák Jelasity Márk Motiváció Nagyméretű hálózatos elosztott rendszerek az Interneten egyre fontosabbak Fájlcserélő rendszerek (BitTorrent, stb), Grid, Felhő, Gigantikus adatközpontok,
A magánélet védelme az elosztott adatbányászatban
Információs Technológiák és a Jövő Társadalma (FuturICT.hu) TÁMOP-4.2.2.C-11/1/KONV-2012-0013 A magánélet védelme az elosztott adatbányászatban Jelasity Márk Szegedi Tudományegyetem 2 3 Aggodalom a magánéletért
A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN
44. Meteorológiai Tudományos Napok Budapest, 2018. november 22 23. A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN Kis Anna 1,2, Pongrácz
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Marton József BME-TMIT. Adatbázisok VITMAB november 11.
Marton József BME-TMIT Gajdos Sándor diasorának felhasználásával Adatbázisok VITMAB00 2016. november 11. A lekérdezés-feldolgozás folyamata I. Cél: az adatok adatbázisból való kinyerése Mivel: egyértelmű,
egy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
Adatbányászati technikák (VISZM185) 2015 tavasz
Adatbányászati technikák (VISZM185) 2015 tavasz Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Adatbányászati technikák (VISZM185) 2015 tavasz 1 / 27
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz Szekér Szabolcs 1, Dr. Fogarassyné dr. Vathy Ágnes 2 1 Pannon Egyetem Rendszer- és Számítástudományi Tanszék, szekersz@gmail.com
The Flooding Time Synchronization Protocol
The Flooding Time Synchronization Protocol Célok: FTSP Alacsony sávszélesség overhead Node és kapcsolati hibák kiküszöbölése Periodikus flooding (sync message) Implicit dinamikus topológia frissítés MAC-layer
Bevezetés a neurális számításokba Analóg processzortömbök,
Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban
1. gyakorlat. Mesterséges Intelligencia 2.
1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában
Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának
Az adatbázisok minősége és a kampányok hatékonysága közti összefüggések. Előadó: Bánki Márton PROAKTÍVdirekt Életmód Klub
+ Az adatbázisok minősége és a kampányok hatékonysága közti összefüggések Előadó: Bánki Márton PROAKTÍVdirekt Életmód Klub + ERRŐL FOGOK BESZÉLNI! Miért és hogyan tervezzünk adatbázist? Hogyan profilozzunk,
A hálózattervezés alapvető ismeretei
A hálózattervezés alapvető ismeretei Infokommunikációs hálózatok tervezése és üzemeltetése 2011 2011 Sipos Attila ügyvivő szakértő BME Híradástechnikai Tanszék siposa@hit.bme.hu A terv általános meghatározásai
Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:
Elosztott rendszer architektúrák
Elosztott rendszer architektúrák Distributed systems architectures Irodalom Ian Sommerville: Software Engineering, 7th e. chapter 12. Andrew S. Tanenbaum, aarten van Steen: Distributed Systems: rinciples
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Az adatok értékelése és jelentéskészítés: Az (átfogó) vizsgálati összefoglalás benyújtása
Az adatok értékelése és jelentéskészítés: Az (átfogó) vizsgálati összefoglalás benyújtása Webszeminárium az információs követelményekről 2009. november 30. Valamennyi rendelkezésre álló információ értékelése
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Alacsony fogyasztású IoT rádiós technológiák
Alacsony fogyasztású IoT rádiós technológiák Fehér Gábor - BME Távközlési és Médiainformatikai Tanszék 4. Magyar Jövő Internet Konferencia és Okos Város Kiállítás 2017. november 8. Miről is lesz szó? Miért
Hálózatok II. A hálózati réteg forgalomirányítása
Hálózatok II. A hálózati réteg forgalomirányítása 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111