Mesterséges Intelligencia MI
|
|
- Zsigmond Mészáros
- 6 évvel ezelőtt
- Látták:
Átírás
1 Mesterséges Intelligencia MI Kényszerkielégítési problémák (Constraint Satisfaction Problem, CSP) Pataki Béla BME I.E. 414,
2 Kényszerkielégítési (korlátkielégítési) problémák Constraint Satisfaction Problems (CSP): állapot: Az állapot a leíró változók és a hozzájuk rendelt értékek által definiált. Az x k változók egy-egy D k értéktartományból (halmazból) veszik fel értékeiket. célállapotteszt: 1. Az összes állapotot leíró változóhoz rendeltünk számára megengedett értéket 2. Az adott korlátok teljes halmazát kielégítettük
3 Órarend készítés: Szerda 14-16, Pataki Béla,MI-BSc5szem, Q-I 1. egyszerre egy teremben csak egy évfolyam 2. egyszerre egy teremben csak egy oktató, 3. senki se lehet egyszerre két helyen 4. egy évfolyam egyszerre csak egy helyen lehet (?) stb. Térképszínezés
4 Menüösszeállítás az étlap alapján
5 Hozzárendelési problémák, pl. ki, mit, hol tanítson Menetrendi problémák, pl. az egyetemi órarend/ teremfoglalás Szállításütemezés Gyári ütemezés Például Raktár-tervezési probléma Egy szupermarket-lánc raktárakat szeretne telepíteni a bolti hálózat kiszolgálására. Mit tudunk? L 1,..., L n lokáció, ahol raktár megépíthető. Csak k db. raktárra van szükség (k < n). Minden lokációra jellemző CP i kapacitás: hány boltot képes kiszolgálni Minden bolthoz rendelni kell egy raktárt. S j bolt ellátása L i lokációból P i,j -be kerül. Az összköltséget TC konstans alatt kell tartani.
6 CSP problémák típusai Változók alapján: Diszkrét változók véges értéktartományok: pl. Boole-típ. CSPs, Boole-féle kielégítési vizsgálatok (NP-t) végtelen értéktartományok: egész számok, füzérek, stb. pl. job scheduling, változók a munkaszakaszok kezdete/vége Folytonos változók megfigyeléseket határoló időpontok, fizikai állapotváltozók Kényszerek, korlátok alapján: Unáris korlát: egyetlen egy változóra vonatkozik, pl. SA green Bináris korlát: két változó viszonyára vonatkozik, pl. SA WA Magasabb-rendű korlát: 3 vagy több változó viszonyára vonatkozik, (pl. oszloponkénti változó korlátok kriptoaritmetikai feladványokban)
7 Példa: Térképszínezés Változók: WA, NT, Q, NSW, V, SA, T Értéktartományok D i = {red, green, blue} Korlátok: szomszédos területek színe legyen eltérő pl. WA NT, ill. más megfogalmazásban: (WA,NT) értékét csakis a {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)} halmazból vehet fel. Lehetséges-e?
8 pl. Térképszínezés Megoldás: teljes és konzisztens változó-érték hozzárendelés pl. WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green (T lehet akármi, mert nem határos senkivel - különben is több megoldás van)
9 Korlátok gráfja korlátgráf: csomópontjai a változók és élei a korlátok Itt csak bináris CSP-k: egy-egy korlát 2 változót köt össze...
10 Másik példa: kriptoaritmetika Változók: F T U W R O X 1 X 2 X 3 Értéktartományok: {0,1,2,3,4,5,6,7,8,9}, {0,1} Korlátok: 1. Mind-eltérő(F, T, U, W, R, O) 2. O + O = R + 10 X 1 3. X 1 + W + W = U + 10 X 2 4. X 2 + T + T = O + 10 X 3 5. X 3 = F, T 0, F 0
11 A probléma megfogalmazása Kezdeti állapot: összes változó-hozzárendelés üres { } Operátor: értéket hozzárendelni egy még nem lekötött változóhoz úgy, hogy az eddigi hozzárendelésekkel ne ütközzön (egyik kényszer se sérüljön) kudarc, ha nincs megengedett hozzárendelés Célállapotteszt: ha az aktuális hozzárendelés teljes és mindegyik kényszer teljesül ***************** Keresési fa n db változó esetén minden megoldás n mélységben fekszik mi van, ha a szélességi keresést használjuk? Elágazások száma L mélységben (L=0,1,2, ), ha minden változó d számú értéket vehet fel (ez a változó értékkészlete v. más néven doménje) b = (n L) d, (mert L változó már értéket kapott) azaz n! d n levélcsomópont (miközben d n lehetséges hozzárendelés van) (pl. 8 betűs számjegyaritmetika, n=8, d=10, levelek száma )
12 Keresés Változó-hozzárendelés kommutatív, azaz például (WA = red) majd (NT = green) ugyanaz, mint (NT = green) majd (WA = red) Egy-egy csomópontban csakis egyetlen egy változó hozzárendelése történhet meg, így: b = d és a fának d n levele van ******************** Alapvető nem informált algoritmus (keresés) CSP problémák megoldására: visszalépéses keresés, azaz mélységi keresés minden szinten egyetlen egy változóhozzárendeléssel - ha sérül valamelyik kényszer, visszalép (egyszer sérült kényszer mélyebben nem jöhet helyre)
13 Megfogalmazás (modell) hatása a problémamegoldásra Az n-királynő probléma tanulsága: hasonlítsunk össze három modellt 1. modell, a változók: x ij (a sakktáblamezők pozíciója) értékkészlet: {0, 1} (van rajta királynő vagy nincs) kényszerek (sorok, oszlopok, átlók) 2. modell, a változók: x 1,, x n (egy királynő által elfoglalt mező poziciója) értékkészlet: {0, 1, 2,, n 2-1} (mezőindex) kényszerek (sorok, oszlopok, átlók) 3. modell, a változók: x 1,, x n ( az 1., 2. stb. sorban álló királynő sorindexe) értékkészlet: {1, 2,, n} (oszlop-index) kényszerek (sorok, oszlopok, átlók) n x n-es sakktáblán az n-királynő probléma néhány n-re modell változó értékkészl.(d) levelek sz.(d n ) n = 4 n = 8 n = n 2 2 (2) (n^2) n n 2 (n 2 ) n n n n n
14 Visszalépéses keresés
15 Visszalépéses keresés
16 Visszalépéses keresés
17 Visszalépéses keresés
18 Előretekintő ellenőrzés (keresés) Az előretekintő ellenőrzés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, lekötetlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
19 Előretekintő ellenőrzés (keresés) Az előretekintő keresés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, lekötetlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
20 Előretekintő ellenőrzés (keresés) Az előrenéző ellenőrzés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, hozzárendeletlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
21 Előretekintő ellenőrzés (keresés) Az előrenéző ellenőrzés minden egyes alkalommal, amikor egy X változó értéket kap, minden, az X-hez kényszerrel kötött, hozzárendeletlen Y-t megvizsgál, és Y tartományából törli az X számára választott értékkel inkonzisztens értékeket.
22 Korlátozás előreterjesztése Kvíz következik! Az előretekintő ellenőrzés ugyan sok inkonzisztenciát észrevesz, de nem mindent. Ráadásul nem látja jól előre a kudarcokat. NT és SA egyszerre nem lehet kék.
23 Visszalépéses keresés hatékonyságának növelése (általános heurisztikák CSP-khez) Általános módszerekkel is komoly gyorsítást el lehet érni: Melyik változóval foglalkozzunk a legközelebb? Milyen sorrendben vizsgáljuk az értékeit? Érzékelhetjük-e jó előre a kudarcokat? (korai nyesés) ezek az ún. tárgyterület-független heurisztikák
24 Kvíz: Melyik változóval foglalkozzunk először, és milyen értéket rendeljünk hozzá? Kényszerek: x 1 > x 5 x 2 >1+ x 5 x 3 >2 x 5 x 4 >x 5-1 x 3 =2+x 4 x 1 x 2 x 5 A. x1 5 B. x2 1 C. x3 2 D. x5 0 x 4 x 3 Mindegyik változó értékkészlete az egyjegyű nem negatív egészek halmaza: {0,1,2,,9}
25 1. A legkevesebb fennmaradó érték ötlete (melyik változót válasszuk?) A leginkább korlátozott változó: a legkisebb számú megengedett értékkel rendelkező változóval kezdjünk, ill. folytassunk (lokálisan kicsi az elágazási tényező!) = legkevesebb fennmaradó érték heurisztika (min remaining variables, MRV) (NT ill. SA csak 2 megengedett érték (piros már nem lehet), minden más 3)
26 2. Fokszám heurisztika ötlete (melyik változót válasszuk?) Az MRV-heurisztika semmit sem segít abban, hogy melyik régiót válasszuk ki elsőként Ausztrália kiszínezésekor, mert a kiinduláskor mindegyik régiónak három megengedett színe van. A későbbi választások elágazási tényezőjét csökkentheti, ha azt a változót választjuk ki, amely a legtöbbször szerepel a még hozzárendeletlen változókra vonatkozó kényszerekben.
27 3. A legkevésbé korlátozó érték ötlete Előnyben részesítjük azt az értéket, amely a legkevesebb választást zárja ki a kényszergráfban a szomszédos változóknál.
28 Élkonzisztencia X Y él konzisztens akkor és csak akkor, ha X minden x j értékére létezik Y-nak valamilyen megengedett y k értéke Ha X értéket veszít, a szomszédjait (akikkel valamilyen kényszerkapcsolatban van) újra kell ellenőrizni Az élkonzisztencia-ellenőrzés alkalmazható előfeldolgozó lépésként a keresés megkezdése előtt, vagy a keresési folyamat minden egyes hozzárendelését követő terjesztési lépésként
29 CSP lokális kereséssel (Hegymászó, szimulált lehűtés,, lásd később) Kiindulás: teljes állapotleírás = minden változónak van értéke (esetleg rossz, nem teljesült kényszerekkel ) Operátorok: megváltoztatják a változók hozzárendelését, hogy csökkenjen a sérült kényszerek száma Változó szelekció: véletlen módon, bármely konfliktusban lévő (valamelyik kényszer sérül) változót választhatjuk ******************************* Min. konfliktus heurisztika: azt az értéket állítjuk be, amely a legkevesebb számú korlátot sérti, pl. hegymászó: h(n) = sérült korlátok száma, h(n) csökkentése a cél (itt most lefele mászunk a völgybe) h(n) = a támadások száma
30 CSP lokális kereséssel / Min. konfliktus heurisztika Min. konfliktus heurisztika nagyon hatékony, nagy valószínűséggel gyorsan old meg nagyon nagy problémaeseteket (10 millió királynő!).
31 CSP struktúrája miben segíthet? CSP gráfja: független komponensek (komplexitás-számítás) CSP fa gráf: megoldás könnyű, változószámban lineáris válasszunk egy levelet gyökérnek (lokális keresés kiinduló áll.) élkonzisztencia-nyesés gyerekektől a szülőik felé
32 CSP struktúrája miben segíthet? CSP hurkos gráf: megoldás általánosságban NP nehéz Gráf CSP konvertálása fába: vágóhalmaz fa-dekompozíció Megoldáskeresés V 6 minden értékére
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Korlát/kényszerkielégítési problémák Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valós
Mesterséges intelligencia 4. laborgyakorlat
Mesterséges intelligencia 4. laborgyakorlat Kényszerkielégítési feladatok (Constraint Satisfaction Problems CSPs) Egy kényszerkielégítési problémát az X 1, X 2,..., X n változók egy sorozatával, és a rajtuk
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Problémamegoldás kereséssel. Mesterséges intelligencia március 7.
Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Diszkrét, egészértékű és 0/1 LP feladatok
Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses keresés korlátozással TÁMOP-4.2.3.-12/1/KONV A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Intelligens Rendszerek Elmélete IRE 4/32/1
Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség
Visszalépéses keresés korlátozással
Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses keresés korlátozással Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Koordinálás és feladatkiosztás aukciókkal 3.rész. Kooperáció és intelligencia, Dobrowiecki, BME-MIT
Koordinálás és feladatkiosztás aukciókkal 3.rész Komplex feladatok kezelése Elemi feladat nem dekomponálható Dekomponálható egyszerű feladat elemi, v. dekomponálható elemi feladatokra, de egyetlen egy
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - ha segítenek útjelzések Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel vakon http://mialmanach.mit.bme.hu/aima/ch03s03 3. fejezet 3.4 alfejezet Pataki Béla, (Hullám Gábor) BME I.E. 414, 463-26-79 pataki@mit.bme.hu,
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Boronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom. A projektütemezés alapjai..
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
Visszalépéses keresés
Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Korlátozás és szétválasztás módszere Holló Csaba 2
Korlátozás és szétválasztás módszere Holló Csaba 2 A módszert Imreh Balázs, Imreh Csanád: Kombinatorikus optimalizálás Novadat, Győr, 25 egyetemi tankönyve alapján, kisebb változtatásokkal fogjuk bemutatni.
Képrekonstrukció 6. előadás
Képrekonstrukció 6. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Diszkrét tomográfia (DT) A CT-hez több száz vetület szükséges időigényes költséges károsíthatja
Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Kereső algoritmusok a diszkrét optimalizálás problémájához
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Kereső algoritmusok a diszkrét optimalizálás problémájához A diszkrét optimalizálási probléma Soros megoldás
Keresési algoritmusok, optimalizáció
Keresési algoritmusok, optimalizáció Az eddig tanultakból a mostani részben gyakran használt (emiatt szükséges az ismeretük) programozási ismeretek: függvények létrehozása, meghívása (ld. 3. óra anyagában)
Anyagszükséglet-tervezés gyakorlat. Termelésszervezés
Anyagszükséglet-tervezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Egyszerű tételnagyság-képzési szabályok, heurisztikák, kapacitáskorlátos esetek (3 komponens,
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal
Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Képrekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Genetikus algoritmusok
Genetikus algoritmusok Zsolnai Károly - BME CS zsolnai@cs.bme.hu Keresőalgoritmusok osztályai Véletlent használó algoritmusok Keresőalgoritmusok Kimerítő algoritmusok Dinamikus programozás BFS DFS Tabu
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Evolúciós algoritmusok
Evolúciós algoritmusok Evolúció, mint kereső rendszer A problémára adható néhány lehetséges választ, azaz a problématér több egyedét tároljuk egyszerre. Ez a populáció. Kezdetben egy többnyire véletlen
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
Online migrációs ütemezési modellek
Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
Keresések Gregorics Tibor Mesterséges intelligencia
Keresések ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop KR vezérlési szintjei vezérlési stratégia általános modellfüggő heurisztikus
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Adatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Közösségek keresése nagy gráfokban
Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek
Vizsgafeladatok és gyakorló feladatok generálása
Vizsgafeladatok és gyakorló feladatok generálása Aszalós László Debreceni Egyetem, Informatikai Kar 2018. október 4. Aszalós L. (DEIK) Feladatok generálása 2018/10/4 1 / 23 Tartalom 1 Előélet 2 Motiváció
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
A mesterséges intelligencia alapjai
A mesterséges intelligencia alapjai Mihálydeák Tamás Számítógéptudományi Tanszék, Informatikai Kar Debreceni Egyetem e-mail: mihalydeak.tamas@inf.unideb.hu https://arato.inf.unideb.hu/mihalydeak.tamas/
A Szállítási feladat megoldása
A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
A Barabási-Albert-féle gráfmodell
A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.
Mesterséges intelligencia 2. laborgyakorlat
Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű