A Barabási-Albert-féle gráfmodell

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Barabási-Albert-féle gráfmodell"

Átírás

1 A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András

2 Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb. Különböző modellek: Erdős-Rényi modell Watts-Strogatz modell Barabási-féle webgráf

3 Valós gráfok jellemzői Smallworld tulajdonság rövid átlagos úthossz Általában a csúcsok számában logaritmikus Magas klaszterezettség (clustering) Globális: zárt hármasok (tripletek) száma Lokális: csúcs szomszédjai közt futó élek és lehetséges élek aránya Megfelelő fokszámeloszlás

4 Erdős-Rényi modell Két különböző konstrukciót is jelöl: G(n, p) modell: n pont, minden él p valószínűséggel egymástól függetlenül G(n, M) modell: minden n pontú, M élű gráf azonos valószínűséggel

5 Erdős-Rényi modell G(n, p) modell Élek várható száma: G(n, M) modell Élek száma: pontosan M Egy adott e élű gráf valószínűsége: Minden M élű gráf valószínűsége: Élek egymástól függetlenek Élek egymástól nem függetlenek

6 Erdős-Rényi modell Néhány példa összetettebb tulajdonságra: Ha n p<1, akkor majdnem biztosan minden komponens mérete O(logn) alatt marad Ha a gráfban izolált pont Ha biztosan összefüggő lesz, akkor majdnem biztosan lesz, akkor a gráf majdnem

7 Erdős-Rényi modell Határ (threshold): Azt mondjuk, hogy egy p 0 =p 0 (n) függvény határ egy T tulajdonságra, ha p=p(n) esetén P(T) 0, ha p/p 0 0 P(T) 1, ha p/p 0 Például T= a gráf tartalmaz kört p 0 (n)=1/n határ T= a gráf összefüggő p 0 (n)=ln(n)/n határ

8 Erdős-Rényi modell Monoton tulajdonságok: Egy T gráftulajdonság monoton, ha olyan G(V, E 1 ) és G (V, E 2 ) gráfra, amelyre E 1 E 2, fennáll a következő: T teljesül G-re T teljesül G -re Tétel (Bollobás & Thomason): Ha T nemtriviális monoton gráftulajdonság, akkor létezik p 0 (n) határ a G(n, p) gráfokra.

9 Watts-Strogatz modell Kiindulási állapot: körgyűrű (ring lattice) Minden csúcs mindkét irányban a K/2 legközelebbi szomszédjával összekötve Majd: Minden él nagyobb sorszámú végpontját b valószínűséggel cseréljük Azonos valószínűséggel választunk azon végpontok között, melyekkel a gráf egyszerű marad

10 Watts-Strogatz modell Small-world tulajdonság Átlagos úthossz: b = 0 -ra: b 1 esetben: Klaszterezettség (clustering) b = 0 -ra: b 1 esetben:

11 Korlátozott véletlengráf folyamatok Restricted random graph process -ek Rucinski & Wormald: Egyenletes választás azon élek közül, amelyekkel a fokszám d alatt marad Erdős, Suen & Winkler: Egyenletes választás azon élek közül, amelyekkel nem keletkezik háromszög

12 Fokszámeloszlások Erdős-Rényi: Binomiális (Poisson) Watts-Strogatz: δ K / binomiális

13 Fokszámeloszlások Valós példákban: Csomópontok (hub-ok) Nagyon sok levél, kis fokszámú csúcs Néhány példa: Internet (webgráf) Hivatkozási gráf tudományos cikkeknél Szociális hálók (pl. filmszínészek) Nyugat-USA elektromos hálózata

14 Fokszámeloszlások Hatványeloszlás Legyen γ>1 valós szám. Annak a valószínűsége, hogy egy csúcs foka k: Tehát egy megfelelő c konstansra:

15 Fokszámeloszlások Példa kitevők: Internet (webgráf): γ 2.1 Hivatkozási gráf: γ 3 Filmszínészek: γ 2.3 Elektromos hálózat: γ 4

16 Barabási-Albert féle gráfmodell Két alapgondolat Folyamatos növekedés A folyamatnak nincs egy kitüntetett végállapota, újabb és újabb csúcsokat adunk a gráfhoz Preferenciális kapcsolódás (preferential attachment) Az új csúcsot annál nagyobb valószínűséggel kötjük egy régi v csúcshoz, minél nagyobb v fokszáma

17 Barabási-Albert féle gráfmodell Kiindulási állapot: Kezdeti véletlen gráf m 0 csúccsal Folyamatosan újabb csúcsok keletkeznek Az új csúcsot megjelenésekor összekötjük m darab, már jelenlévő csúccsal. Ha az i-edik csúcs fokszáma k i, akkor annak a valószínűsége, hogy összekötjük vele:

18 Barabási-Albert féle gráfmodell Skálafüggetlenség A modell során a fokszámeloszlás nem változik meg az idő múlásával 0,018 0,016 0,014 0,012 0,01 0,008 0, ,004 0,

19 Barabási-Albert féle gráfmodell Skálafüggetlenség A modell során a fokszámeloszlás nem változik meg az idő múlásával 1,2 1 0,8 0,6 0, ,

20 Barabási-Albert féle gráfmodell Tulajdonságai: Átlagos úthossz: Klaszterezettség: Robusztusság (a hubok egyaránt erősségek és gyengeségek)

21 Barabási-Albert féle gráfmodell Az alapösszetevők nélkül Növekedés nélkül: Egy idő után elveszti a skálafüggetlen tulajdonságát, végül teljes gráf lesz Preferenciális kapcsolódás nélkül: Azonos valószínűséggel minden csúcshoz

22 Barabási-Albert féle gráfmodell Egyéb kiegészítések Csúcsok törlése időnként A modellben jelenleg lineáris preferenciát használtunk, és az ezzel kapott eloszlás: Így ha γ 3, akkor a modellen módosítani kell!

23 Valós gráfpéldák 0,4 0,35 0,3 Asztrofizika kollaborációs gráf hálózat Wikipedia szerkesztői hálózat 0,25 0,2 Astrophysics Wiki 0,15 0,1 0,

24 Valós gráfpéldák 0,6 Amazon termékek kapcsolatai Pennsylvania közlekedési térképe 0,5 0,4 0,3 Amazon Pennsylvania 0,2 0,

25 Források Barabási, Albert-László, and Réka Albert. "Emergence of scaling in random networks." science (1999): Janson, Svante, Tomasz Luczak, and Andrzej Rucinski. Random graphs. Vol. 45. John Wiley & Sons, Barabási, Albert-László, Réka Albert, and Hawoong Jeong. "Mean-field theory for scale-free random networks." Physica A: Statistical Mechanics and its Applications (1999): Barabási, Albert-László, Réka Albert, and Hawoong Jeong. "Scale-free characteristics of random networks: the topology of the world-wide web." Physica A: Statistical Mechanics and its Applications (2000): Hein, Dipl-Inform Oliver, Dipl-Wirtsch-Ing Michael Schwind, and Wolfgang König. "Scale-free networks." Wirtschaftsinformatik 48.4 (2006): Wikipedia szócikkek (Erdős Rényi model, Watts and Strogatz model, Barabási Albert model, Scale-free network, Preferential attachment, Clustering coefficient)

26 A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András

Komplex hálózatok: alapfogalmak, modellek, módszerek

Komplex hálózatok: alapfogalmak, modellek, módszerek Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás 2015. április 13. Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus

Részletesebben

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

Szociális hálózatok geográfiai beágyazódása

Szociális hálózatok geográfiai beágyazódása Eötvös Loránd Tudományegyetem Természettudományi Kar Szociális hálózatok geográfiai beágyazódása Szakdolgozat Készítette: Fejes Ágota Matematika BSc, Matematikai elemző szakirány Témavezető: Lukács András

Részletesebben

Lokális tulajdonságok véletlen. Nagy Gábor

Lokális tulajdonságok véletlen. Nagy Gábor Eötvös Loránd Tudományegyetem Természettudományi Kar Lokális tulajdonságok véletlen gráfokban Szakdolgozat Nagy Gábor Matematika BSc Alkalmazott matematikus szakirány Témavezető: Backhausz Ágnes tanársegéd

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 2. el adás A hálózatkutatás néhány fontos fogalma El adó: London András 2015. szeptember 15. Átmér l ij a legrövidebb út a hálózatban i és j pont között =

Részletesebben

PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN

PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN CSIKVÁRI PÉTER Kivonat. Ebben a jegyzetben bebizonyítjuk Bondy és Simonovits következő tételét. Ha egy n csúcsú egyszerű gráf nem tartalmaz C k kört akkor az éleinek száma

Részletesebben

Pál Judit - Vörös András. Budapesti Corvinus Egyetem. Kapcsolatháló- és Oktatáskutató Központ. 2011. március 1.

Pál Judit - Vörös András. Budapesti Corvinus Egyetem. Kapcsolatháló- és Oktatáskutató Központ. 2011. március 1. Pál Judit - Vörös András Budapesti Corvinus Egyetem Kapcsolatháló- és Oktatáskutató Központ 2011. március 1. Definíció: A kapcsolatháló-elemzés az egyének viselkedését tanulmányozza mikro szinten, és az

Részletesebben

Közösségek keresése nagy gráfokban

Közösségek keresése nagy gráfokban Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek

Részletesebben

KERESKEDELMI HÁLÓZATOK ELEMZÉSE HÁLÓZATELMÉLETI MÓDSZEREKKEL

KERESKEDELMI HÁLÓZATOK ELEMZÉSE HÁLÓZATELMÉLETI MÓDSZEREKKEL BUDAPESTI GAZDASÁGI FŐISKOLA KÜLKERESKEDELMI KAR NEMZETKÖZI GAZDÁLKODÁS SZAK Nappali tagozat Külgazdasági vállalkozás szakirány KERESKEDELMI HÁLÓZATOK ELEMZÉSE HÁLÓZATELMÉLETI MÓDSZEREKKEL Készítette:

Részletesebben

A Bitcoin tranzakcióhálózat fejlődésének vizsgálata adatbányász módszerekkel

A Bitcoin tranzakcióhálózat fejlődésének vizsgálata adatbányász módszerekkel A Bitcoin tranzakcióhálózat fejlődésének vizsgálata adatbányász módszerekkel Kondor Dániel ELTE, Komplex Rendszerek Fizikája Tanszék MAFIHE Téli Iskola 2015 február 4 Bitcoin, alapok Teljesen elosztott

Részletesebben

Összetett hálózatok a híradástechnikában

Összetett hálózatok a híradástechnikában Összetett hálózatok a híradástechnikában Horváth Árpád 03. december 4.. Híradástechnikai példák. példa: A telefonhálózat El ször minden telefont összekötöttek. Kés bb

Részletesebben

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J. Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár

Részletesebben

Hálózati Algoritmusok

Hálózati Algoritmusok Hálózati Algoritmsok 2015 Topológia felügyelet és roting ad hoc hálózatokban 1 Topológia felügyelet (Topology Control) Ritka topológiák, alacsony fokszám tár hatékonyság Röid és alacsony energiájú tak

Részletesebben

Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft.

Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft. Hálózati elemzések az üzleti életben Kovács Gyula Sixtep Kft. Hálózat kutatás rövid ismertetése Königsbergi hidak problémája Háttér: A probléma története, hogy a poroszországi Königsberg (most Kalinyingrád,

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Az ügyfélelvándorlás kereskedelmi banki modellezése

Az ügyfélelvándorlás kereskedelmi banki modellezése MELLÉKLET INNOVÁCIÓKUTATÁS Lublóy Ágnes Szenes Márk: Az ügyfélelvándorlás kereskedelmi banki 915 Közgazdasági Szemle, LIV. évf., 2007. október (915 934. o.) LUBLÓY ÁGNES SZENES MÁRK Az ügyfélelvándorlás

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Fertőzés: hálózatok háborúja földön, vízen, levegőben

Fertőzés: hálózatok háborúja földön, vízen, levegőben Fertőzés: hálózatok háborúja földön, vízen, levegőben földön bőr Dr. Maszárovics Zoltán Eger vízben béltraktus, folyadékok levegőben légutak Miért éppen a hálózatok? Internet Városokat összekötő útvonalhálózatok

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Komplex hálózatok moduláris szerkezete

Komplex hálózatok moduláris szerkezete Az OTKA K68669 azonosítójú, Komplex hálózatok moduláris szerkezete című pályázat szakmai beszámolója 1. Bevezetés Az utóbbi évtizedben a hálózati megközelítés több fontos sikert hozott biológiai, technológiai,

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR SZAKDOLGOZAT. Bodor Andrea. Matematika BSc Tanári szakirány. Témavezető: Munkácsy Katalin

EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR SZAKDOLGOZAT. Bodor Andrea. Matematika BSc Tanári szakirány. Témavezető: Munkácsy Katalin EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A nagy gráfok elmélete és tanításának lehetősége középiskolai szakkörben SZAKDOLGOZAT Bodor Andrea Matematika BSc Tanári szakirány Témavezető: Munkácsy

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

A Győri agglomeráció közforgalmú közlekedési rendszerének vizsgálata*

A Győri agglomeráció közforgalmú közlekedési rendszerének vizsgálata* SZABÓ LAJOS DR. HORVÁTH BALÁZS DR. HORVÁTH RICHÁRD GAÁL BERTALAN A Győri agglomeráció közforgalmú közlekedési rendszerének vizsgálata* A cikk rövid elméleti összefoglalót ad a közlekedési hálózatok gráfelméleti

Részletesebben

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban

Részletesebben

Magyar és angol szóasszociációs hálózatok vizsgálata. Orosz Katalin Kovács László Pollner Péter

Magyar és angol szóasszociációs hálózatok vizsgálata. Orosz Katalin Kovács László Pollner Péter Magyar és angol szóasszociációs hálózatok vizsgálata Orosz Katalin Kovács László Pollner Péter 0. Bevezetés Jelenlegi elképzeléseink szerint a beszédértés és beszédprodukció során előhívott szavakat (és

Részletesebben

Scafida: egy energiahatékony adatközpont-struktúra

Scafida: egy energiahatékony adatközpont-struktúra ADATKÖZPONTOK Scafida: egy energiahatékony adatközpont-struktúra GYARMATI LÁSZLÓ, TRINH ANH TUAN Network Economics Group Budapesti Mûszaki és Gazdaságtudományi Egyetem, Távközlési és Médiainformatikai

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

MÛHELY A KAPCSOLATHÁLÓ REGÉNYE. Letenyei László

MÛHELY A KAPCSOLATHÁLÓ REGÉNYE. Letenyei László MÛHELY Letenyei László A KAPCSOLATHÁLÓ REGÉNYE Barabási Albert László: Behálózva. Magyar Könyvklub, 2003. Barabási Albert László: Linked. The New Science of Networks. Cambridge MA: Perseus Publishing,

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Mázsár Noémi. A járványterjedés modellezése véletlen gráfokon

Mázsár Noémi. A járványterjedés modellezése véletlen gráfokon Eötvös Loránd Tudományegyetem Természettudományi Kar Mázsár Noémi A járványterjedés modellezése véletlen gráfokon BSc Szakdolgozat Témavezet : Backhausz Ágnes Valószín ségelméleti és Statisztika Tanszék

Részletesebben

A hálózatelmélet banki alkalmazása

A hálózatelmélet banki alkalmazása VERSENY ÉS SZABÁLYOZÁS Közgazdasági Szemle, LIV. évf., 2007. július augusztus (682 702. o.) BENEDEK GÁBOR LUBLÓY ÁGNES SZENES MÁRK A hálózatelmélet banki alkalmazása A hálózatok elméletének alkalmazási

Részletesebben

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két

Részletesebben

IFFK 2015 Budapest, október Autóipari logisztikai hálózatok sztochasztikus modellezéséhez szükséges paraméterek elemzése

IFFK 2015 Budapest, október Autóipari logisztikai hálózatok sztochasztikus modellezéséhez szükséges paraméterek elemzése Autóipari logisztikai hálózatok sztochasztikus modellezéséhez szükséges paraméterek elemzése Dömötörfi Ákos* Dr. Péter Tamás** *Széchenyi István Egyetem, Multidiszciplináris Műszaki Tudományi Doktori Iskola

Részletesebben

A magyar vasúti infrastruktúra gráfelméleti elemzése

A magyar vasúti infrastruktúra gráfelméleti elemzése A magyar vasúti infrastruktúra gráfelméleti elemzése Ferenci Tamás tamas.ferenci@medstat.hu 2012. június 3. Tartalom 1 Bevezetés, irodalmi áttekintés 2 3 Reprezentációs kérdések Adatszerzés 4 Köszönetnyilvánítás

Részletesebben

Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok

Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Ramsey-gráfok Előadó: Hajnal Péter 1.hét 1. Ramsey-számok Definíció. Legyen Ram(G) = max{ω(g), α(g)} = max{ω(g), ω(g)}, azaz a legnagyobb halmaz

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

LÖVÉSZ ZÁSZLÓALJ KAPCSOLATI RENDSZEREINEK VIZSGÁLATA HÁLÓZATELEMZÉSI MÓDSZEREKKEL 1. RÉSZ

LÖVÉSZ ZÁSZLÓALJ KAPCSOLATI RENDSZEREINEK VIZSGÁLATA HÁLÓZATELEMZÉSI MÓDSZEREKKEL 1. RÉSZ IX. Évfolyam 3. szám - 2014. szeptember Károly Krisztián krisztian.karoly@mil.hu LÖVÉSZ ZÁSZLÓALJ KAPCSOLATI RENDSZEREINEK VIZSGÁLATA HÁLÓZATELEMZÉSI MÓDSZEREKKEL 1. RÉSZ Absztrakt Korunk információs társadalmának

Részletesebben

HÁLÓZATOK AZ ÉLŐVILÁGBAN Veres Dániel Csermely Péter

HÁLÓZATOK AZ ÉLŐVILÁGBAN Veres Dániel Csermely Péter HÁLÓZATOK AZ ÉLŐVILÁGBAN Veres Dániel Csermely Péter A körülöttünk levő világ szépsége bonyolultságában rejlik. A rendszerek szerveződési szinteket alkotva egymásba ágyazódnak, a kialakult összetettség

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük. Alapfogalmak A gráfelmélet a matematika tudományának viszonylag fiatal részterülete. Az első gráfelméleti probléma a XVIII. sz. elején lépett fel ennek megoldása Euler nevéhez fűződik. A Königsberg (mai

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

A J2EE fejlesztési si platform (application. model) 1.4 platform. Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem

A J2EE fejlesztési si platform (application. model) 1.4 platform. Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem A J2EE fejlesztési si platform (application model) 1.4 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2007. 11.13. A J2EE application model A Java szabványok -

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Szociális hálozatok és a vagyoneloszlás a társadalmakban. Néda Zoltán. Babeş-Bolyai Tudományegyetem Elméleti Fizika Tanszék

