Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal"

Átírás

1 Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa: a genetikus algoritmus IRE /

2 Az élet információ tárolói IRE / Orvosi Nobel díj 009. (okt. ) Elisabeth Blackburn Carol Greider, Jack W. Szostak (ausztráliai-amerikai) (amerikai) (angol-amerikai) A telomerek és a telomeráz enzim felfedezéséért IRE /

3 Természetes és mesterséges genetikus terminológia Természetes Mesterséges Kromoszóma Karakterfüzér (sztring) (a sejtek örökletes tulajdonságokat hordozó anyaga) Gén Jellemző, karakter (az öröklődő tulajdonságokkat hordozó kromoszóma egy része, (nukleinsav molekula)) Allél A karakter (jellemző) értéke Lókusz Karakter pozíció Genotípus Karakterfüzér szerkezet (az örökletes tulajdonságok összessége) Fenotípus Paraméter készlet (az élőlény alaktani és élettani sajátosságainak összessége. Az örökletes és a környezet együttes hatására létrejött megjelenési alak) IRE / A genetikus algoritmus (GA) alkalmazási vázlata. Az optimalizálandó rendszer leírása (mesterséges kromoszómába) A rendszerre jellemző változók. Kezdeti generáció egymást követő generációk. GA GA GA GA GA sorozatos alkalmazása IRE /

4 A genetikus algoritmus alkalmazásának feltételei. Egyértelmű rendszerleírás egy rendszerváltozókat tartalmazó karakterfüzérbe az un. mesterséges kromoszómába.. Reprezentatív populáció, ami azonos formában különböző jellemzőkkel bíró egyedek (rendszerek) leírását tartalmazza.. Alkalmas mérési módszer, mellyel a vizsgált rendszerek jóságát meg lehet határozni. IRE / A genetikus algoritmusok operátorai Alap operátorok: Szelekció Kereszteződés Mutáció Alacsony szintű operátorok: Dominancia Inverzió Törlődés Halkítás (erősítés) Andrew Z. Fire Craig C. Mello Orvosi Nobel díj Mario Capecchi Oliver Smithies Martin Evans Kikapcsolás knock out Populációra vonatkozó operátorok: Migráció Házassági korlátozás Jóság transzformáló függvények IRE /

5 Kiválasztási mechanizmusok A relatív jósággal (fitness) arányos un. rulettkerék algoritmus Csak a legjobbakat kiválasztó algoritmus elicista S = n F i i= Paraméterek: populáció méret, Reprodukciós arány (állandó, csökkenő, bővülő,..) IRE /9 A genetikus algoritmus alkalmazásának menete. A mesterséges kromoszóma (leíró adatfüzér) szerkezetének kidolgozása (változók és jellemzői). Kezdeti populáció létrehozása. A populációt alkotó egyedek értékelése, az abszolút- majd a relatív jóság meghatározása. A genetikus operátorok alkalmazásával új populáció létrehozása (pl.:szelekció, keresztezés, mutáció, stb ). A.-ik és a.-ik lépés ismétlése, amíg a megállási feltétel nem teljesül. IRE /0

6 A relatív jósággal (fitness) arányos un. rulettkerék algoritmus. Az egyedek jóságának meghatározása: Fi=f(Ii). A populáció összes tagja jóságának meghatározása: n. Az egyedek relatív jóságának kiszámítása: S = F i i= (Teljes Relatív Fitness TRF=):. és 00 közötti szám hozzárendelése a populáció minden tagjához a relatív jóságuknak megfelelően. (n = a jelenlegi populáció mérete). Egy m véletlen szám generálása és 00 között (m: az új populáció mérete). m egyed (génstruktúrájának) másolása az új generációba, IRE / Kereszteződés Paraméterek: kereszteződési pontok száma kereszteződési pontok helye kiinduló sztringek: új sztringek: IRE /

7 Mutáció Paraméterek: mutációs helyek száma mutációs változás tartománya kiinduló sztring: új sztring: M M M M IRE / A genetikus algoritmus előnyei a hagyományos kereső algoritmusokhoz képest A keresési tér több pontját vizsgálja egyszerre (párhuzamosság) Csak jellemzőket tartalmazó sztringgel dolgozik, a változók értelmezésétől függetlenül, ezért általános keresési algoritmus A véletlenszerű változók használata miatt a lokális minimumokra kevésbé érzékeny. Mivel a keresési szabályok nem determinisztikusak, hanem valószínűségi szabályokat alkalmaznak, így az NP teljes jellegű problémákra is megközelítést adhat. IRE /

8 A genetikus algoritmusok korlátai Túlságosan nagy jóságú egyedek eluralhatják a populációt Ha csak minimális különbségek vannak az egyedek között akkor nincs javulás Részleges megoldások: Különböző jóság transzformáló eljárások a keresés előrehaladtával (pl. nagy különbségek kiegyenlítése a keresés elején, kis különbségek felnagyítása a keresés vége felé) f g (x i ) = α g + β g f(x i ) IRE / Példa a GA alkalmazására f(x) = x + x +.x +x +.x e Σ x i x i értelmezési tartománya -0-től +0-ig Kezdeti populáció száma: 0 Megállási feltétel: f(x) >=., vagy 0 generáció Eredmények: x, x, x, x, x elért generációk száma Példa megoldás: x = =0, x = =0, x = =0, x = =-, x = =0, g= 9 IRE / i=

9 Kérdések Milyen tényezők befolyásolják a genetikus algoritmusok sikeres alkalmazását? Milyen problémák megoldásában segíthet a genetikus algoritmusok alkalmazása?. Lehet-e gyors eredményt elérni genetikus algoritmusokkal? IRE /

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Dr. habil. Maróti György

Dr. habil. Maróti György infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu

Részletesebben

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű optimálásának általános és robosztus módszere A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma és redundanciája Tömörítő algoritmusok elemzése http://mobil.nik.bmf.hu/tantárgyak/iea.html Felhasználónév: iea Jelszó: IEA07

Részletesebben

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak.

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Evolúció Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Latin eredetű szó, jelentése: kibontakozás Időben egymást

Részletesebben

Szelekció. Szelekció. A szelekció típusai. Az allélgyakoriságok változása 3/4/2013

Szelekció. Szelekció. A szelekció típusai. Az allélgyakoriságok változása 3/4/2013 Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz

Részletesebben

Genetikus algoritmusok az L- rendszereken alapuló. Werner Ágnes

Genetikus algoritmusok az L- rendszereken alapuló. Werner Ágnes Genetikus algoritmusok az L- rendszereken alapuló növénymodellezésben Werner Ágnes Motiváció: Procedurális modellek a növénymodellezésben: sok tervezési munka a felhasználónak ismerni kell az eljárás részleteit

Részletesebben

Természetes szelekció és adaptáció

Természetes szelekció és adaptáció Természetes szelekció és adaptáció Amiről szó lesz öröklődő és variábilis fenotípus természetes szelekció adaptáció evolúció 2. Természetes szelekció Miért fontos a természetes szelekció (TSZ)? 1. C.R.

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

Simon Károly Babes Bolyai Tudományegyetem ksimon@cs.ubbcluj.com

Simon Károly Babes Bolyai Tudományegyetem ksimon@cs.ubbcluj.com Evolúciósalgoritmusokalkalmazása azadatelemzésben SimonKároly Babes BolyaiTudományegyetem ksimon@cs.ubbcluj.com 1 Evolúciósszámítástechnikaimodellek Evolúciósszámítástechnika:biológiaiinspirációjúkeresésiés

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése

Részletesebben

Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes.

Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes. Múlt órán: Lehetséges tesztfeladatok: Kitől származik a variáció-szelekció paradigma, mely szerint az egyéni, javarészt öröklött különbségek között a társadalmi harc válogat? Fromm-Reichmann Mill Gallton

Részletesebben

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL OLÁH Béla A TERMELÉSÜTEMEZÉS MEGFOGALMAZÁSA Flow shop: adott n számú termék, melyeken m számú

Részletesebben

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus

Részletesebben

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA 1. Nukleinsavak keresztrejtvény (12+1 p) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1. A nukleinsavak a.-ok összekapcsolódásával kialakuló polimerek. 2. Purinvázas szerves bázis, amely az

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9 ... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...

Részletesebben

Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert

Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert Zenegenerálás, majdnem természetes zene Bernád Kinga és Roth Róbert Tartalom 1. Bevezető 2. Eddigi próbálkozások 3. Módszerek 4. Algoritmus bemutatása 5. Összefoglaló (C) Bernád Kinga, Roth Róbert 2 1.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

3. Általános egészségügyi ismeretek az egyes témákhoz kapcsolódóan

3. Általános egészségügyi ismeretek az egyes témákhoz kapcsolódóan 11. évfolyam BIOLÓGIA 1. Az emberi test szabályozása Idegi szabályozás Hormonális szabályozás 2. Az érzékelés Szaglás, tapintás, látás, íz érzéklés, 3. Általános egészségügyi ismeretek az egyes témákhoz

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma, redundanciája Minimális redundanciájú kódok http://mobil.nik.bmf.hu/tantárgyak/iea.html Felhasználónév: iea Jelszó: IEA07

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet

Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Tudománytörténeti visszatekintés

Tudománytörténeti visszatekintés GENETIKA I. AZ ÖRÖKLŐDÉS TÖRVÉNYSZERŰSÉGEI Minek köszönhető a biológiai sokféleség? Hogyan történik a tulajdonságok átörökítése? Tudománytörténeti visszatekintés 1. Keveredés alapú öröklődés: (1761-1766,

Részletesebben

Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat

Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat 10.2.2010 genmisk1 1 Áttekintés Mendel és a mendeli törvények Mendel előtt és körül A genetika törvényeinek újbóli felfedezése és a kromoszómák Watson és Crick a molekuláris biológoa központi dogmája 10.2.2010

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot.

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot. Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai Dr. Kutor László Az üzenet információ-tartalma és redundanciája Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html

Részletesebben

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése Heurisztikák algoritmusok ütemezési problémákra 1. Állapottér és a megoldások kezelése Számos nehéz ütemezési probléma esetén az exponenciális idejű optimális megoldást adó algoritmusok rendkívül nagy

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

A genetikai lelet értelmezése monogénes betegségekben

A genetikai lelet értelmezése monogénes betegségekben A genetikai lelet értelmezése monogénes betegségekben Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika A ~20 ezer fehérje-kódoló gén a 23 pár kromoszómán A kromoszómán található bázisok száma: 250M

Részletesebben

A Hardy Weinberg-modell gyakorlati alkalmazása

A Hardy Weinberg-modell gyakorlati alkalmazása 1 of 6 5/16/2009 2:59 PM A Hardy Weinberg-modell gyakorlati alkalmazása A genotípus-gyakoriság megoszlásának vizsgálata 1. ábra. A Hardy Weinberg-egyensúlyi genotípus-gyakoriságok az allélgyakoriság Számos

Részletesebben

HÁROM KÖR A HÁROMSZÖGBEN

HÁROM KÖR A HÁROMSZÖGBEN Debreceni Egyetem Informatikai Kar HÁROM KÖR A HÁROMSZÖGBEN Konzulens: dr. Aszalós László egyetemi adjunktus Készítette: Király Péter programtervező matematikus szakos hallgató DEBRECEN, 008 Tartalomjegyzék

Részletesebben

Transzgénikus technológiák az orvostudományban A kövér egerektől a reumás betegségek gyógyításáig

Transzgénikus technológiák az orvostudományban A kövér egerektől a reumás betegségek gyógyításáig Transzgénikus technológiák az orvostudományban A kövér egerektől a reumás betegségek gyógyításáig ELTE TTK Biológiai Intézet Budapest, 2015. okt. 7. Dr. Mócsai Attila Semmelweis Egyetem ÁOK Élettani Intézet

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Domináns-recesszív öröklődésmenet

Domináns-recesszív öröklődésmenet Domináns-recesszív öröklődésmenet Domináns recesszív öröklődés esetén tehát a homozigóta domináns és a heterozigóta egyedek fenotípusa megegyezik, így a három lehetséges genotípushoz (példánkban AA, Aa,

Részletesebben

12. évfolyam esti, levelező

12. évfolyam esti, levelező 12. évfolyam esti, levelező I. ÖKOLÓGIA EGYED FELETTI SZERVEZŐDÉSI SZINTEK 1. A populációk jellemzése, növekedése 2. A populációk környezete, tűrőképesség 3. Az élettelen környezeti tényezők: fény hőmérséklet,

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Mesterséges Intelligencia I. (I602, IB602)

Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Kétszemélyes játékok

Kétszemélyes játékok Mesterséges Intelligencia alapjai, gyakorlat Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / udapest Kétszemélyes teljes információjú játékok két

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

A genetikai sodródás

A genetikai sodródás A genetikai sodródás irányított, nem véletlenszerű Mindig a jobb nyer! természetes szelekció POPULÁCIÓ evolúció POPULÁCIÓ A kulcsszó: változékonyság a populáción belül POPULÁCIÓ nem irányított, véletlenszerű

Részletesebben

Genetikus algoritmusok megvalósítása MATLAB segítségével

Genetikus algoritmusok megvalósítása MATLAB segítségével Genetikus algoritmusok megvalósítása MATLAB segítségével Werner Ágnes A Matlab genetikus algoritmusokat használó eszköztára Kétféle módon használhatjuk fel az eszköztár lehetőségeit: 1. Parancssorból 2.

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

Mesterséges Intelligencia alapjai

Mesterséges Intelligencia alapjai Mesterséges Intelligencia alapjai Evolúciós algoritmusok - neurális hálózatok Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / Budapest

Részletesebben

Paleobiológiai módszerek és modellek 11. hét

Paleobiológiai módszerek és modellek 11. hét Paleobiológiai módszerek és modellek 11. hét A diverzitás fajtái és mérőszámai Nagy őslénytani adatbázisok: Sepkoski The Fossil Record Paleobiology Database A diverzitás fogalma Diverzitás sokféleség az

Részletesebben

A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése

A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése Madas Balázs Gergely XXXIX. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, Hunguest Hotel Béke 2014.

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Genetika 3 ea. Bevezetés

Genetika 3 ea. Bevezetés Genetika 3 ea. Mendel törvényeinek a kiegészítése: Egygénes öröklődés Többtényezős öröklődés Bevezetés Mendel által vizsgált tulajdonságok: diszkrétek, két különböző fenotípus Humán tulajdonságok nagy

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály

Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály Definíció A prenatális diagnosztika a klinikai genetika azon

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás

5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA

FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (2011) 1. szám, pp. 95-102. FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA Oláh Béla

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Evolúcióelmélet és az evolúció mechanizmusai

Evolúcióelmélet és az evolúció mechanizmusai Evolúcióelmélet és az evolúció mechanizmusai Az élet Darwini szemlélete Melyek az evolúció bizonyítékai a világban? EVOLÚCIÓ: VÁLTOZATOSSÁG Mutáció Horizontális géntranszfer Genetikai rekombináció Rekombináció

Részletesebben

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

A korszerű infokommunikációs technológia (IKT) alkalmazásával csak kis mértékben javíthatjuk az emberi agy információ tároló és feldolgozó képességét.

A korszerű infokommunikációs technológia (IKT) alkalmazásával csak kis mértékben javíthatjuk az emberi agy információ tároló és feldolgozó képességét. 1. Az informatika alapgondolata A korszerű infokommunikációs technológia (IKT) alkalmazásával csak kis mértékben javíthatjuk az emberi agy információ tároló és feldolgozó képességét. 2. Az egészségügyi

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

POPULÁCIÓGENETIKA GYAKORLAT

POPULÁCIÓGENETIKA GYAKORLAT POPULÁCIÓGENETIKA GYAKORLAT Az S vércsoport esetében három genotípus figyelhető meg: - SS homozigóták (az antigént normál mennyiségben tartalmazzák) - Ss heterozigóták (plazmájuk fele mennyiségű antigént

Részletesebben

2 Access 2016 zsebkönyv

2 Access 2016 zsebkönyv 2 Access 2016 zsebkönyv BBS-INFO Kiadó, 2016. 4 Access 2016 zsebkönyv Bártfai Barnabás, 2016. Minden jog fenntartva! A könyv vagy annak oldalainak másolása, sokszorosítása csak a szerző írásbeli hozzájárulásával

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

2. Hozzárendelt azonosítók alapján

2. Hozzárendelt azonosítók alapján Elektronikus kereskedelem Dr. Kutor László Automatikus azonosító rendszerek http://uni-obuda.hu/users/kutor/ Miért fontos az azonosítás? Az azonosítás az információ-feldolgozó rendszerek működésének alapfeltétele.

Részletesebben

Elektronikus kereskedelem. Automatikus azonosító rendszerek

Elektronikus kereskedelem. Automatikus azonosító rendszerek Elektronikus kereskedelem Dr. Kutor László Automatikus azonosító rendszerek http://uni-obuda.hu/users/kutor/ 2012. ősz OE NIK Dr. Kutor László EK-4/42/1 Miért fontos az azonosítás? Az azonosítás az információ-feldolgozó

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

Az alállomási kezelést támogató szakértői funkciók

Az alállomási kezelést támogató szakértői funkciók Az alállomási kezelést támogató szakértői funkciók dr. Kovács Attila Szakértői rendszerek Emberi szakértő kompetenciájával, tudásával rendelkező rendszer Jellemzői: Számítási műveletek helyett logikai

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Példák a független öröklődésre

Példák a független öröklődésre GENETIKAI PROBLÉMÁK Példák a független öröklődésre Az amelogenesis imperfecta egy, a fogzománc gyengeségével és elszíneződésével járó öröklődő betegség, a 4-es kromoszómán lévő enam gén recesszív mutációja

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

INFORMATIKA - VIZSGAKÖVETELMÉNYEK. - négy osztályos képzés. nyelvi és matematika speciális osztályok

INFORMATIKA - VIZSGAKÖVETELMÉNYEK. - négy osztályos képzés. nyelvi és matematika speciális osztályok INFORMATIKA - VIZSGAKÖVETELMÉNYEK - négy osztályos képzés nyelvi és matematika speciális osztályok A vizsgák lebonyolítása A tanuló előre elkészített feladatkombinációkból húz véletlenszerűen. OSZTÁLYOZÓ

Részletesebben

Fogalmak IV. Színöröklés elméleti alapjai

Fogalmak IV. Színöröklés elméleti alapjai Fogalmak IV. Színöröklés elméleti alapjai A színeződés a melanintól függ, ami szemcsék formájában rakódik le a bőrbe, illetve a szőrbe. A melanint speciális pigmentképző sejtek termelik. A pigmentképződés

Részletesebben

Poligénes v. kantitatív öröklődés

Poligénes v. kantitatív öröklődés 1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé

Részletesebben

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus.

8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. 8. Komponens elvű programfejlesztés. Ágens, akció, cél, kontraktus. Ágens rendszer definíciója. Példák. Fairness. (Fair tulajdonság). Gyenge fair követelmény. A fair nem determinisztikus szemantika definíciója

Részletesebben