Komplex hálózatok: alapfogalmak, modellek, módszerek

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Komplex hálózatok: alapfogalmak, modellek, módszerek"

Átírás

1 Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás április 13.

2 Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati háló Közösségek

3 Hálózatok mindenhol! ábra 2: 9/11 terrorista hálózat (kapcsolatok, pénzáramlás). Bármely két pont legfeljebb 2 távolságra van egymástól. Forrás: Paul Sperry, NY Post

4 Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 3: Európai légi közlekedési hálózat dinamikusan. Közösségek

5 Hálózatok mindenhol! ábra 4: Az USA elektromos ellátó rendszere én az észak-keleti áramellátás teljesen leállt.

6 Hálózatok mindenhol! ábra 5: A Trónok harca szerepl inek interakciói (1-2. évad). Az élek vastagsága a találkozások számával arányos.

7 Mit l komplex? Sok egymással kapcsolatban álló és egymásra ható szerepl Adaptivitás: visszajelzés, kooperáció Növekedés, evolúció Nincs linearitás: Az egész több, mint a részek összessége!

8 Gráfok Deníció (Gráf) G := (V, E) gráf, ahol V = (1, 2..., N) a gráf csúcsai és E V V a gráf élei. ábra 6: Gráfok, alapfogalmak. (Forrás: Aaron Clauset, Network Analysis and Modelling course)

9 Gráfreprezentációk ábra 7: Gráfreprezentációk: Szomszédsági mátrix, szomszéd lista, éllista (Forrás: Aaron Clauset, Network Analysis and Modelling course)

10 Fokszámok, utak, komponensek A = [a ij ] R n n G szomszédsági mátrixa: i pont foka: k i = n j=1 a ij Fokszámeloszlás: P(egy véletlenül választott pont foka k) Út: csúcsok sorozata, (i, j, k,..., m, n), ahol az egymást követ csúcsok között van él; legrövidebb út két pont között: az összes lehetséges út közül a legrövidebb. Komponens, er sen összefügg komponens, stb.

11 Mennyire fontosak a hálózat pontjai? struktúrális tulajdonság szempontjából, például magas fokszámú a központban van valamilyen dinamikus folyamat szempontjából fontos (pl. fert zés terjedés, véletlen bolyongás) = Centralitás Minél centrálisabb annál fontosabb, minél kevésbé centrális annál kevésbé fontos

12 Fokszám Nagyobb fokszám fontosabb pont k i = n a j=1 ij; irányított: ki be = n a j=1 ji, ki ki = n a j=1 ij ábra 8: Be- és kifok centralitás.

13 Közelség (closenes), köztiség (betweennes) Closeness: mennyire van a központban a pont átlagosan milyen hosszúak a pontból induló legröviebb utak a hálózat többi pontjába C(i) = n 1 i j l, ij ahol l ij az i és j közti legrövidebb út hossza. = Számolás: Floyd-Warshall algoritmus ábra 9: Mennyi X és Y closeness értéte?

14 ábra 10: Mennyi X és Y betweennes értéte? Közelség (closenes), köztiség (betweennes) Betweenness: Két pont milyen messze van egymástól, ha át kell menni egy kijelölt harmadik ponton BC(k) = σ ij (k), σ ij i k j ahol σ ij a i és j közötti legrövidebb utak száma, σ ij (k) pedig azon legrövidebb i j utak száma, melyek átmennek k-n = Szorgalmi: gondolkozzunk egy O(nm) futási idej BC számító algoritmuson (m a gráf éleinek száma)

15 Sajátérték, PageRank Alapötlet: nem minden szomszéd egyforma súllyal számít a centralitás kiszámításánal Rekurzív formula: x (t+1) i = n j=1 w ij x (t) j Minél fontosabb a szomszéd, annál jobban járul hozzá az adott pont fontosságához Mátrix formában: Ax = λ 1 x, ahol λ 1 az A mátrixhoz tartozó legnagyobb sajátérték

16 Sajátérték, PageRank Mi a helyzet ha a gráf nem összefügg? = Véletlen szörföz, ld. Google keres motor 1 Rekurzió: PR(i) 1 λ n + λ j N + (i) PR(j) k ki (j), ahol λ [0, 1] paraméter (ugró faktor), N + (i) az i pont be-szomszédsága 1 Brin & Page, Computer networks and ISDN systems,1998

17 Gráfmodellek Milyen általános közös tulajdonságai vannak tipikus gráfoknak? Tudjuk-e valamilyen modellel közelíteni a valóságban megjelen hálózatokat? A különböz területeken (társadalom, gazdaság, biológia, technológia) megjelen hálózatok modelljei között mik a legfontosabb különbségek/hasonlóságok?

18 Erd s-rényi modell 2 G(n, p) minden élt p [0, 1] valószín séggel húzunk be, egymástól függetlenül élek száma várhatóan: ( n 2) p átlagos fokszám: k = (n 1)p fokszámeloszlás: ( ) n 1 P(k i = k) = p k (1 p) n 1 k, k azaz binomiális. Fontos és rendkívül sokat vizsgált matematikai modell A valóságban megjelen hálózatok jellemz en nem ilyen típusúak! 2 Erd s & Rényi, 1959

19 Kisvilág gráfok Stanley Milgram ( ) kísérlete: véletlenül kiválasztott emberek küldjenek egy levelet egy közeli ismer snek, hogy az szintén továbbküldje így, azzal a céllal, hogy egy általuk valószín leg ismeretlen bostoni orvoshoz eljusson végül a levél A 64 levél az USA 64 különböz pontjáról átlagosan 5.5 levélváltás után célba ért = Kicsi átmér : A legtávolabbi pontok sincsenek túl messzire egymstól... További fontos jellemz : háromszögek száma nagy

20 Watts-Strogatz modell 3 Kiindul egy 4-reguláris gráfból (minden pont foka 4) Minden élt p valószín séggel átdrótoz ( azaz (i, j) él esetén választunk véletlenül egy k pontot, és p valószín séggel töröljük (i, j)-t és behúzzuk (i, k)-t) = log n az átmér ; Ha (i, j) és (i, k) is él, akkor nagy valószín séggel (j, k) is az (azaz háromszövek száma nagy) 3 Watts & Strogatz, Nature, 1998

21 Barabási-Albert modell 4 Genaratív modell hogyan fejl dhet ki egy hálózat? A preferential attachment modell: 1 kezetben egy összefügg G 0 gráf n 0 ponton 2 t id pontban hozzáadunk G t -hez egy új v pontot P(v -t összekötjük egy meglév i-vel) = k i j k j 4 Barabási & Albert, Science, 1999

22 Barabási-Albert modell Úgynevezett skálafüggetlen hálózatot kapunk: P(k i = k) k α Hatványtörvény szerinti fokszámeloszlás: néhány pont foka nagy, viszont a legtöbb pontnak csak kevés szomszédja van Átlagos úthossz: l ln n/ ln ln n A valóságban számos hálózat ilyen tulajdonságot mutat: szociális hálók, pénzügyi hálózatok, WWW, biológiai hálózatok, közlekedési hálózatok, stb.

23 Közösségek Nagyméret szervez dési mintázatok keresése Bizonyos pontok hasonlóbbak/ közelebb vannak egymáshoz, míg más pontoktól távol helyezkednek el ábra 11: Hálózat három közösséggel.

24 Közösségek - modularitás Az adott gráf mennyire tér el egy ugyanolyan fokszámeloszlású véletlen gráftól? Modulartás = #{közösségen belüli élek} E[#{közösségen belüli élek}) egy azonos fokszámeloszlású véletlen gráfban] Newman-modularitás 5 Q = 1 2M (a ij p ij )δ(c i, C j ), i,j δ a Dirac-delta függvény, p ij pedig annak a valoszín sége, hogy i és j össze van kötve egy véletlen (null-modell) gráfban Szorgalmi: gondolkozzunk közösség keres algorimusban, melynek lényege a modularitás függvény maximalizálása 5 Newman, Physical Review E, 2004

25 Néhány további fontos hálózati szerkezet Mag-periféria Hagymaszerkezet Nestedness (egymásba ágyazottság) Rich club ábra 12: További tipikus hálózat szerkezetek

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 2. el adás A hálózatkutatás néhány fontos fogalma El adó: London András 2015. szeptember 15. Átmér l ij a legrövidebb út a hálózatban i és j pont között =

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus

Részletesebben

A Barabási-Albert-féle gráfmodell

A Barabási-Albert-féle gráfmodell A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.

Részletesebben

Közösségek keresése nagy gráfokban

Közösségek keresése nagy gráfokban Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek

Részletesebben

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006 A Network-Elemzés - és felhasználása általános iskolai osztályok társas szerkezetének és a szerveződésért felelős személyes tulajdonságok feltárására Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Összetett hálózatok a híradástechnikában

Összetett hálózatok a híradástechnikában Összetett hálózatok a híradástechnikában Horváth Árpád 03. december 4.. Híradástechnikai példák. példa: A telefonhálózat El ször minden telefont összekötöttek. Kés bb

Részletesebben

Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft.

Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft. Hálózati elemzések az üzleti életben Kovács Gyula Sixtep Kft. Hálózat kutatás rövid ismertetése Königsbergi hidak problémája Háttér: A probléma története, hogy a poroszországi Königsberg (most Kalinyingrád,

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika

Részletesebben

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE Ez is ELTE 2013. január 27. Motiváció Tapasztalatok és célok A középiskolából kikerül diákok nagy része nem ismeri a gráfokat Vizsgálataink: A gráfok oktatásának mai helyzete Mi ennek az oka? A gráfok

Részletesebben

Forgalmi modellezés BMEKOKUM209

Forgalmi modellezés BMEKOKUM209 BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése

Részletesebben

Magyar és angol szóasszociációs hálózatok vizsgálata. Orosz Katalin Kovács László Pollner Péter

Magyar és angol szóasszociációs hálózatok vizsgálata. Orosz Katalin Kovács László Pollner Péter Magyar és angol szóasszociációs hálózatok vizsgálata Orosz Katalin Kovács László Pollner Péter 0. Bevezetés Jelenlegi elképzeléseink szerint a beszédértés és beszédprodukció során előhívott szavakat (és

Részletesebben

Lineáris különböz ségek

Lineáris különböz ségek Ivanyos Gábor MTA SZTAKI 2010 december 13 A feladat Titok: u = (µ 1,..., µ n ) n dimenziós vektor Z n 3 -b l Z 3 = az egész számok modulo 3 Gombnyomásra kapunk: véletlen v i = (a i1,..., a in ) vektorokat,

Részletesebben

Pál Judit - Vörös András. Budapesti Corvinus Egyetem. Kapcsolatháló- és Oktatáskutató Központ. 2011. március 1.

Pál Judit - Vörös András. Budapesti Corvinus Egyetem. Kapcsolatháló- és Oktatáskutató Központ. 2011. március 1. Pál Judit - Vörös András Budapesti Corvinus Egyetem Kapcsolatháló- és Oktatáskutató Központ 2011. március 1. Definíció: A kapcsolatháló-elemzés az egyének viselkedését tanulmányozza mikro szinten, és az

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Mázsár Noémi. A járványterjedés modellezése véletlen gráfokon

Mázsár Noémi. A járványterjedés modellezése véletlen gráfokon Eötvös Loránd Tudományegyetem Természettudományi Kar Mázsár Noémi A járványterjedés modellezése véletlen gráfokon BSc Szakdolgozat Témavezet : Backhausz Ágnes Valószín ségelméleti és Statisztika Tanszék

Részletesebben

Szociális hálózatok geográfiai beágyazódása

Szociális hálózatok geográfiai beágyazódása Eötvös Loránd Tudományegyetem Természettudományi Kar Szociális hálózatok geográfiai beágyazódása Szakdolgozat Készítette: Fejes Ágota Matematika BSc, Matematikai elemző szakirány Témavezető: Lukács András

Részletesebben

Hálózatelméleti modellek a banki rendszerkockázatra. Mázsár Noémi. Témavezet : Dr. Csóka Péter. Befektetések és Vállalati Pénzügy Tanszék

Hálózatelméleti modellek a banki rendszerkockázatra. Mázsár Noémi. Témavezet : Dr. Csóka Péter. Befektetések és Vállalati Pénzügy Tanszék Eötvös Loránd Tudományegyetem Természettudományi Kar Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Hálózatelméleti modellek a banki rendszerkockázatra MSc Szakdolgozat Mázsár Noémi Biztosítási és

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Önszerveződő adatbázisok

Önszerveződő adatbázisok High Speed Networks Laboratory 1/40 Önszerveződő adatbázisok 1. Paradigmaváltás az adatbázisokban Megtervezett adatbázis Evolúció alkotta adatbázis 2. Önszerveződő adatbázis: struktúra, lekérdezés 3. Struktúra:

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok) Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)./ Egy televízió készülék meghibásodásainak átlagos száma óra alatt. A meghibásodások száma a vizsgált időtartam hosszától függ. Határozzuk