Szociális hálozatok és a vagyoneloszlás a társadalmakban. Néda Zoltán. Babeş-Bolyai Tudományegyetem Elméleti Fizika Tanszék Szociális hálozatok és a vagyoneloszlás a társadalmakban Néda Zoltán Babeş-Bolyai Tudományegyetem Elméleti Fizika Tanszék Világunkban létező hálozatok közül, talán számunkra a legnyilvánvalóbbak a mindennapi

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Publikációs lista. Kummulatív Impakt faktor:

Publikációs lista. Kummulatív Impakt faktor: Kummulatív Impakt faktor: 29.129 Publikációs lista Referált folyóírat: Weighted multiplex network of air transportation, European Physical Journal B 89, (6) 139 (2016). DOI: 10.1140/epjb/e2016-60887-x,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Grid felhasználás: alkalmazott matematika

Grid felhasználás: alkalmazott matematika Grid felhasználás: alkalmazott matematika Konvex testek egyensúlyi osztályozása a Saleve keretrendszerrel Kápolnai Richárd 1 Domokos Gábor 2 Szabó Tímea 2 1 BME Irányítástechnika és Informatika Tanszék

Részletesebben

Véletlen gráfok szerkesztésekor n csomópontból indulunk ki. p valószínűséggel két csomópontot éllel kötünk össze.

Véletlen gráfok szerkesztésekor n csomópontból indulunk ki. p valószínűséggel két csomópontot éllel kötünk össze. 9. előadás P(k) k Véletlen gráfok szerkesztésekor n csomópontból ndulunk k. p valószínűséggel két csomópontot éllel kötünk össze. A fokszámok Posson eloszlásúak P( k) = e pn ( pn) k! k http://www.ct.nfn.t/cactus/applets/gant%20component.html

Részletesebben

Hálózatelméleti modellek a banki rendszerkockázatra. Mázsár Noémi. Témavezet : Dr. Csóka Péter. Befektetések és Vállalati Pénzügy Tanszék

Hálózatelméleti modellek a banki rendszerkockázatra. Mázsár Noémi. Témavezet : Dr. Csóka Péter. Befektetések és Vállalati Pénzügy Tanszék Eötvös Loránd Tudományegyetem Természettudományi Kar Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Hálózatelméleti modellek a banki rendszerkockázatra MSc Szakdolgozat Mázsár Noémi Biztosítási és

Részletesebben

Ungváry Rudolf: Tezauruszok mint kisvilágok. Kapcsoltság a fogalmak között

Ungváry Rudolf: Tezauruszok mint kisvilágok. Kapcsoltság a fogalmak között Ungváry Rudolf: Tezauruszok mint kisvilágok. Kapcsoltság a fogalmak között A tezaurusz (IKNY-i szótár) fogalmak hálózataként is vizsgálható - nem véletlenszerű, hanem skálafüggetlen hálózatok (Barabási)

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE Ez is ELTE 2013. január 27. Motiváció Tapasztalatok és célok A középiskolából kikerül diákok nagy része nem ismeri a gráfokat Vizsgálataink: A gráfok oktatásának mai helyzete Mi ennek az oka? A gráfok

Részletesebben

Egyesíthető prioritási sor

Egyesíthető prioritási sor Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}

Részletesebben

Mark Buchanan NEXUS, A HÁLÓZATOK ÚTTÖRÔ TUDOMÁNYA. Fordította Kepes János TYPOTEX

Mark Buchanan NEXUS, A HÁLÓZATOK ÚTTÖRÔ TUDOMÁNYA. Fordította Kepes János TYPOTEX Nexus Mark Buchanan NEXUS, AVAGY KICSI A VILÁG A HÁLÓZATOK ÚTTÖRÔ TUDOMÁNYA Fordította Kepes János TYPOTEX Budapest, 2003 Az eredeti mû címe: Nexus. Small Worlds and the Groundbreaking. Science of Networks

Részletesebben

Önszerveződő adatbázisok

Önszerveződő adatbázisok High Speed Networks Laboratory 1/40 Önszerveződő adatbázisok 1. Paradigmaváltás az adatbázisokban Megtervezett adatbázis Evolúció alkotta adatbázis 2. Önszerveződő adatbázis: struktúra, lekérdezés 3. Struktúra:

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

A BSc-képzés szakdolgozati témái

A BSc-képzés szakdolgozati témái A BSc-képzés szakdolgozati témái ELTE TTK, Matematikai Intézet 2010/2011 Valószín ségelméleti és Statisztika Tanszék 1. Szabadon választható téma. Témavezet : A tanszék bármelyik oktatója, vagy (a tanszékvezet

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

10. Előadás P[M E ] = H

10. Előadás P[M E ] = H HALMAZRENDSZEREK 10. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2010. április 20. Halmazrendszerek színezése Egy halmazrendszer csúcshalmazának színezése jó

Részletesebben

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága @ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok

Részletesebben

SZTE Eötvös Loránd Kollégium. 2. Móra György: Információkinyerés természetes nyelvű szövegekből

SZTE Eötvös Loránd Kollégium. 2. Móra György: Információkinyerés természetes nyelvű szövegekből 2010/2011 tavaszi félév SZTE Eötvös Loránd Kollégium 1. Dombi József: Fuzzy elmélet és alkalmazásai 2011. március 3. 19:00 2. Móra György: Információkinyerés természetes nyelvű szövegekből 2011. március

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

Az Internet ökoszisztémája és evolúciója. Rétvári Gábor, Heszberger Zalán

Az Internet ökoszisztémája és evolúciója. Rétvári Gábor, Heszberger Zalán Az Internet ökoszisztémája és evolúciója Rétvári Gábor, Heszberger Zalán Tartalom Ismétlés korábbról Az Internet mint szervezett káosz alapvető jellemzői Nagyméretű, sokcsomópontos hálózat, komplex dinamika,

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Elosztott rendszerek

Elosztott rendszerek Elosztott rendszerek NG_IN005_1 Bevezetés A tárgy célja Az elosztott számítógép-rendszerek általános elméleti hátterének ismertetése algoritmusok implementációs megoldások, technikák tervezési elvek mérési

Részletesebben

HÁLÓZATOK AZ ÉLŐVILÁGBAN Veres Dániel és Csermely Péter

HÁLÓZATOK AZ ÉLŐVILÁGBAN Veres Dániel és Csermely Péter 1 HÁLÓZATOK AZ ÉLŐVILÁGBAN Veres Dániel és Csermely Péter A körülöttünk lévő világ szépsége bonyolultságában rejlik. A rendszerek szerveződési szinteket alkotva egymásba ágyazódnak, a kialakult összetettség

Részletesebben

A szervezeteken belüli tudásterjedés hálózatelméleti modellezése

A szervezeteken belüli tudásterjedés hálózatelméleti modellezése Szilágyi Győző Attila A szervezeteken belüli tudásterjedés hálózatelméleti modellezése A szervezeteken belüli tudásterjedés hálózatelméleti modellezése Szilágyi Győző Attila Óbudai Egyetem, Biztonságtudományi

Részletesebben

Koalíciók alakulása komplex hálózatokban

Koalíciók alakulása komplex hálózatokban XI. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 2008. május 23 24. Koalíciók alakulása komplex hálózatokban Szerzı: Bálint Enikı Babeş Bolyai Tudományegyetem Matematika Informatika kar Informatika

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

A deviza/forint devizaswap-piac topológiája*

A deviza/forint devizaswap-piac topológiája* Hitelintézeti Szemle, 14. évf. 2. szám, 215. június, 128 157. o. A deviza/forint devizaswap-piac topológiája* Banai Ádám Kollarik András Szabó-Solticzky András Tanulmányunkban a magyar GDP többszörösét

Részletesebben

Idő-ütemterv hálók - I. t 5 4

Idő-ütemterv hálók - I. t 5 4 Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben