Kétszemélyes játékok

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kétszemélyes játékok"

Átírás

1 Mesterséges Intelligencia alapjai, gyakorlat Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / udapest

2 Kétszemélyes teljes információjú játékok két játékos felváltva lép mindkét játékos ismeri a maga és az ellenfél összes lépési lehetőségét, és következményeit minden egyes állásban véges számú lehetséges lépés véges számú lépés után a játék végetér szerencsének semmilyen szerepe sincs az egyik játékos nyer, a másik veszít (vagy döntetlen)

3 Példák kétszemélyes játékokra sakk go malom dáma számos táblás játék...

4 játékgráf játékfa nyerő stratégia ÉS/VGY fa "mindig létezik nyerő (vagy döntetlen) stratégia" Teljes játékfa kiértékelés - elvi jelentőség, gyakorlatban alig alkalmazható

5 Példa: teljes játékfa kiértékelés lép: lép: lép: lép: lép:

6 Példa: teljes játékfa kiértékelés lép: lép: lép: lép: lép:

7 Példa: teljes játékfa kiértékelés lép: lép: lép: lép: lép:

8 Példa: teljes játékfa kiértékelés lép: lép: lép: lép: lép:

9 Példa: teljes játékfa kiértékelés lép: lép: lép: lép: lép:

10 Példa: teljes játékfa kiértékelés lép: lép: lép: lép: lép:

11 Feladat: teljes játékfa kiértékelés lép: lép: lép: lép: lép:

12 Feladat (megoldás): teljes játékfa kiértékelés lép: lép: lép: lép: lép:

13 Játékfa részleges kiértékelése Teljes játékfa kiértékelés sokszor nagyon időigényes: Sakk 45 lépésváltás / játszma (fa mélység: 90) legális lépések száma kiértékelendő levél... (föld kora másodperc) csak egy (a soron következő) "jó", "erős", lépés meghatározása a cél...

14 Minimax legjobb első lépés... "legnagyobb biztos előnyszerzés"... játékfa kiértékelése adott mélységig... MX MIN MX

15 Feladat (megoldás): MINMX kiértékelés MX MIN MX MX 4 MIN MX

16 Feladat (megoldás): MINMX kiértékelés MX 4 MIN MX Nem "biztos a győzelem", "közbejöhet": MIN nagyobb mélységben értékel ki MIN más kiértékelő függvényt használ MIN nem MINMX-ot használ MIN "hibázik"

17 Feladat: MINMX MX MIN MX MIN

18 Feladat (megoldás): MINMX MX 8 MIN MX MIN MINMX használható nyerő stratégia meghatározására

19 Feladat: NEGMX MX MIN -8 MX 9 8 MIN MIN szinten v(n)=-f(n) értékek minden szinten v(n)=max(-v(n 1 ),...-v(n k )) egyszerűbben implementálható

20 Feladat: (m,n) átlagoló kiértékelés MX MIN MX 9 8,5 MIN (1,1) átlagoló kiértékelés = MINMX (m,n) átlagoló kiértékelés : MX szinten "m" db. érték maximuma, MIN szinten "n" db. érték minimuma "kisimítja" a kiértékelő függvényt...

21 alfa-béta algoritmus MINMX "előre" legenerálja az adott mélységig a játékfát, majd keres benne... nincs mindig szükség az összes csúcs kiértékelésére... mélységi, (korlátos) visszalépéses keresés (balról jobbra haladás) "lefelé" haladásnál: MX szinten: α = -, MIN szinten: β = + vágás: ha az úton van olyan, hogy α β (minden egyes csúcs kiértékelésénél!)

22 Példa: alfa-béta algoritmus MX α - MIN β MX α - MIN β 9

23 Példa: alfa-béta algoritmus MX α - MIN β MX α -,9 MIN β 9 9 2

24 Feladat: alfa-béta algoritmus MX MIN MX MIN

25 Feladat (megoldás): alfa-béta algoritmus MX α MIN β -,8,9,8,6,5 MX α -,9 -,8 -,8 -,6 -,3,4,5 - MIN β

26 Feladat: alfa-béta algoritmus MX α O MIN β O O O MX α O O O O O O MIN β O O O O O O O O O MX α

27 Feladat (megoldás): alfa-béta algoritmus α -,3,6 β,5,3,6,5 α -,5 -,3 -,6 -,7 -,5 - β,5,7,4,3,6,6,7,5 - - α

28 Összefoglalás Kétszemélyes, teljes információjú játékok teljes játékfa kiértékelés részleges játékfa kiértékelés MINMX NEGMX átlagoló alfa-béta változó mélységű kiértékelés... Demo alkalmazás: Nem kétszemélyes, nem teljes információjú játékok többszemélyes játékok (cél?) játékok ahol a szerencse is közbeszól (játékelmélet)...

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/33 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 110/33 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség

Részletesebben

ULTIMATE TIC TAC TOE. Serfőző Péter

ULTIMATE TIC TAC TOE. Serfőző Péter ULTIMATE TIC TAC TOE Serfőző Péter 2016.05.02. ULTIMATE TIC TAC TOE Amőba alapján Két változat, az első könnyű, a második nehéz A játék keletkezéséről nincsenek információk, de a játékelmélet elkezdett

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

KÉTSZEMÉLYES JÁTÉKOK

KÉTSZEMÉLYES JÁTÉKOK Debreceni Egyetem Informatika Kar KÉTSZEMÉLYES JÁTÉKOK Témavezető: Mecsei Zoltán Egyetemi tanársegéd Készítette: Briz Ádám Programtervező informatikus Bsc Debrecen 2009 TARTALOMJEGYZÉK 1. BEVEZETÉS...

Részletesebben

Nyerni jó. 7.-8. évfolyam

Nyerni jó. 7.-8. évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Intelligens Rendszerek Elmélete IRE 4/32/1

Intelligens Rendszerek Elmélete IRE 4/32/1 Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3

Részletesebben

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb. SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó

Részletesebben

Garry Kasparov a Deep Blue ellen

Garry Kasparov a Deep Blue ellen Döntéstámogató rendszerek 2013/14 1.félév Az IBM Deep Blue Sakkszámítógép Készítette: 2013.11.18. Tartalomjegyzék 1. Bevezetés... 3 2. Rendszer konfiguráció... 3 3. A sakk-chip felépítése... 4 Lépés generátor...

Részletesebben

Egy kétszemélyes logikai játék számítógépes megvalósítása

Egy kétszemélyes logikai játék számítógépes megvalósítása Debreceni Egyetem Informatika Kar Egy kétszemélyes logikai játék számítógépes megvalósítása Témavezető: Készítette: Mecsei Zoltán Kovács Katalin Egyetemi tanársegéd Programtervező matematikus Debrecen

Részletesebben

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001) Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Debreceni Egyetem Informatikai Kar. Kétszemélyes logikai játékok

Debreceni Egyetem Informatikai Kar. Kétszemélyes logikai játékok Debreceni Egyetem Informatikai Kar Kétszemélyes logikai játékok Témavezető: Mecsei Zoltán Egyetemi tanársegéd Készítette: Szabó Dániel András Programtervező Informatikus Debrecen 21 Ezúton szeretnék köszönetet

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli.

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli. Játékelmélet Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli Irodalom előadás jegyzet J. D. Williams: Játékelmélet Filep László: Játékelmélet 1. Előadás Történeti

Részletesebben

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

A hagyományos sakk és egyéb variánsai

A hagyományos sakk és egyéb variánsai Debreceni Egyetem Informatika Kar A hagyományos sakk és egyéb variánsai Témavezető: Dr. habil. Nagy Benedek Készítette: Szántó Gergő és Tóth Sándor PTI Debrecen 2010 Tartalomjegyzék 1. Bevezetés... 5.

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

N-személyes játékok. Bársony Alex

N-személyes játékok. Bársony Alex N-személyes játékok Bársony Alex Előszó Neumann János és Oskar Morgenstern Racionális osztozkodás törvényeinek tanulmányozása Játékosok egy tetszőleges csoportjának ereje Nem 3 személyes sakk Definíció

Részletesebben

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,

Részletesebben

JÁTÉKOSLÉT 2012 KÉRDŐÍV eredmények. 3. rész MMORPG játékok

JÁTÉKOSLÉT 2012 KÉRDŐÍV eredmények. 3. rész MMORPG játékok Eötvös Lóránd Tudományegyetem, Társadalomtudományi Kar, Szociológia Doktori Iskola Fromann Richárd JÁTÉKOSLÉT 2012 KÉRDŐÍV eredmények 3. rész MMORPG játékok www.jatekkutatas.hu Interdiszciplináris Társadalmi

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 5. ea 1 / 40

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 5. ea 1 / 40 Játékelmélet és hálózati alkalmazásai 5. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 5. ea 1 / 40 1 CSC Core 2 Kitüntetett értékek CFF kooperatív játékokban

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Regressziós játékok. Pintér Miklós. XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd. Budapesti Corvinus Egyetem Matematika Tanszék

Regressziós játékok. Pintér Miklós. XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd. Budapesti Corvinus Egyetem Matematika Tanszék Budapesti Corvinus Egyetem Matematika Tanszék XXVII. OPKUT Konferencia 2007, június 7-9. Balatonöszöd Tartalomjegyzék 1 2 3 Statisztikus játék Legyen (Ω, M, P) valószínűségi mező rögzítet, v : Ω P(N) R

Részletesebben

Mesterséges intelligencia 2. laborgyakorlat

Mesterséges intelligencia 2. laborgyakorlat Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Mesterséges Intelligencia I. kötelező program

Mesterséges Intelligencia I. kötelező program 1. Feladat kiírás Mesterséges Intelligencia I. kötelező program A feladat az Othello (más neveken Reversi, Fonákollós, Színcserélő) játékot játszó ágens írása. A játékot egyik oldalán világos, a másikon

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

JÁTÉKOSLÉT 2013 KÉRDŐÍV eredmények. 5. rész Játékosok MOTIVÁCIÓI

JÁTÉKOSLÉT 2013 KÉRDŐÍV eredmények. 5. rész Játékosok MOTIVÁCIÓI Eötvös Loránd Tudományegyetem, Társadalomtudományi Kar, Szociológia Doktori Iskola Fromann Richárd JÁTÉKOSLÉT 2013 KÉRDŐÍV eredmények 5. rész Játékosok MOTIVÁCIÓI www.jatekkutatas.hu Interdiszciplináris

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

f B B 1 B 2 A A 2 0-1

f B B 1 B 2 A A 2 0-1 az előadáson tárgyalt példák-1 Fogolydilemma A játék 2 2-es, nem-kooperatív, kétszemélyes és szimmetrikus. A játékos lehetőségei: A 1 : elismeri a bankrablást B játékos lehetőségei: B 1 : elismeri a bankrablást

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Elektronikus Almanach

Elektronikus Almanach Mesterséges Intelligencia Elektronikus Almanach Mesterséges intelligencia modern megközel zelítésben 1 Miért éppen ez a könyv? Egy kis történelem BME: 1998-1999 - MI lekerül alapképzés szintjére, hallgatói

Részletesebben

GPU-Accelerated Collocation Pattern Discovery

GPU-Accelerated Collocation Pattern Discovery GPU-Accelerated Collocation Pattern Discovery Térbeli együttes előfordulási minták GPU-val gyorsított felismerése Gyenes Csilla Sallai Levente Szabó Andrea Eötvös Loránd Tudományegyetem Informatikai Kar

Részletesebben

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:

Részletesebben

Megerősítéses tanulás 2. előadás

Megerősítéses tanulás 2. előadás Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement

Részletesebben

Funkcionális Nyelvek 2 (MSc)

Funkcionális Nyelvek 2 (MSc) Funkcionális Nyelvek 2 (MSc) Páli Gábor János pgj@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Programozási Nyelvek és Fordítóprogramok Tanszék Tematika A (tervezett) tematika rövid összefoglalása

Részletesebben

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

ÁRLISTA. (MF) Általános gépi menetfúró metrikus finommenethez

ÁRLISTA. (MF) Általános gépi menetfúró metrikus finommenethez B1-131001-0036 ISO-529-D M3,5x0,35 6H HSS 6,99 B1-131001-0041 ISO-529-D M4x0,5 6H HSS 4,61 B1-131001-0046 ISO-529-D M4,5x0,5 6H HSS 7,53 B1-131001-0051 ISO-529-D M5x0,5 6H HSS 4,64 B1-131001-0058 ISO-529-D

Részletesebben

Carcassonne - Kereskedő és építész

Carcassonne - Kereskedő és építész Carcassonne - Kereskedő és építész (Kiegészítő) Tervezte: Klaus-Jürgen Wrede Kiadja: Hans im Glück Verlags-GmbH Birnauerstr. 15 80809 München http://www.hans-imglueck.de/ A kiegészítő tartalmaz: 24 új

Részletesebben

Mesterséges Intelligencia alapjai

Mesterséges Intelligencia alapjai Mesterséges Intelligencia alapjai Evolúciós algoritmusok - neurális hálózatok Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / Budapest

Részletesebben

Felsőoktatási intézmények helye, szerepe a vidék városaiban a 2002-től 2015-ig terjedő időszakban

Felsőoktatási intézmények helye, szerepe a vidék városaiban a 2002-től 2015-ig terjedő időszakban Felsőoktatási intézmények helye, szerepe a vidék városaiban a 2002-től 2015-ig terjedő időszakban Előadó: Dr. Péter Zsolt Nagyvárad, 2016. szeptember 16. Az előadás főbb témakörei Témaválasztás indoklása

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 69/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

Tétel: A háromszög belső szögeinek összege: 180

Tétel: A háromszög belső szögeinek összege: 180 Tétel: A háromszög belső szögeinek összege: 180 Bizonyítás: legyenek az ABC háromszög belső szögei α, β, γ. Húzzunk a C csúcson át párhuzamost AB-vel. A C csúcsnál keletkezett egyenesszöget a háromszög

Részletesebben

Az Előadások Témái. Mesterséges Intelligencia. A mesterséges intelligencia. ... trívia. Vizsga. Laborgyakorlatok: Bemutatók (5 20 pont)

Az Előadások Témái. Mesterséges Intelligencia. A mesterséges intelligencia. ... trívia. Vizsga. Laborgyakorlatok: Bemutatók (5 20 pont) Az Előadások Témái Mesterséges ntelligencia Csató Lehel Matematika-nformatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési

Részletesebben

Egy francia-sakk feladvány: Világos lép, és döntetlen az alsó sor az 1. sor!

Egy francia-sakk feladvány: Világos lép, és döntetlen az alsó sor az 1. sor! Leüttetni az összes bábud! A játszmát a rendes sakkal ellentétben sötét kezdi. Döntetlen itt is lehetséges, például két különböző színű futó esetén. A királynak ebben a játékban nincsen kitüntetett szerepe

Részletesebben

SZAKDOLGOZAT. Hucker Dávid

SZAKDOLGOZAT. Hucker Dávid SZAKDOLGOZAT Hucker Dávid Debrecen 2010 Debreceni Egyetem Informatikai Kar Kétszemélyes játékok fejlesztése Java-ban Témavezető: Jeszenszky Péter Egyetemi adjunktus Készítette: Hucker Dávid Programtervező

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

Játékok és a számítógép

Játékok és a számítógép Eötvös Loránd Tudományegyetem Természettudományi kar Játékok és a számítógép BSc szakdolgozat Készítette: Témavezeto : Szabó Dávid Szo nyi Tamás Matematika BSc egyetemi tanár Alkalmazott matematikus Számítógéptudomány

Részletesebben

Számítsuk ki a nyelvet! Matematika, fizika és algoritmusok a nyelvben

Számítsuk ki a nyelvet! Matematika, fizika és algoritmusok a nyelvben Számítsuk ki a nyelvet! Matematika, fizika és algoritmusok a nyelvben Biró Tamás Eötvös Loránd Tudományegyetem KöMaL Ifjúsági Ankét, 2015. október 28. Biró Tamás Számítsuk ki a nyelvet! Matematika, fizika

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Keresőeljárások kétszemélyes játékokhoz

Keresőeljárások kétszemélyes játékokhoz Keresőeljárások kétszemélyes játékokhoz Összeállította : Vályi Sándor Prof. Dr. Heiner Stuckenschmidt (Universität Mannheim) előadása nyomán http://www.google.hu/url?sa=t&source=web&ct=res&cd=5&ved=0cbcqfjae&url=http%3a%2f%2fki.informatik.uni--

Részletesebben

Debrecen-Kismacs és Debrecen-Látókép mérőállomás talajnedvesség adatsorainak elemzése

Debrecen-Kismacs és Debrecen-Látókép mérőállomás talajnedvesség adatsorainak elemzése Debrecen-Kismacs és Debrecen-Látókép mérőállomás talajnedvesség adatsorainak elemzése Nagy Zoltán 1, Dobos Attila 2, Rácz Csaba 2, Weidinger Tamás, 3 Merényi László 4, Dövényi Nagy Tamás 2, Molnár Krisztina

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Forrás: Nagylaci (http://www.jatektan.hu)

Forrás: Nagylaci (http://www.jatektan.hu) A Sakk az a legismertebb olyan táblás játék, amit egyre kevesebben ismernek. Ezernyi változata létezik. Sokan kedvelik, de még többen félre húzódnak, ha a lépés-szabályokra kérdezünk. 7-8 éves kor előtt

Részletesebben

Elméleti evolúcióbiológia. Kispál András (EYQ0NP) Fizika BSc. II. évfolyam

Elméleti evolúcióbiológia. Kispál András (EYQ0NP) Fizika BSc. II. évfolyam Elméleti evolúcióbiológia Ciklikus dominancia a háromstratégiás evolúciós játékoknál Beadandó dolgozat Kispál András (EYQ0NP) Fizika BSc. II. évfolyam Budapest, 2014. május 24. Tartalomjegyzék 1. Bevezetés

Részletesebben

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK 1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3

Részletesebben

A Feldspar fordító, illetve Feldspar programok tesztelése

A Feldspar fordító, illetve Feldspar programok tesztelése A Feldspar fordító, illetve Feldspar programok tesztelése [KMOP-1.1.2-08/1-2008-0002 társfinanszírozó: ERFA] Leskó Dániel Eötvös Loránd Tudományegyetem Programozási Nyelvek és Fordítóprogramok Tanszék

Részletesebben

XXXIX. MŰSZAKI FELSŐOKTATÁSI SPORTNAPOK

XXXIX. MŰSZAKI FELSŐOKTATÁSI SPORTNAPOK XXXIX. MŰSZAKI FELSŐOKTATÁSI SPORTNAPOK 2008. OKTÓBER 23-24. DEBRECEN PROGRAM A SPORTNAPOK RÉSZVEVŐI: - DUNAÚJVÁROSI FŐISKOLA - KECSKEMÉTI FŐISKOLA - PÉCSI TUDOMÁNYEGYETEM - BUDAPESTI MÜSZAKI FŐISKOLA

Részletesebben

Számítógépes alapismeretek

Számítógépes alapismeretek Számítógépes alapismeretek 0. (meta) előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Programtervező Informatikus BSc 2008 /

Részletesebben

Klár Gergely

Klár Gergely Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. őszi félév Tartalom Vágás Szakaszvágás Poligonvágás 1 Vágás Szakaszvágás Poligonvágás 2 Vágás

Részletesebben

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának

Részletesebben

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak

Részletesebben

Mesterséges Intelligencia 1

Mesterséges Intelligencia 1 Mesterséges Intelligencia Egy ember kecskét, farkast és kápostát seretne átvinni egy folyón, de csak egy kis csónakot talál, amelybe rajta kívül csak egy tárgy fér. Hogyan tud a folyón úgy átkelni, hogy.

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Készítette: Csernóczki Zsuzsa Témavezető: Zsemle Ferenc Konzulensek: Tóth László, Dr. Lenkey László

Készítette: Csernóczki Zsuzsa Témavezető: Zsemle Ferenc Konzulensek: Tóth László, Dr. Lenkey László Készítette: Csernóczki Zsuzsa Témavezető: Zsemle Ferenc Konzulensek: Tóth László, Dr. Lenkey László Eötvös Loránd Tudományegyetem Természettudományi Kar Környezet-földtudomány szakirány 2009.06.15. A téma

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

1. Lineáris differenciaegyenletek

1. Lineáris differenciaegyenletek Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +

Részletesebben

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 Játékelmélet és hálózati alkalmazásai 4. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 1 Nash bargaining 2 Kooperatív játékok TU CFF játékok tulajdonságai

Részletesebben

SÖVÉNYVÁGÓ JÁTÉKOK. Radnai Ágnes. Témavezet : Király Tamás Operációkutatás Tanszék. Eötvös Loránd Tudományegyetem

SÖVÉNYVÁGÓ JÁTÉKOK. Radnai Ágnes. Témavezet : Király Tamás Operációkutatás Tanszék. Eötvös Loránd Tudományegyetem SÖVÉNYVÁGÓ JÁTÉKOK Radnai Ágnes Témavezet : Király Tamás Operációkutatás Tanszék Eötvös Loránd Tudományegyetem Szeretnék köszönetet mondani témavezet mnek, Király Tamásnak, aki készségesen mesélt mindenr

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem. Solow-modell II. Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Jöv héten dolgozat!!! Reál GDP növekedési üteme (forrás: World Bank) Reál GDP növekedési üteme (forrás: World Bank) Mit tudunk

Részletesebben