Részletesebben

Hálózati folyamatok közelít differenciálegyenletei

Hálózati folyamatok közelít differenciálegyenletei Eötvös Loránd Tudományegyetem Természettudományi Kar Hálózati folyamatok közelít differenciálegyenletei MSc szakdolgozat Írta: Varga Roxána Alkalmazott matematikus MSc, Alkalmazott analízis szakirány Témavezet

Részletesebben

Puskás Béla: Hálózatelméleti alapok

Puskás Béla: Hálózatelméleti alapok Puskás Béla: Hálózatelméleti alapok "Egyébként kedves játék alakult ki a vitából. Annak bizonyításául, hogy a Földgolyó lakossága sokkal közelebb van egymáshoz, mindenféle tekintetben, mint ahogy valaha

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

A gráffogalom fejlődése

A gráffogalom fejlődése A gráffogalom fejlődése ELTE Informatikai Kar, Doktori Iskola, Budapest Batthyány Lajos Gimnázium, Nagykanizsa erdosne@blg.hu a prezentáció kézirata elérhető: http://people.inf.elte.hu/szlavi/infodidact16/manuscripts/ena.pdf

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

GAZDASÁGINFORMATIKA ALAPJAI...

GAZDASÁGINFORMATIKA ALAPJAI... Tartalom ELŐSZÓ... 7 GAZDASÁGINFORMATIKA ALAPJAI... 9 Bevezetés... 9 INFORMATIKA ALAPJAI... 11 A kezdetek technikai szempontból... 11 A kezdetek elméleti és technológiai szempontból... 14 Az információ...

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J. Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Idegennyelv-tanulás támogatása statisztikai és nyelvi eszközökkel

Idegennyelv-tanulás támogatása statisztikai és nyelvi eszközökkel statisztikai és nyelvi eszközökkel Témalabor 2. beszámoló Témavezet : Vámos Gábor 2009. január 9. Mir l lesz szó? A cél: tesztelni és tanítani 1 A cél: tesztelni és tanítani Eszközök és célok Szókincs

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Átfed modularitás optimalizálása hálózatokban

Átfed modularitás optimalizálása hálózatokban Átfed modularitás optimalizálása hálózatokban Diplomamunka írta: Tóth Bálint MSc zikushallgató Témavezet : Dr. Palla Gergely ELTE TTK, Biológiai Fizika Tanszék Budapest, 2012 Az egész több, mint a részek

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

Ungváry Rudolf: Tezauruszok mint kisvilágok. Kapcsoltság a fogalmak között

Ungváry Rudolf: Tezauruszok mint kisvilágok. Kapcsoltság a fogalmak között Ungváry Rudolf: Tezauruszok mint kisvilágok. Kapcsoltság a fogalmak között A tezaurusz (IKNY-i szótár) fogalmak hálózataként is vizsgálható - nem véletlenszerű, hanem skálafüggetlen hálózatok (Barabási)

Részletesebben

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Horváth Árpád 2014. február 7. A tárgy célja: Az összetett hálózatok fogalomrendszerének használata a tudomány több

Részletesebben

Karsai Judit: A kapitalizmus új királyai. Kockázati tőke Magyarországon és a közép-kelet-európai régióban

Karsai Judit: A kapitalizmus új királyai. Kockázati tőke Magyarországon és a közép-kelet-európai régióban Könyvismertetés Közgazdasági Szemle, LIX. évf., 2012. szeptember (1037 1041. o.) Karsai Judit: A kapitalizmus új királyai. Kockázati tőke Magyarországon és a közép-kelet-európai régióban Közgazdasági Szemle

Részletesebben

13. Egy január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt:

13. Egy január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt: A 13. Egy 2000. január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt: korcsoport (év) férfiak száma (ezer f ) n k száma

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

Helyi tanterv a Földünk és környezetünk műveltségi területhez. (Földrajz a gimnáziumok 9 10. évfolyama számára / heti 2 + 3 óra)

Helyi tanterv a Földünk és környezetünk műveltségi területhez. (Földrajz a gimnáziumok 9 10. évfolyama számára / heti 2 + 3 óra) Helyi tanterv a Földünk és környezetünk műveltségi területhez (Földrajz a gimnáziumok 9 10. évfolyama számára / heti 2 + 3 óra) FÖLDÜNK KÖRNYEZETÜNK * ALAPELVEK, CÉLOK A Földünk környezetünk műveltségi

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

A magyar vasúti infrastruktúra gráfelméleti elemzése

A magyar vasúti infrastruktúra gráfelméleti elemzése A magyar vasúti infrastruktúra gráfelméleti elemzése Ferenci Tamás tamas.ferenci@medstat.hu 2012. június 3. Tartalom 1 Bevezetés, irodalmi áttekintés 2 3 Reprezentációs kérdések Adatszerzés 4 Köszönetnyilvánítás

