Mesterséges Intelligencia MI
|
|
- Regina Király
- 1 évvel ezelőtt
- Látták:
Átírás
1 Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437,
2 Legyen pl. az a probléma, hogy...
3 Milyen utat találunk meg? Így?
4 Milyen utat találunk meg? Vagy úgy?
5 Formalizált probléma Kezdeti állapot = Arad Célállapot = Bukarest Operátorok: IF (X és (X > Y)) THEN Y Útköltség = k x táv(x,y) + Célállapot teszt: Y = Célállapot? Nehézségek becslése:??? Adatbázis: (Arad > Nagyzerend) táv(arad,nagyzerend) = 75 (Arad > Temesvár) táv(arad,temesvár) =
6 Keresési stratégiák avagy miből gazdálkodhatunk? mire vagyunk képesek? (saját modell) milyen körülöttünk a környezet? (cél-, távolsági modellek) Nem informált keresések (un. gyenge, vagy vak keresések) tudjuk: hogy néz ki a célállapot esetleg: mibe kerül cselekedni egyáltalán nem: milyen költségű az aktuálisból a célállapotba vezető út Informált keresések = heurisztikus keresések tudjuk: hogy néz ki a célállapot tudjuk: milyen költségű lehet az aktuális állapotból a célállapotba vezető út esetleg: mibe kerül cselekedni... útkereső probléma: Aradból kiindulva 3 cselekvés 3 állapotba vezet: Szebenbe, Temesvárra és Nagyzerendre... nem informált keresés: nincs különbség, merre... informált, okosabb ágens: Szeben a célállapot irányában fekszik... A vak keresési stratégiákat a csomópontok kifejtési sorrendje különbözteti meg. Ez a különbség óriási jelentőséggel bírhat.
7 Mélységi keresés (Ro-Melysegi-K.pdf) rohanás előre, egy ág mentén, de a visszalépés lehetőségével Szélességi keresés (Ro-SzelessegiK.pdf) szisztematikus feltárás széles fronton, a visszalépésre nincs szükség (nincs mihez) Mélységkorlátozott keresés (Ro-MelysegKorlatosK.pdf) az utak maximális mélységére egy vágási korlátot ad. Románia térképe: 20 város. Ha létezik egy megoldás, az maximálisan 19 lépés hosszú lehet. Minden város bármelyik városból legfeljebb 9 lépésben elérhető: az állapottér átmérője = jobb mélységkorlát. A mélységi levágásnál a keresés visszalép. A megoldás, amennyiben létezik és a mélységkorlátnál sekélyebben fekszik, garantáltan megtaláljuk. De semmi garancia nincs arra, hogy a legrövidebb megoldást találjuk meg. Amennyiben túl kis mélységkorlátot választunk, akkor a mélységkorlátozott keresés még csak teljes sem lesz.
8 Iteratívan mélyülő keresés Slate és Atkin (1977): CHESS 4.5 sakkprogram. (Ro-IterativMelyulo-K.pdf) - mélységkorlátozott keresés - egy jó mélységkorlát megválasztása? A legtöbb esetben azonban mindaddig nem tudunk jó mélységkorlátot adni, amíg meg nem oldottuk a problémát. A legjobb mélységkorlát kiválasztása: - kipróbálja az összes lehetséges mélységkorlátot: először 0, majd 1, majd 2, stb. - mélységkorláttal végez mélységkorlátozott keresést.
9 Iteratívan mélyülő keresés gyakorlatilag ötvözi a szélességi és mélységi keresés előnyös tulajdonságait A szélességi kereséshez hasonlóan optimális és teljes, de csak a mélységi keresés szerény memória igényével rendelkezik. De bizonyos állapotokat az algoritmus többször is kifejt! Tékozló? - egy exponenciális keresési fában majdnem az összes csomópont a legmélyebb szinten található d mélység, b elágazási tényező: szélességi keresésnél a kifejtések száma: 1 + b + b b d-2 + b d-1 + b d pl. b =10 és d = 5 esetén ez a szám: = az iteratívan mélyülő keresésnél a kifejtések teljes száma: (d+1)1 + (d)b + (d -1)b b d-2 + 2b d-1 + 1b d b = 10 és d = 5 esetén: = minél nagyobb az elágazási tényező, annál kisebb a többletmunka (max. b = 2, 200%)
10 Kétirányú keresés (Ro-Ketiranyu-K.pdf) - egyszerre előrefelé a kiinduló állapotból, illetve hátrafelé a cél állapotból - a keresés akkor fejeződik be, ha a két keresés valahol találkozik O(2 x b d/2 )=O(b d/2 ) b = 10, d = 6: a szélességi keresés = csomópont, a kétirányú keresés mindkét irányban 3 mélységnél ér célba = 2222 csomópontot generál. Elméletben nagyon jól, az implementálás nem triviális. - cél állapotból hátrafelé keresni? Az n csomópont előd csomópontjai azon csomópontok, amelyek követő csomópontja n. A hátrafelé keresés a cél csomópontból indulva az előd csomópontok egymást követő generálását jelenti.
11 Ha az összes operátor reverzibilis, akkor az előd és követő halmazok azonosak. Néhány probléma esetén azonban az elődök meghatározása nagyon nehéz. Mi van, ha nagyon sok cél állapot létezik? a cél állapotok egy explicit listája a cél állapotok egy leírása A sakkban mik a sakk-matt célállapotot megelőző állapotai? Hatékony módszer arra, hogy: egy frissen generált csomópont megjelenik-e már a másik fél keresési fájában. El kell tudni dönteni, hogy az egyes félrészekben milyen keresésre fog sor kerülni. - O(b d/2 ) komplexitás feltételezi, hogy a két hullámfront metszésének megállapítása konstans idő alatt elvégezhető(?) - Hogy a két keresés találkozzon, legalább az egyik keresés összes csomópontját memóriában kell tartani = tár O(b d/2 ).
12 Egyenletes költségű keresés (Dijkstra) (Ro-EgyenletesKoltsegu-DK.pdf) szélességi keresés módosítása: a hullámfront g(n) útköltség függvénnyel mért legkisebb költségű csomópontját fejti ki először, nem pedig a legkisebb mélységű csomópontot. szélességi keresés is egyenletes költségű keresés, amelyben: g(n) = Mélység(n), vagyis a csomópont mélysége. Az egyenletes költségű keresés a legolcsóbb megoldást találja meg, feltéve ha: az út költség egy út bejárása során nem csökkenhet: g(követő(n)) g(n) minden egyes n csomópontra.
13 A neminformált keresési stratégiák összehasonlítása b - elágazási tényező, d - a megoldás mélysége, m - a keresési fa maximális mélysége, l - a mélység korlát. Krit. SzK EgyKK MK MKK IMK KK Idő igény Tár igény b d b d b m b l b d b d/2 b d b d bm bl bd b d/2 Opt.? Igen Igen Nem Nem Igen Igen Teljes? Igen Igen Nem Igen, ha l d Igen Igen
14 A neminformált keresési stratégiák összehasonlítása b - elágazási tényező, d - a megoldás mélysége, m - a keresési fa maximális mélysége, l - a mélység korlát. Krit. SzK EgyKK MK MKK IMK KK Idő igény Tár igény b d b d b m b l b d b d/2 b d b d bm bl bd b d/2 Opt.? Igen Igen Nem Nem Igen Igen Teljes? Igen Igen Nem Igen, ha l d Igen Igen
Problémamegoldás kereséssel. Mesterséges intelligencia március 7.
Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési
Mesterséges intelligencia 2. laborgyakorlat
Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk
Intelligens Rendszerek Elmélete IRE 4/32/1
Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade optimális pályahossz
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel általános problémák Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
Mesterséges intelligencia 3. laborgyakorlat
Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók / Keretrendszerek
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
, , A
MI Nagy ZH, 2011. nov. 4., 14.15-16, A és B csoport - Megoldások A/1. Milyen ágenskörnyezetrıl azt mondjuk, hogy nem hozzáférhetı? Adjon példát egy konkrét ágensre, problémára és környezetre, amire igaz
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel lokális információval Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 69/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Mesterséges intelligencia 1 előadások
VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5
Intelligens Rendszerek I. Problémamegoldás kereséssel: informált kereső eljárások (Heurisztikus keresés)
Intelligens Rendszerek I. Problémamegoldás kereséssel: informált kereső eljárások (Heurisztikus keresés) 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.
Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
ULTIMATE TIC TAC TOE. Serfőző Péter
ULTIMATE TIC TAC TOE Serfőző Péter 2016.05.02. ULTIMATE TIC TAC TOE Amőba alapján Két változat, az első könnyű, a második nehéz A játék keletkezéséről nincsenek információk, de a játékelmélet elkezdett
SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE
SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE KÖRUTAZÁSI MODELL AVAGY AZ UTAZÓÜGYNÖK PROBLÉMÁJA Induló
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
Megerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
GONDOLKODÁS ÉS NYELV
GONDOLKODÁS ÉS NYELV GONDOLKODÁS A. Propozicionális B. Képzeleti Propozicionális gondolkodás Propozíció kijelentés, amely egy tényállásra vonatkozik, meghatározott viszonyban összekombinált fogalmakból
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
Mesterséges Intelligencia 1
Mesterséges Intelligencia Egy ember kecskét, farkast és kápostát seretne átvinni egy folyón, de csak egy kis csónakot talál, amelybe rajta kívül csak egy tárgy fér. Hogyan tud a folyón úgy átkelni, hogy.
MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN
infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész
Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati
Kétszemélyes játékok
Mesterséges Intelligencia alapjai, gyakorlat Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / udapest Kétszemélyes teljes információjú játékok két
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai Logikai ágens ágens cselekvésben ügyesebben - szituációkalkulustól tervkészítésig Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu,
Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter
Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í
ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő
Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö
ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö
ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő
ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan
Programozási nyelvek a közoktatásban alapfogalmak I. előadás
Programozási nyelvek a közoktatásban alapfogalmak I. előadás Szempontok Programozási nyelvek osztályozása Felhasználói kör (amatőr, professzionális) Emberközelség (gépi nyelvektől a természetes nyelvekig)
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses keresés korlátozással TÁMOP-4.2.3.-12/1/KONV A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
Szoftver-mérés. Szoftver metrikák. Szoftver mérés
Szoftver-mérés Szoftver metrikák Szoftver mérés Szoftver jellemz! megadása numerikus értékkel Technikák, termékek, folyamatok objektív összehasonlítása Mér! szoftverek, programok CASE eszközök Kevés szabványos
Mit tudunk már? Programozás alapjai C nyelv 4. gyakorlat. Legnagyobb elem keresése. Feltételes operátor (?:) Legnagyobb elem keresése (3)
Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Mit tudunk már? Típus fogalma char, int, float, double változók deklarációja operátorok (aritmetikai, relációs, logikai,
Programozás alapjai C nyelv 4. gyakorlat. Mit tudunk már? Feltételes operátor (?:) Típus fogalma char, int, float, double
Programozás alapjai C nyelv 4. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.10.10.. -1- Mit tudunk már? Típus fogalma char, int, float,
SZAKDOLGOZAT. Nagy Gábor
SZAKDOLGOZAT Nagy Gábor Debrecen 2008 Debreceni Egyetem Informatikai Kar Megoldáskereső Módszerek Témavezető: Dr. Halász Gábor Egyetemi docens Készítette: Nagy Gábor Programtervező Informatikus Debrecen
Nagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
2016, Diszkrét matematika
Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,
Mesterséges Intelligencia (Artificial Intelligence)
Mesterséges Intelligencia (Artificial Intelligence) Bevezetés (ágens típusok, környezet tulajdonságai) Ágens: Környezetébe ágyazott (érzékelések, beavatkozások) autonóm rendszer (minimum válasz). [Bármi
12-13. Informatika E FAKT 2013-12-05 , = ±
2-3. Informatika E FAKT 203-2-05 if (feltétel) then todo todo if ( == ) //elágazás case (érték) todo case (érték2) todo2 todo switch () case : Console.WriteLine("nem, nem 2");. Írjuk meg a fenti folyamatábrán
19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI
19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Eloadó: Dr. Várterész Magdolna
Eloadó: Dr. Várterész Magdolna Tartalomjegyzék: 1. Bevezetés 1.1. A jegyzet megtekintéséhez ajánlott környezet 1.2. Információ a mesterséges intelligencia kurzusról 1.3. Röviden a mesterséges intelligenciáról
5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás
Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:
Ütemezési feladatok. Az ütemezési feladatok vizsgálata az 50-es évek elején kezdődött, majd
1 Ütemezési feladatok Az ütemezési feladatok vizsgálata az 50-es évek elején kezdődött, majd tekintettel a feladat gyakorlati fontosságára sok különböző modell tanulmányozására került sor, és a témakör
Dr. habil. Maróti György
infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu
Mesterséges Intelligencia I. gyakorlat
Mesterséges ntelligencia. gyakorlat Dobó ndrás 2013/2014. félév elhasznált irodalom: z előadás jegyzete (http://www.inf.u-szeged.hu/~jelasity/mi1/2013/jegyzet.pdf) Peter Norvig, Stuart J. Russel: Mesterséges
Mesterséges Intelligencia (MI)
Mesterséges Intelligencia (MI) Intelligens ágensek Dobrowiecki Tadeusz Antal Péter, Bolgár Bence, Engedy István, Eredics Péter, Strausz György és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá
Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.
Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Ágensek Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade intelligens rendszer = egy ágens
Cselekvési tervek generálása. Máté Annamária
Cselekvési tervek generálása Máté Annamária Tartalom Általánosan a cselekvés tervezésről Értelmezés, megközelítés Klasszikus modellek Mint keresés Mint logikai következtetés Alapvető feltevések és fogalmak
Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}
Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses keresés TÁMOP-4.2.3.-12/1/KON A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén alkalmazható
Hálózatszámítási modellek
Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Mesterséges intelligencia
Mesterséges intelligencia PTI BSc levelező 2009-10. ősz Előadás, gyakorlat: Vályi Sándor mailto:valyis@nyf.hu Az email tárgy(subject): mezője a mestint szóval kezdődjék Az órák időpontja 1. előadás: szept.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Tudásbázis építése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A tudásbázis építése
Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék
9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok
Hálózatok tervezése VITMM215 Maliosz Markosz 2012 12.10..10.27 27. Adott: VPN topológia tervezés fizikai hálózat topológiája Költségmodell: fix szakaszköltség VPN végpontok 2 VPN topológia tervezés VPN
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,