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

Ipari matematika 2. gyakorlófeladatok

Ipari matematika 2. gyakorlófeladatok Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,

Részletesebben

Multimédiás és webes adatbányászat KISS LÁSZLÓ

Multimédiás és webes adatbányászat KISS LÁSZLÓ Multimédiás és webes adatbányászat KISS LÁSZLÓ Tartalom Webes keresések kezdete PageRank Alapok Számítása a valóságban Topic-Sensitive PageRank Trust Rank Egyéb algoritmusok HITS Google Panda Google Hummingbird

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

A Bitcoin tranzakcióhálózat fejlődésének vizsgálata adatbányász módszerekkel

A Bitcoin tranzakcióhálózat fejlődésének vizsgálata adatbányász módszerekkel A Bitcoin tranzakcióhálózat fejlődésének vizsgálata adatbányász módszerekkel Kondor Dániel ELTE, Komplex Rendszerek Fizikája Tanszék MAFIHE Téli Iskola 2015 február 4 Bitcoin, alapok Teljesen elosztott

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

I: Az értékteremtés lehetőségei a vállalaton belüli megközelítésben és piaci szempontokból

I: Az értékteremtés lehetőségei a vállalaton belüli megközelítésben és piaci szempontokból 16. Tétel Az értékteremtés lehetőségei a vállalaton belüli megközelítésben és piaci szempontokból. Az értékteremtő folyamatok a vállalat működésében, az értéklánc elemei. A teljesítmény és menedzsmentje,

Részletesebben

Utak tervezése, építése és fenntartása

Utak tervezése, építése és fenntartása BSc. - KÖZLEKEDÉSTERVEZÉS I. Utak tervezése, építése és fenntartása Dr. Timár András professor emeritus Pécsi Tudományegyetem - Műszaki és Informatikai Kar Építőmérnök Tanszék Pécs, 2016 9. Előadás HAJLÉKONY

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

1. A k-szerver probléma

1. A k-szerver probléma 1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok

Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok Hálózatok tervezése VITMM215 Maliosz Markosz 2012 12.10..10.27 27. Adott: VPN topológia tervezés fizikai hálózat topológiája Költségmodell: fix szakaszköltség VPN végpontok 2 VPN topológia tervezés VPN

Részletesebben

Kisberzseny környezetvédelmi programja - TARTALOMJEGYZÉK

Kisberzseny környezetvédelmi programja - TARTALOMJEGYZÉK Kisberzseny környezetvédelmi programja - TARTALOMJEGYZÉK Tartalomjegyzék 1. BEVEZETÉS... 5 1.1. A MUNKA HÁTTERE... 6 1.2. IRODALOMJEGYZÉK... 8 2. HELYZETFELTÁRÁS... 9 2.1. TERVI KÖRNYEZET... 10 2.1.1.

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

A szervezeteken belüli tudásterjedés hálózatelméleti modellezése

A szervezeteken belüli tudásterjedés hálózatelméleti modellezése Szilágyi Győző Attila A szervezeteken belüli tudásterjedés hálózatelméleti modellezése A szervezeteken belüli tudásterjedés hálózatelméleti modellezése Szilágyi Győző Attila Óbudai Egyetem, Biztonságtudományi

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Klaszterezés. Kovács Máté március 22. BME. Kovács Máté (BME) Klaszterezés március / 37

Klaszterezés. Kovács Máté március 22. BME. Kovács Máté (BME) Klaszterezés március / 37 Klaszterezés Kovács Máté BME 2012. március 22. Kovács Máté (BME) Klaszterezés 2012. március 22. 1 / 37 Mi a klaszterezés? Intuitív meghatározás Adott dolgokból halmazokat klasztereket alakítunk ki úgy,

Részletesebben

Apácatorna környezetvédelmi programja - TARTALOMJEGYZÉK

Apácatorna környezetvédelmi programja - TARTALOMJEGYZÉK Apácatorna környezetvédelmi programja - TARTALOMJEGYZÉK Tartalomjegyzék 1. BEVEZETÉS... 5 1.1. A MUNKA HÁTTERE... 6 1.2. IRODALOMJEGYZÉK... 8 2. HELYZETFELTÁRÁS... 10 2.1. TERVI KÖRNYEZET... 11 2.1.1.

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben